版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
貴州省六盤水市盤縣第四中學2024屆高二上數(shù)學期末教學質量檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.平面與平面平行的充分條件可以是()A.平面內有一條直線與平面平行B.平面內有兩條直線分別與平面平行C.平面內有無數(shù)條直線分別與平面平行D平面內有兩條相交直線分別與平面平行2.已知,則方程與在同一坐標系內對應的圖形編號可能是()A.①④ B.②③C.①② D.③④3.已知數(shù)列滿足:,,則()A. B.C. D.4.中國歷法推測遵循以測為輔,以算為主的原則.例如《周髀算經(jīng)》里對二十四節(jié)氣的晷影長的記錄中,冬至和夏至的晷影長是實測得到的,其它節(jié)氣的晷影長則是按照等差數(shù)列的規(guī)律計算得出的.二十四節(jié)氣中,從冬至到夏至的十三個節(jié)氣依次為:冬至、小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種、夏至.已知《周髀算經(jīng)》中記錄某年的冬至的晷影長為13尺,夏至的晷影長是1.48尺,按照上述規(guī)律,那么《周髀算經(jīng)》中所記錄的立夏的晷影長應為()A.尺 B.尺C.尺 D.尺5.已知F為橢圓C:=1(a>b>0)右焦點,O為坐標原點,P為橢圓C上一點,若|OP|=|OF|,∠POF=120°,則橢圓C的離心率為()A. B.C.-1 D.-16.若數(shù)列滿足,則()A.2 B.6C.12 D.207.在四棱錐中,底面是正方形,為的中點,若,則()A. B.C. D.8.已知直四棱柱的棱長均為,則直線與側面所成角的正切值為()A. B.C. D.9.如圖所示,直三棱柱中,,,分別是,的中點,,則與所成角的余弦值為()A. B.C. D.10.設函數(shù)的定義域為,滿足,且當時,.若對任意,都有,則的取值范圍是()A. B.C. D.11.已知直線l和拋物線交于A,B兩點,O為坐標原點,且,交AB于點D,點D的坐標為,則p的值為()A. B.1C. D.212.在等差數(shù)列中,,,則使數(shù)列的前n項和成立的最大正整數(shù)n=()A.2021 B.2022C.4041 D.4042二、填空題:本題共4小題,每小題5分,共20分。13.已知點是橢圓上的一點,分別為橢圓的左、右焦點,已知=120°,且,則橢圓的離心率為___________.14.甲乙參加摸球游戲,袋子中裝有3個黑球和1個白球,球的大小、形狀、質量等均一樣,若從袋中有放回地取1個球,再取1個球,若取出的兩個球同色,則甲勝,若取出的兩個球不同色則乙勝,求乙獲勝的概率為_____15.若在上是減函數(shù),則實數(shù)a的取值范圍是_________.16.已知圓的圓心與點關于直線對稱,直線與圓相交于、兩點,且,則圓的方程為_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)為迎接2022年北京冬奧會,推廣滑雪運動,某滑雪場開展滑雪促銷活動.該滑雪場的收費標準是:滑雪時間不超過1小時免費,超過1小時的部分每小時收費標準為40元(不足1小時的部分按1小時計算).有甲、乙兩人相互獨立地來該滑雪場運動,設甲、乙不超過1小時離開的概率分別為,;1小時以上且不超過2小時離開的概率分別為,;兩人滑雪時間都不會超過3小時.求甲、乙兩人所付滑雪費用相同的概率;18.(12分)已知函數(shù),(1)討論的單調性;(2)若時,對任意都有恒成立,求實數(shù)的最大值19.(12分)已知直線與雙曲線交于,兩點,為坐標原點(1)當時,求線段的長;(2)若以為直徑的圓經(jīng)過坐標原點,求的值20.(12分)已知動圓過點且動圓內切于定圓:記動圓圓心的軌跡為曲線.(1)求曲線的方程;(2)若、是曲線上兩點,點滿足求直線的方程.21.(12分)記為等差數(shù)列的前n項和,已知.(1)求的通項公式;(2)求的最小值.22.(10分)等差數(shù)列的前項和記為,已知.(1)求的通項公式:(2)求,并求為何值時的值最大.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)平面與平面平行的判定定理可判斷.【詳解】對A,若平面內有一條直線與平面平行,則平面與平面可能平行或相交,故A錯誤;對B,若平面內有兩條直線分別與平面平行,若這兩條直線平行,則平面與平面可能平行或相交,故B錯誤;對C,若平面內有無數(shù)條直線分別與平面平行,若這無數(shù)條直線互相平行,則平面與平面可能平行或相交,故C錯誤;對D,若平面內有兩條相交直線分別與平面平行,則根據(jù)平面與平面平行的判定定理可得平面與平面平行,故D正確.故選:D.2、B【解析】結合橢圓、雙曲線、拋物線的圖像,分別對①②③④分析m、n的正負,即可得到答案.【詳解】對于①:由雙曲線的圖像可知:;由拋物線的圖像可知:同號,矛盾.故①錯誤;對于②:由雙曲線的圖像可知:;由拋物線的圖像可知:異號,符合要求.故②成立;對于③:由橢圓的圖像可知:;由拋物線的圖像可知:同號,且拋物線的焦點在x軸上,符合要求.故③成立;對于④:由橢圓的圖像可知:;由拋物線的圖像可知:同號,且拋物線的焦點在x軸上,矛盾.故④錯誤;故選:B3、A【解析】由a1=3,,利用遞推思想,求出數(shù)列的前11項,推導出數(shù)列{an}從第6項起是周期為3的周期數(shù)列,由此能求出a2022【詳解】解:∵數(shù)列{an}滿足:a1=3,,∴a2=3a1+1=10,5,a4=3a3+1=16,a58,4,a72,a81,a9=3a8+1=4,a102,a111,∴數(shù)列{an}從第6項起是周期為3的周期數(shù)列,∵2022=5+672×3+1,∴a2022=a6=4故選:A4、B【解析】根據(jù)等差數(shù)列定義求得公差,再求解立夏的晷影長在數(shù)列中所對應的項即可【詳解】設從冬至到夏至的十三個節(jié)氣依次為等差數(shù)列的前13項,則所以公差為,則立夏的晷影長應為(尺)故選:B5、D【解析】記橢圓的左焦點為,在中,通過余弦定理得出,,根據(jù)橢圓的定義可得,進而可得結果.【詳解】記橢圓的左焦點為,在中,可得,在中,可得,故,故,故選:D.6、D【解析】由已知條件變形可得,然后累乘法可得,即可求出詳解】由得,,.故選:D7、C【解析】由為的中點,根據(jù)向量的運算法則,可得,即可求解.【詳解】由底面是正方形,E為的中點,且,根據(jù)向量的運算法則,可得.故選:C.8、D【解析】根據(jù)題意把直線與側面所成角的正切值轉化為在直角三角形中的正切值,即可求出答案.【詳解】由題意可知直四棱柱如下圖所示:取的中點設為點,連接,在直四棱柱中,面,面,,在四邊形中,,,故且.面,面,面,.故直線與側面所成角的正切值為.故選:D.9、A【解析】取的中點為,的中點為,然后可得或其補角即為與所成角,然后在中求出答案即可.【詳解】取的中點為,的中點為,,,所以或其補角即為與所成角,設,則,,在,,故選:A10、D【解析】由題意得當時,,根據(jù)題意作出函數(shù)的部分圖象,再結合圖象即可求出答案【詳解】解:當時,,又,∴當時,,∴在上單調遞增,在上單調遞減,且;又,則函數(shù)圖象每往右平移兩個單位,縱坐標變?yōu)樵瓉淼谋?,作出其大致圖象得,當時,由得,或,由圖可知,若對任意,都有,則,故選:D【點睛】本題主要考查函數(shù)的圖象變換,考查數(shù)形結合思想,屬于中檔題11、B【解析】由垂直關系得出直線l方程,聯(lián)立直線和拋物線方程,利用韋達定理以及數(shù)量積公式得出p的值.【詳解】,,即聯(lián)立直線和拋物線方程得設,則解得故選:B12、C【解析】根據(jù)等差數(shù)列的性質易得,,再應用等差數(shù)列前n項和公式及等差中項、下標和的性質可得、,即可確定答案.【詳解】因為是等差數(shù)列且,,所以,,.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設,由余弦定理知,所以,故填.14、##0.375【解析】先算出有放回地取兩次的取法數(shù),再算出取出兩球不同色的取法數(shù),根據(jù)古典概型的概率公式計算即可求得答案.【詳解】有放回地取兩球,共有種取法,兩次取球不同色的取法有種,故乙獲勝的概率為,故答案為:15、【解析】根據(jù)導數(shù)的性質,結合常變量分離法進行求解即可.【詳解】,因為在上是減函數(shù),所以在上恒成立,即,當時,的最小值為,所以,故答案為:16、【解析】利用對稱條件求出圓心C的坐標,借助直線被圓所截弦長求出圓半徑即可寫出圓的方程.【詳解】設圓的圓心,依題意,,解得,即圓心,點C到直線的距離,因圓截直線所得弦AB長為6,于是得圓C的半徑所以圓的方程為:.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、【解析】甲、乙兩人所付費用相同即為、、,求出相應的概率,利用互斥事件的概率公式,可求出甲、乙兩人所付費用相同的概率;【詳解】兩人所付費用相同,相同費用可能為0,40,80元,兩人都付0元的概率為,兩人都付40元的概率為,兩人都付80元的概率為,故兩人所付費用相同的概率為.18、(1)答案見解析;(2).【解析】(1)利用導數(shù)與單調性的關系分類討論即得;(2)由題可得在上恒成立,構造函數(shù),利用導數(shù)求函數(shù)的最值即可.【小問1詳解】的定義域為,且當時,顯然,在定義域上單調遞增;當時,令,得則有:極大值即在上單調遞增,在上單調遞減,綜上所述,當時,在定義域上單調遞增;當時,在上單調遞增,在上單調遞減.【小問2詳解】當時,,對于滿足恒成立,在上恒成立,令,只需∴,,,令,則,在上單調遞增,又,,存在唯一的,使得,即,兩邊取自然對數(shù)得,極小值,則的最大值為19、(1)(2)【解析】(1)聯(lián)立直線方程和雙曲線方程,利用弦長公式可求弦長.(2)根據(jù)圓過原點可得,設,從而,聯(lián)立直線方程和雙曲線方程后利用韋達定理化簡前者可得所求的參數(shù)的值.【小問1詳解】當時,直線,設,由可得,此時,故.【小問2詳解】設,因為以為直徑的圓經(jīng)過坐標原點,故,故,由可得,故且,故.而可化為即,因為,所以,解得,結合其范圍可得.20、(1);(2).【解析】(1)根據(jù)兩圓內切,以及圓過定點列式求軌跡方程;(2)利用重心坐標公式可知,,再設直線的方程為與橢圓方程聯(lián)立,利用根與系數(shù)的關系求解直線方程.【詳解】(1)由已知可得,兩式相加可得則點的軌跡是以、為焦點,長軸長為的橢圓,則因此曲線的方程是(2)因為,則點是的重心,易得直線的斜率存在,設直線的方程為,聯(lián)立消得:且①②由①②解得則直線的方程為即【點睛】本題考查直線與橢圓的問題關系,本題的關鍵是根據(jù)求得,.21、(1)(2)【解析】(1)設數(shù)列的公差為d,由,利用等差數(shù)列的前n項和公
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年智能防盜門安裝與系統(tǒng)集成服務協(xié)議3篇
- 2024技術支持協(xié)議書范本
- 2024版聘用合同勞動合同
- 2025年度苯板銷售與產(chǎn)業(yè)鏈整合合同2篇
- 二零二五年度環(huán)保型廣告車租賃服務協(xié)議6篇
- 2024延期支付科研經(jīng)費合同協(xié)議書3篇
- 2024昆明市二手房買賣合同及其空氣質量保證協(xié)議
- 二零二五年金融衍生品交易合同公證協(xié)議3篇
- 二零二五年度賓館客房租賃合同解除協(xié)議2篇
- 武漢信息傳播職業(yè)技術學院《空間數(shù)據(jù)庫》2023-2024學年第一學期期末試卷
- 常用靜脈藥物溶媒的選擇
- 當代西方文學理論知到智慧樹章節(jié)測試課后答案2024年秋武漢科技大學
- 2024年預制混凝土制品購銷協(xié)議3篇
- 2024-2030年中國高端私人會所市場競爭格局及投資經(jīng)營管理分析報告
- GA/T 1003-2024銀行自助服務亭技術規(guī)范
- 《消防設備操作使用》培訓
- 新交際英語(2024)一年級上冊Unit 1~6全冊教案
- 2024年度跨境電商平臺運營與孵化合同
- 2024年電動汽車充電消費者研究報告-2024-11-新能源
- 湖北省黃岡高級中學2025屆物理高一第一學期期末考試試題含解析
- 上海市徐匯中學2025屆物理高一第一學期期末學業(yè)水平測試試題含解析
評論
0/150
提交評論