




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
杭州市采荷中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.拋物線的焦點(diǎn)是A. B.C. D.2.為了了解1200名學(xué)生對(duì)學(xué)校某項(xiàng)教改實(shí)驗(yàn)的意見,打算從中抽取一個(gè)容量為40的樣本,采用系統(tǒng)抽樣方法,則分段的間隔為()A.40 B.30C.20 D.123.設(shè)是空間一定點(diǎn),為空間內(nèi)任一非零向量,滿足條件的點(diǎn)構(gòu)成的圖形是()A.圓 B.直線C.平面 D.線段4.在等比數(shù)列中,是和的等差中項(xiàng),則公比的值為()A.-2 B.1C.2或-1 D.-2或15.下列結(jié)論中正確的有()A.若,則 B.若,則C.若,則 D.若,則6.已知命題對(duì)任意,總有;是方程的根則下列命題為真命題的是A. B.C. D.7.已知直線l的方向向量,平面α的一個(gè)法向量為,則直線l與平面α的位置關(guān)系是()A.平行 B.垂直C.在平面內(nèi) D.平行或在平面內(nèi)8.某考點(diǎn)配備的信號(hào)檢測(cè)設(shè)備的監(jiān)測(cè)范圍是半徑為100米的圓形區(qū)域,一名工作人員持手機(jī)以每分鐘50米的速度從設(shè)備正東方向米的處出發(fā),沿處西北方向走向位于設(shè)備正北方向的處,則這名工作人員被持續(xù)監(jiān)測(cè)的時(shí)長(zhǎng)為()A.1分鐘 B.分鐘C.2分鐘 D.分鐘9.已知一個(gè)幾何體的三視圖如圖,則其外接球的體積為()A. B.C. D.10.已知某班有學(xué)生48人,為了解該班學(xué)生視力情況,現(xiàn)將所有學(xué)生隨機(jī)編號(hào),用系統(tǒng)抽樣的方法抽取一個(gè)容量為4的樣本已知3號(hào),15號(hào),39號(hào)學(xué)生在樣本中,則樣本中另外一個(gè)學(xué)生的編號(hào)是()A.26 B.27C.28 D.2911.已知各項(xiàng)均為正數(shù)的等比數(shù)列滿足,若存在兩項(xiàng),使得,則的最小值為()A.4 B.C. D.912.設(shè)函數(shù)是定義在上的奇函數(shù),且,當(dāng)時(shí),有恒成立.則不等式的解集為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在單位正方體中,點(diǎn)E為AD的中點(diǎn),過點(diǎn)B,E,的平面截該正方體所得的截面面積為______.14.從甲、乙、丙、丁4位同學(xué)中,選出2位同學(xué)分別擔(dān)任正、副班長(zhǎng)的選法數(shù)可以用表示為____________.15.圓與圓的公共弦長(zhǎng)為______16.已知函數(shù),,若,,使得,則實(shí)數(shù)a的取值范圍是______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)數(shù)列的前n項(xiàng)和為,且,數(shù)列(1)求和的通項(xiàng)公式;(2)設(shè)數(shù)列的前n項(xiàng)和為,證明:18.(12分)已知橢圓的離心率為,且其左頂點(diǎn)到右焦點(diǎn)的距離為.(1)求橢圓的方程;(2)設(shè)點(diǎn)、在橢圓上,以線段為直徑的圓過原點(diǎn),試問是否存在定點(diǎn),使得到直線的距離為定值?若存在,請(qǐng)求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說理由.19.(12分)已知圓:與x軸負(fù)半軸交于點(diǎn)A,過A的直線交拋物線于B,C兩點(diǎn),且.(1)證明:點(diǎn)C的橫坐標(biāo)為定值;(2)若點(diǎn)C在圓內(nèi),且過點(diǎn)C與垂直的直線與圓交于D,E兩點(diǎn),求四邊形ADBE的面積的最大值.20.(12分)有三個(gè)條件:①數(shù)列的任意相鄰兩項(xiàng)均不相等,,且數(shù)列為常數(shù)列,②,③,,中,從中任選一個(gè),補(bǔ)充在下面橫線上,并回答問題已知數(shù)列的前n項(xiàng)和為,______,求數(shù)列的通項(xiàng)公式和前n項(xiàng)和21.(12分)某書店剛剛上市了《中國古代數(shù)學(xué)史》,銷售前該書店擬定了5種單價(jià)進(jìn)行試銷,每種單價(jià)(元)試銷l天,得到如表單價(jià)(元)與銷量(冊(cè))數(shù)據(jù):?jiǎn)蝺r(jià)(元)1819202122銷量(冊(cè))6156504845(l)根據(jù)表中數(shù)據(jù),請(qǐng)建立關(guān)于的回歸直線方程:(2)預(yù)計(jì)今后的銷售中,銷量(冊(cè))與單價(jià)(元)服從(l)中的回歸方程,已知每?jī)?cè)書的成本是12元,書店為了獲得最大利潤(rùn),該冊(cè)書的單價(jià)應(yīng)定為多少元?附:,,,.22.(10分)如圖,已知四棱臺(tái)的上、下底面分別是邊長(zhǎng)為2和4的正方形,,且底面,點(diǎn)分別在棱、上·(1)若P是的中點(diǎn),證明:;(2)若平面,二面角的余弦值為,求四面體的體積
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】先判斷焦點(diǎn)的位置,再從標(biāo)準(zhǔn)型中找出即得焦點(diǎn)坐標(biāo).【詳解】焦點(diǎn)在軸上,又,故焦點(diǎn)坐標(biāo)為,故選D.【點(diǎn)睛】求圓錐曲線的焦點(diǎn)坐標(biāo),首先要把圓錐曲線的方程整理為標(biāo)準(zhǔn)方程,從而得到焦點(diǎn)的位置和焦點(diǎn)的坐標(biāo).2、B【解析】根據(jù)系統(tǒng)抽樣的概念,以及抽樣距的求法,可得結(jié)果.【詳解】由總數(shù)為1200,樣本容量為40,所以抽樣距為:故選:B【點(diǎn)睛】本題考查系統(tǒng)抽樣的概念,屬基礎(chǔ)題.3、C【解析】根據(jù)法向量的定義可判斷出點(diǎn)所構(gòu)成的圖形.【詳解】是空間一定點(diǎn),為空間內(nèi)任一非零向量,滿足條件,所以,構(gòu)成的圖形是經(jīng)過點(diǎn),且以為法向量的平面.故選:C.【點(diǎn)睛】本題考查空間中動(dòng)點(diǎn)的軌跡,考查了法向量定義的理解,屬于基礎(chǔ)題.4、D【解析】由題可得,即求.【詳解】由題意,得,所以,因?yàn)椋?,解得?故選:D.5、D【解析】根據(jù)基本初等函數(shù)的導(dǎo)數(shù)和運(yùn)算法則分別計(jì)算函數(shù)的導(dǎo)數(shù),即可判斷選項(xiàng).【詳解】A.若,則,故A錯(cuò)誤;B.若,則,故B錯(cuò)誤;C.若,則,故C錯(cuò)誤;D.若,則,故D正確.故選:D6、A【解析】由絕對(duì)值的意義可知命題p為真命題;由于,所以命題q為假命題;因此為假命題,為真命題,“且”字聯(lián)結(jié)的命題只有當(dāng)兩命題都真時(shí)才是真命題,所以答案選A7、D【解析】根據(jù)題意,結(jié)合線面位置關(guān)系的向量判斷方法,即可求解.【詳解】根據(jù)題意,因?yàn)椋?,所以直線l與平面α的位置關(guān)系是平行或在平面內(nèi)故選:D8、C【解析】以設(shè)備的位置為坐標(biāo)原點(diǎn),其正東方向?yàn)檩S正方向,正北方向?yàn)檩S正方向建立平面直角坐標(biāo)系,求得直線和圓的方程,利用點(diǎn)到直線的距離公式和圓的弦長(zhǎng)公式,求得的長(zhǎng),進(jìn)而求得持續(xù)監(jiān)測(cè)的時(shí)長(zhǎng).【詳解】以設(shè)備的位置為坐標(biāo)原點(diǎn),其正東方向?yàn)檩S正方向,正北方向?yàn)檩S正方向建立平面直角坐標(biāo)系,如圖所示,則,,可得,圓記從處開始被監(jiān)測(cè),到處監(jiān)測(cè)結(jié)束,因?yàn)榈降木嚯x為米,所以米,故監(jiān)測(cè)時(shí)長(zhǎng)為分鐘故選:C.9、D【解析】根據(jù)三視圖還原幾何體,將幾何體補(bǔ)成長(zhǎng)方體,計(jì)算出幾何體的外接球直徑,結(jié)合球體體積公式即可得解.【詳解】根據(jù)三視圖還原原幾何體,如下圖所示:由圖可知,該幾何體三棱錐,且平面,將三棱錐補(bǔ)成長(zhǎng)方體,所以,三棱錐的外接球直徑為,故,因此,該幾何體的外接球的體積為.故選:D【點(diǎn)睛】方法點(diǎn)睛:空間幾何體與球接、切問題的求解方法(1)求解球與棱柱、棱錐接、切問題時(shí),一般過球心及接、切點(diǎn)作截面,把空間問題轉(zhuǎn)化為平面圖形與圓的接、切問題,再利用平面幾何知識(shí)尋找?guī)缀沃性亻g的關(guān)系求解(2)若球面上四點(diǎn)P,A,B,C構(gòu)成的三條線段兩兩互相垂直,一般把有關(guān)元素“補(bǔ)形”成為一個(gè)球內(nèi)接長(zhǎng)方體,利用求解10、B【解析】由系統(tǒng)抽樣可知抽取一個(gè)容量為4的樣本時(shí),將48人按順序平均分為4組,由已知編號(hào)可得所求的學(xué)生來自第三組,設(shè)其編號(hào)為,則,進(jìn)而求解即可【詳解】由系統(tǒng)抽樣可知,抽取一個(gè)容量為4的樣本時(shí),將48人分為4組,第一組編號(hào)為1號(hào)至12號(hào);第二組編號(hào)為13號(hào)至24號(hào);第三組編號(hào)為25號(hào)至36號(hào);第四組編號(hào)為37號(hào)至48號(hào),故所求的學(xué)生來自第三組,設(shè)其編號(hào)為,則,所以,故選:B【點(diǎn)睛】本題考查系統(tǒng)抽樣的編號(hào),屬于基礎(chǔ)題11、C【解析】由求得,代入求得,利用基本不等式求出它的最小值【詳解】因?yàn)楦黜?xiàng)均為正數(shù)的等比數(shù)列滿足,可得,即解得或(舍去)∵,,∴=當(dāng)且僅當(dāng),即m=2,n=4時(shí),等號(hào)成立故的最小值等于.故選:C【點(diǎn)睛】方法點(diǎn)睛:本題主要考查等比數(shù)列的通項(xiàng)公式和基本不等式的應(yīng)用,解題的關(guān)鍵是常量代換的技巧,所謂常量代換,就是把一個(gè)常數(shù)用代數(shù)式來代替,如,再把常數(shù)6代換成已知中的m+n,即.常量代換是基本不等式里常用的一個(gè)技巧,可以優(yōu)化解題,提高解題效率.12、B【解析】根據(jù)當(dāng)時(shí),可知在上單調(diào)遞減,結(jié)合可確定在上的解集;根據(jù)奇偶性可確定在上的解集;由此可確定結(jié)果.【詳解】,當(dāng)時(shí),,在上單調(diào)遞減,,,在上的解集為,即在上的解集為;又為上的奇函數(shù),,為上的偶函數(shù),在上的解集為,即在上的解集為;當(dāng)時(shí),,不合題意;綜上所述:的解集為.故選:.【點(diǎn)睛】本題考查利用函數(shù)的單調(diào)性和奇偶性求解函數(shù)不等式的問題,關(guān)鍵是能夠通過構(gòu)造函數(shù)的方式,確定所構(gòu)造函數(shù)的單調(diào)性和奇偶性,進(jìn)而根據(jù)零點(diǎn)確定不等式的解集.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)題意,取的中點(diǎn),連接、、、,分析可得四邊形為平行四邊形,則要求的截面就是四邊形,進(jìn)而可得為菱形,連接、,求出、的長(zhǎng),計(jì)算可得答案【詳解】根據(jù)題意,取的中點(diǎn),連接、、、,易得,,則四邊形為平行四邊形,過點(diǎn),,的截面就是,又由正方體為單位正方體,則,則為菱形,連接、,易得,,則,即要求截面的面積為,故答案為:14、【解析】由題意知:從4為同學(xué)中選出2位進(jìn)行排列,即可寫出表示方式.【詳解】1、從4位同學(xué)選出2位同學(xué),2、把所選出的2位同學(xué)任意安排為正、副班長(zhǎng),∴選法數(shù)為.故答案為:.15、【解析】?jī)蓤A方程相減可得公共弦所在直線方程,即該直線截其中一圓求弦長(zhǎng)即可【詳解】圓與圓兩式相減得,公共弦所在直線方程為:圓,圓心為到公共弦的距離為:公共弦長(zhǎng)故答案為:16、【解析】先求出兩函數(shù)在上的值域,再由已知條件可得,且,列不等式組可求得結(jié)果【詳解】由,得,當(dāng)時(shí),,所以在上單調(diào)遞減,所以,即,由,得,當(dāng)時(shí),,所以在上單調(diào)遞增,所以,即,因?yàn)椋?,使得,所以,解得,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)證明見解析【解析】(1)根據(jù)可得,從而可得;(2)利用錯(cuò)位相減法可得,從而可得,又,即可證明不等式成立.【小問1詳解】解:∵,∴當(dāng)時(shí),,當(dāng)時(shí),,∴,經(jīng)檢驗(yàn),也符合,∴,;【小問2詳解】證明:因?yàn)?,∴,∴∴,又∵,∴,所?8、(1);(2)存在,.【解析】(1)由題設(shè)可知求出,再結(jié)合,從而可求出橢圓的方程,(2)①若直線與軸垂直,由對(duì)稱性可知,代入橢圓方程可求得結(jié)果,②若直線不與軸垂直,設(shè)直線的方程為,將直線方程與橢圓方程聯(lián)立方程組,消去,然后利用根與系數(shù)的關(guān)系,設(shè),,再由條件,得,從而得,再利用點(diǎn)到直線的距離公式可求得結(jié)果【詳解】(1)由題設(shè)可知解得,,,所以橢圓的方程為:;(2)設(shè),,①若直線與軸垂直,由對(duì)稱性可知,將點(diǎn)代入橢圓方程,解得,原點(diǎn)到該直線的距離;②若直線不與軸垂直,設(shè)直線的方程為,由消去得,則由條件,即,由韋達(dá)定理得,整理得,則原點(diǎn)到該直線的距離;故存在定點(diǎn),使得到直線的距離為定值.19、(1)證明見解析(2)【解析】(1)設(shè)直線方程,與拋物線方程聯(lián)立,設(shè),,結(jié)合,得到,結(jié)合根與系數(shù)的關(guān)系,即可解得答案;(2)根據(jù)(1)所設(shè),表示出弦長(zhǎng),再求出,進(jìn)而表示出四邊形ADBE的面積,據(jù)此求其最大值,【小問1詳解】由題意知點(diǎn)的坐標(biāo)為,易知直線的斜率存在且不為零,設(shè)直線:,,,聯(lián)立,得,則,即,由韋達(dá)定理得,由,即,得,即,代入,得或,又拋物線開口向右,,所以點(diǎn)的橫坐標(biāo)為定值.【小問2詳解】由(1)知點(diǎn)的坐標(biāo)為,故,由(1)知點(diǎn)的坐標(biāo)為,由點(diǎn)在圓內(nèi),得,解得,又,得的斜率,故的方程為,即,故圓心到直線的距離為,由垂徑定理得,故,(),當(dāng)且僅當(dāng)時(shí),有最大值,所以四邊形的面積的最大值為.20、;【解析】選①,由數(shù)列為常數(shù)列可得,由此可求,根據(jù)任意相鄰兩項(xiàng)均不相等可得,由此證明數(shù)列為等比數(shù)列,并求出數(shù)列的通項(xiàng)公式,利用分組求和法求數(shù)列的前n項(xiàng)和為,選②由取可求,再取與原式相減可得,由此證明數(shù)列為等比數(shù)列,并求出數(shù)列的通項(xiàng)公式,利用分組求和法求數(shù)列的前n項(xiàng)和為,選③由取與原式相減可得,取可求,由此可得,故,由此證明數(shù)列為等比數(shù)列,并求出數(shù)列的通項(xiàng)公式,利用分組求和法求數(shù)列的前n項(xiàng)和為,【詳解】解:選①:因?yàn)椋瑪?shù)列為常數(shù)列,所以,解得或,又因?yàn)閿?shù)列的任意相鄰兩項(xiàng)均不相等,且,所以數(shù)列為2,-1,2,-1,2,-1……,所以,即,所以,又,所以是以為首項(xiàng),公比為-1的等比數(shù)列,所以,即;所以選②:因?yàn)?,易知,,所以兩式相減可得,即,以下過程與①相同;選③:由,可得,又,時(shí),,所以,因?yàn)?,所以也滿足上式,所以,即,以下過程與①相同21、(1)(2)當(dāng)單價(jià)應(yīng)定為22.5元時(shí),可獲得最大利潤(rùn)【解析】(l)先計(jì)算的平均值,再代入公式計(jì)算得到(2)計(jì)算利潤(rùn)為:計(jì)算最大值.【詳解】解:(1),,,所以對(duì)的回歸直線方程為:(2)設(shè)獲得的利潤(rùn)為,,因?yàn)槎魏瘮?shù)的開口向下,所以當(dāng)時(shí),取最大值,所以當(dāng)單價(jià)應(yīng)定為22.5元時(shí),可獲得最大利潤(rùn)【點(diǎn)睛】本題考查了回歸方程,函數(shù)的最值,意在考查學(xué)生的計(jì)算能力.22、(1)證明見解析(2)【解析】(1)建立空間直角坐標(biāo)系,利用空間向量的坐標(biāo)運(yùn)算知,即可證得結(jié)論;(2)利用空間向量結(jié)合已知的面面角余弦值可求得,再利用線面平行的已知條件求得,再將四面體視為以為底面的三棱錐,利用錐體的體積公式即可得解.【小問1詳解】以為坐標(biāo)原點(diǎn),,,所在直線分別為,,軸建立空間直角坐標(biāo)系,則,,,,設(shè),其中,,若是的中點(diǎn),則,,,于是,∴,即【小
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 老字號(hào)品牌振興計(jì)劃實(shí)施方案(參考范文)
- 《少年的你》觀后感(15篇)
- 河道生態(tài)修復(fù)工程可行性研究報(bào)告
- 工廠建設(shè)項(xiàng)目立項(xiàng)報(bào)告
- 形勢(shì)與政策關(guān)注國家大事培養(yǎng)家國情懷
- 新疆烏魯木齊市實(shí)驗(yàn)學(xué)校2023-2024學(xué)年高三上學(xué)期1月月考物理含解析
- 不跟陌生人走安全教育教案
- 廣東省部分學(xué)校2023-2024學(xué)年高三上學(xué)期11月聯(lián)考地理含解析
- 心理安全小班課件教案
- 杭州職業(yè)技術(shù)學(xué)院《學(xué)前游戲論》2023-2024學(xué)年第二學(xué)期期末試卷
- 2020版5MW風(fēng)力發(fā)電機(jī)組安裝手冊(cè)風(fēng)電機(jī)組安裝手冊(cè)
- 【新能源汽車動(dòng)力電池常見故障及維修方法探討5900字(論文)】
- 《廣州市城市樹木保護(hù)專章編制指引》解讀(分享版)
- 樂山老江壩安置方案
- 詩詞大會(huì)比賽題庫含答案全套
- 過磅合同范本
- 排水管網(wǎng)檢測(cè)投標(biāo)方案(技術(shù)標(biāo))
- 《大學(xué)生職業(yè)生涯規(guī)劃作品》重慶
- PI形式發(fā)票范文模板
- (PQCDSM)生產(chǎn)現(xiàn)場(chǎng)改善與安全生產(chǎn)管理
- 全國青少年電子信息智能創(chuàng)新大賽圖形化編程(必做題模擬三卷)
評(píng)論
0/150
提交評(píng)論