版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
河北省衡水中學(xué)2024屆高二上數(shù)學(xué)期末復(fù)習(xí)檢測(cè)模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知數(shù)列滿足,,則()A. B.C. D.2.已知圓,則圓C關(guān)于直線對(duì)稱的圓的方程為()A. B.C. D.3.如圖,棱長(zhǎng)為1的正方體中,為線段上的動(dòng)點(diǎn),則下列結(jié)論錯(cuò)誤的是A.B.平面平面C.的最大值為D.的最小值為4.已知正三棱柱的側(cè)棱長(zhǎng)與底面邊長(zhǎng)相等,則AB1與側(cè)面ACC1A1所成角的正弦值等于A. B.C. D.5.五行學(xué)說(shuō)是中華民族創(chuàng)造的哲學(xué)思想.古代先民認(rèn)為,天下萬(wàn)物皆由五種元素組成,分別是金、木、水、火、土,彼此之間存在如圖所示的相生相克關(guān)系.若從金、木、水、火、土五種元素中任取兩種,則這兩種元素恰是相生關(guān)系的概率是()A. B.C. D.6.在等差數(shù)列中,為數(shù)列的前項(xiàng)和,,,則數(shù)列的公差為()A. B.C.4 D.7.動(dòng)點(diǎn)P,Q分別在拋物線和圓上,則的最小值為()A. B.C. D.8.已知直線,,若,則實(shí)數(shù)()A. B.C.1 D.29.已知空間向量,,若,則實(shí)數(shù)的值是()A. B.0C.1 D.210.在中,角,,所對(duì)的邊分別為,,,若,則的形狀為()A.銳角三角形 B.直角三角形C.鈍角三角形 D.不確定11.已知為虛數(shù)單位,復(fù)數(shù)是純虛數(shù),則()A. B.4C.3 D.212.某工廠去年的電力消耗為千瓦,由于設(shè)各更新,該工廠計(jì)劃每年比上一年的電力消耗減少,則從今年起,該工廠第5年消耗的電力為()A.m千瓦 B.m千瓦C.m千瓦 D.m千瓦二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)函數(shù)f(x)在R上滿足f(x)+xf′(x)>0,若a=(30.3)f(30.3),b=(logπ3)·f(logπ3),則a與b的大小關(guān)系為_(kāi)_______14.已知,為雙曲線的左、右焦點(diǎn),過(guò)作的垂線分別交雙曲線的左、右兩支于B,C兩點(diǎn)(如圖).若,則雙曲線的漸近線方程為_(kāi)_____15.橢圓的右焦點(diǎn)是,兩點(diǎn)是橢圓的左頂點(diǎn)和上頂點(diǎn),若△是直角三角形,則橢圓的離心率是________.16.若向量,,,且向量,,共面,則______三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓的左、右兩個(gè)焦點(diǎn),,離心率,短軸長(zhǎng)為21求橢圓的方程;2如圖,點(diǎn)A為橢圓上一動(dòng)點(diǎn)非長(zhǎng)軸端點(diǎn),的延長(zhǎng)線與橢圓交于B點(diǎn),AO的延長(zhǎng)線與橢圓交于C點(diǎn),求面積的最大值18.(12分)已知橢圓C:的離心率為,點(diǎn)為橢圓C上一點(diǎn)(1)求橢圓C的方程;(2)若M,N是橢圓C上的兩個(gè)動(dòng)點(diǎn),且的角平分線總是垂直于y軸,求證:直線MN的斜率為定值19.(12分)已知等差數(shù)列的前項(xiàng)和為,滿足,.(1)求數(shù)列的通項(xiàng)公式與前項(xiàng)和;(2)求的值.20.(12分)已知橢圓的下焦點(diǎn)為、上焦點(diǎn)為,其離心率.過(guò)焦點(diǎn)且與x軸不垂直的直線l交橢圓于A、B兩點(diǎn)(1)求實(shí)數(shù)m的值;(2)求△ABO(O為原點(diǎn))面積的最大值21.(12分)已知等差數(shù)列的前n項(xiàng)和為,且,(1)求數(shù)列的通項(xiàng)公式;(2)若,求k的值22.(10分)甲、乙兩人參加普法知識(shí)競(jìng)賽,共有5題,選擇題(1)甲、乙兩人中有一個(gè)抽到選擇題(2)甲、乙兩人中至少有一人抽到選擇題
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)遞推關(guān)系依次求出即可.【詳解】,,,,,.故選:A.2、B【解析】求得圓的圓心關(guān)于直線的對(duì)稱點(diǎn),由此求得對(duì)稱圓的方程.【詳解】設(shè)圓的圓心關(guān)于直線的對(duì)稱點(diǎn)為,則,所以對(duì)稱圓的方程為.故選:B3、C【解析】∵,,∴面,面,∴,A正確;∵平面即為平面,平面即為平面,且平面,∴平面平面,∴平面平面,∴B正確;當(dāng)時(shí),為鈍角,∴C錯(cuò);將面與面沿展成平面圖形,線段即為的最小值,在中,,利用余弦定理解三角形得,即,∴D正確,故選C考點(diǎn):立體幾何中的動(dòng)態(tài)問(wèn)題【思路點(diǎn)睛】立體幾何問(wèn)題的求解策略是通過(guò)降維,轉(zhuǎn)化為平面幾何問(wèn)題,具體方法表現(xiàn)為:
求空間角、距離,歸到三角形中求解;2.對(duì)于球的內(nèi)接外切問(wèn)題,作適當(dāng)?shù)慕孛妫纫芊从吵鑫恢藐P(guān)系,又要反映出數(shù)量關(guān)系;求曲面上兩點(diǎn)之間的最短距離,通過(guò)化曲為直轉(zhuǎn)化為同一平面上兩點(diǎn)間的距離4、C【解析】過(guò)作,連接,由于,故平面,所以所求直線與平面所成的角為,設(shè)棱長(zhǎng)為,則,故,.點(diǎn)睛:本題主要考查空間立體幾何直線與平面的位置關(guān)系,考查直線與平面所成的角,考查線面垂直的證明方法和常見(jiàn)幾何體的結(jié)構(gòu)特征.由于題目所給幾何體為直三棱柱,故側(cè)棱和底面垂直,這是一個(gè)重要的隱含條件,通過(guò)作交線的垂線,即可得到高,由此作出二面角的平面角.5、C【解析】先計(jì)算從金、木、水、火、土五種元素中任取兩種的所有基本事件數(shù),再計(jì)算其中兩種元素恰是相生關(guān)系的基本事件數(shù),利用古典概型概率公式,即得解【詳解】由題意,從金、木、水、火、土五種元素中任取兩種,共有(金,木),(金,水),(金,火),(金,土),(木,水),(木,火),(木土),(水,火),(水,土),(火,土),共10個(gè)基本事件,其中兩種元素恰是相生關(guān)系包含(金,木),(木,土),(土,水),(水,火)(火,金)共5個(gè)基本事件,所以所求概率.故選:C6、A【解析】由已知條件列方程組求解即可【詳解】設(shè)等差數(shù)列的公差為,因?yàn)椋?,所以,解得,故選:A7、B【解析】設(shè),根據(jù)兩點(diǎn)間距離公式,先求得P到圓心的最小距離,根據(jù)圓的幾何性質(zhì),即可得答案.【詳解】設(shè),圓化簡(jiǎn)為,即圓心為(0,4),半徑為,所以點(diǎn)P到圓心的距離,令,則,令,,為開(kāi)口向上,對(duì)稱軸為的拋物線,所以的最小值為,所以,所以的最小值為.故選:B8、D【解析】根據(jù)兩條直線的斜率相等可得結(jié)果.【詳解】因?yàn)橹本€,,且,所以,故選:D.9、C【解析】根據(jù)空間向量垂直的性質(zhì)進(jìn)行求解即可.【詳解】因?yàn)?,所以,因此?故選:C10、C【解析】由正弦定理得出,再由余弦定理得出,從而判斷為鈍角得出的形狀.【詳解】因?yàn)椋?,所以,所以的形狀為鈍角三角形.故選:C11、C【解析】化簡(jiǎn)復(fù)數(shù)得,由其為純虛數(shù)求參數(shù)a,進(jìn)而求的模即可.【詳解】由純虛數(shù),∴,解得:,則,故選:C12、D【解析】根據(jù)等比數(shù)列的定義進(jìn)行求解即可.【詳解】因?yàn)槿ツ甑碾娏ο臑榍?,工廠計(jì)劃每年比上一年的電力消耗減少,所以今年的電力消耗為,因此從今年起,該工廠第5年消耗的電力為,故選:D二、填空題:本題共4小題,每小題5分,共20分。13、a>b【解析】構(gòu)造函數(shù)F(x)=xf(x),利用F(x)的單調(diào)性求解即可.【詳解】設(shè)函數(shù)F(x)=xf(x),∴F′(x)=f(x)+xf′(x)>0,∴F(x)=xf(x)在R上為增函數(shù),又∵30.3>1,logπ3<1,∴30.3>logπ3,∴F(30.3)>F(logπ3),∴(30.3)f(30.3)>(logπ3)f(logπ3),∴a>b.故答案為:a>b.14、【解析】根據(jù)雙曲線的定義先計(jì)算出,,注意到圖中漸近線,于是利用兩種不同的表示法列方程求解.【詳解】,則,由雙曲線的定義及在右支上,,又在左支上,則,則,在中,由余弦定理,,而圖中漸近線,于是,得,于是,不妨令,化簡(jiǎn)得,解得,漸近線就為:.故答案為:.15、【解析】由題設(shè)易知,應(yīng)用斜率的兩點(diǎn)式及橢圓參數(shù)關(guān)系可得,進(jìn)而求橢圓離心率.【詳解】由題設(shè),,,,又△是直角三角形,顯然,所以,可得,則,解得,又,所以.故答案為:.16、##【解析】由向量共面的性質(zhì)列出方程組求解即可.【詳解】因?yàn)?,,共面,所以存在?shí)數(shù)x,y,使得,得,解得∴故答案為:三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)橢圓的標(biāo)準(zhǔn)方程為(2)面積的最大值為【解析】(1)由題意得,再由,標(biāo)準(zhǔn)方程為;(2)①當(dāng)?shù)男甭什淮嬖跁r(shí),不妨?。虎诋?dāng)?shù)男甭蚀嬖跁r(shí),設(shè)的方程為,聯(lián)立方程組,又直線的距離點(diǎn)到直線的距離為面積的最大值為.試題解析:(1)由題意得,解得,∵,∴,,故橢圓的標(biāo)準(zhǔn)方程為(2)①當(dāng)直線的斜率不存在時(shí),不妨取,故;②當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,聯(lián)立方程組,化簡(jiǎn)得,設(shè)點(diǎn)到直線的距離因?yàn)槭蔷€段的中點(diǎn),所以點(diǎn)到直線的距離為,∴綜上,面積的最大值為.【點(diǎn)睛】本題主要考查橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、點(diǎn)到直線的距離、弦長(zhǎng)公式和三角形面積公式等知識(shí),涉及函數(shù)與方程思想、數(shù)形結(jié)合思想分類與整合、轉(zhuǎn)化與化歸等思想,并考查運(yùn)算求解能力和邏輯推理能力,屬于較難題型.第一小題由題意由方程思想建立方程組求得標(biāo)準(zhǔn)方程為;(2)利用分類與整合思想分當(dāng)?shù)男甭什淮嬖谂c存在兩種情況求解,在斜率存在時(shí),由舍而不求法求得,再求得點(diǎn)到直線的距離為面積的最大值為.18、(1);(2)證明見(jiàn)解析.【解析】(1)根據(jù)橢圓的離心率公式,結(jié)合代入法進(jìn)行求解即可;(2)根據(jù)角平分線的性質(zhì),結(jié)合一元二次方程根與系數(shù)關(guān)系、斜率公式進(jìn)行求解即可.【小問(wèn)1詳解】橢圓的離心率,又,∴∵橢圓C:經(jīng)過(guò)點(diǎn),解得,∴橢圓C的方程為;【小問(wèn)2詳解】∵∠MPN的角平分線總垂直于y軸,∴MP與NP所在直線關(guān)于直線對(duì)稱.設(shè)直線MP的斜率為k,則直線NP的斜率為∴設(shè)直線MP的方程為,直線NP的方程為設(shè)點(diǎn),由消去y,得∵點(diǎn)在橢圓C上,則有,即同理可得∴,又∴直線MN的斜率為【點(diǎn)睛】關(guān)鍵點(diǎn)睛:由∠MPN的角平分線總垂直于y軸,得到MP與NP所在直線關(guān)于直線對(duì)稱是解題的關(guān)鍵.19、(1),;(2).【解析】(1)設(shè)出等差數(shù)列的公差,借助前項(xiàng)和公式列式計(jì)算作答.(2)由(1)的結(jié)論借助裂項(xiàng)相消去求解作答.【小問(wèn)1詳解】設(shè)等差數(shù)列的公差為,因,,則,解得,于是得,,所以數(shù)列的通項(xiàng)公式為,前項(xiàng)和.【小問(wèn)2詳解】由(1)知,,所以.20、(1)2;(2)﹒【解析】(1)根據(jù)已知條件得,,結(jié)合離心率,即可解得答案(2)設(shè)直線的方程,與橢圓方程聯(lián)立,利用弦長(zhǎng)公式以及三角形的面積公式,基本不等式即可得出答案【小問(wèn)1詳解】由題意可得,,,∵離心率,∴,∵,∴,解得【小問(wèn)2詳解】由(1)知,橢圓,上焦點(diǎn),設(shè),,,,直線的方程為:,聯(lián)立,得,∴,,∴,∴,∴,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,∴為原點(diǎn))面積的最大值為21、(1)(2)10【解析】(1)設(shè)等差數(shù)列的公差為d,利用已知建立方程組,解之可求得數(shù)列的通項(xiàng)公式;(2)利用等差數(shù)列的前項(xiàng)和公式,化簡(jiǎn)即可求解.【小問(wèn)1詳解】解:設(shè)等差數(shù)列的公差為d,由已知,,得,解得,則;小問(wèn)2詳解】解:由
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年農(nóng)業(yè)科技園區(qū)場(chǎng)地合作經(jīng)營(yíng)協(xié)議書(shū)4篇
- 科技禮儀在商務(wù)中的應(yīng)用
- 兩人合伙買房協(xié)議書(shū)標(biāo)準(zhǔn)版
- 2025年度茶葉品牌授權(quán)經(jīng)營(yíng)合同書(shū)4篇
- 個(gè)人信用貸款協(xié)議2024年匯編
- 專業(yè)洗車工2024年服務(wù)協(xié)議樣本版A版
- 2025年度體育產(chǎn)業(yè)市場(chǎng)調(diào)研服務(wù)合同書(shū)4篇
- 二零二四年一帶一路建設(shè)項(xiàng)目合同
- 2025年度智能交通系統(tǒng)規(guī)劃與設(shè)計(jì)合同范本下載4篇
- 2025年度酒店場(chǎng)地經(jīng)營(yíng)承包協(xié)議范本3篇
- 割接方案的要點(diǎn)、難點(diǎn)及采取的相應(yīng)措施
- 2025年副護(hù)士長(zhǎng)競(jìng)聘演講稿(3篇)
- 2025至2031年中國(guó)臺(tái)式燃?xì)庠钚袠I(yè)投資前景及策略咨詢研究報(bào)告
- 原發(fā)性腎病綜合征護(hù)理
- 第三章第一節(jié)《多變的天氣》說(shuō)課稿2023-2024學(xué)年人教版地理七年級(jí)上冊(cè)
- 2025年中國(guó)電科集團(tuán)春季招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025年度建筑施工現(xiàn)場(chǎng)安全管理合同2篇
- 建筑垃圾回收利用標(biāo)準(zhǔn)方案
- 2024年考研英語(yǔ)一閱讀理解80篇解析
- 樣板間合作協(xié)議
- 福建省廈門(mén)市2023-2024學(xué)年高二上學(xué)期期末考試語(yǔ)文試題(解析版)
評(píng)論
0/150
提交評(píng)論