版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
河北省邯鄲市大名縣第一中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知數(shù)列滿足,(且),若恒成立,則M的最小值是()A.2 B.C. D.32.已知是兩條不同的直線,是兩個不同的平面,且,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分又不必要條件3.已知雙曲線:的右焦點(diǎn)為,過的直線(為常數(shù))與雙曲線在第一象限交于點(diǎn).若(為原點(diǎn)),則的離心率為()A. B.C. D.54.橢圓的長軸長為()A. B.C. D.5.中國古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個問題:“三百七十八里關(guān),初行健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見次日行里數(shù),請公仔細(xì)算相還.”其意思為:有一個人走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天后到達(dá)目的地,請問第二天走了()A.192
里 B.96
里C.48
里 D.24
里6.若圓與圓相切,則實(shí)數(shù)a的值為()A.或0 B.0C. D.或7.已知直線的一個方向向量為,則直線的傾斜角為()A. B.C. D.8.如圖在平行六面體中,與的交點(diǎn)記為.設(shè),,,則下列向量中與相等的向量是()A. B.C. D.9.新型冠狀病毒(2019-NCoV)因2019年武漢病毒性肺炎病例而被發(fā)現(xiàn),2020年1月12日被世界衛(wèi)生組織命名,為考察某種藥物預(yù)防該疾病的效果,進(jìn)行動物試驗(yàn),得到如下列聯(lián)表:患病未患病總計(jì)服用藥104555未服藥203050總計(jì)3075105下列說法正確的是()參考數(shù)據(jù):,0.050.013.8416.635A.有95%的把握認(rèn)為藥物有效B.有95%的把握認(rèn)為藥物無效C.在犯錯誤的概率不超過0.05的前提下認(rèn)為藥物無效D.在犯錯誤的概率不超過0.01的前提下認(rèn)為藥物有效10.設(shè)實(shí)數(shù)x,y滿足,則目標(biāo)函數(shù)的最大值是()A. B.C.16 D.3211.雙曲線C:的右焦點(diǎn)為F,過點(diǎn)F作雙曲線C的兩條漸近線的垂線,垂足分別為H1,H2.若,則雙曲線C的離心率為()A. B.C. D.212.若函數(shù)既有極大值又有極小值,則實(shí)數(shù)a的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線:()的焦點(diǎn)到準(zhǔn)線的距離為4,過點(diǎn)的直線與拋物線交于,兩點(diǎn),若,則______14.已知雙曲線的左、右焦點(diǎn)分別為,,點(diǎn)是圓上一個動點(diǎn),且線段的中點(diǎn)在的一條漸近線上,若,則的離心率的取值范圍是________15.在正三棱柱中,,點(diǎn)P滿足,其中,,則下列說法中,正確的有_________(請?zhí)钊胨姓_說法的序號)①當(dāng)時,的周長為定值②當(dāng)時,三棱錐的體積為定值③當(dāng)時,有且僅有一個點(diǎn)P,使得④當(dāng)時,有且僅有一個點(diǎn)P,使得平面16.已知分別是平面α,β,γ的法向量,則α,β,γ三個平面中互相垂直的有________對三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,是底面邊長為1的正三棱錐,分別為棱上的點(diǎn),截面底面,且棱臺與棱錐的棱長和相等.(棱長和是指多面體中所有棱的長度之和)(1)求證:為正四面體;(2)若,求二面角的大?。唬?)設(shè)棱臺的體積為,是否存在體積為且各棱長均相等的直四棱柱,使得它與棱臺有相同的棱長和?若存在,請具體構(gòu)造出這樣的一個直四棱柱,并給出證明;若不存在,請說明理由.18.(12分)已知等差數(shù)列的前和為,數(shù)列是公比為2的等比數(shù)列,且,(1)求數(shù)列和數(shù)列的通項(xiàng)公式;(2)現(xiàn)由數(shù)列與按照下列方式構(gòu)造成新的數(shù)列①將數(shù)列中的項(xiàng)去掉數(shù)列中的項(xiàng),按原來的順序構(gòu)成新數(shù)列;②數(shù)列與中的所有項(xiàng)分別構(gòu)成集合與,將集合中的所有元素從小到大依次排列構(gòu)成一個新數(shù)列;在以上兩個條件中任選一個做為已知條件,求數(shù)列的前30項(xiàng)和.19.(12分)已知數(shù)列中,,.(1)求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.20.(12分)已知圓與直線(1)若,直線與圓相交與,求弦長(2)若直線與圓無公共點(diǎn)求的取值范圍21.(12分)直線經(jīng)過兩直線和的交點(diǎn)(1)若直線與直線平行,求直線的方程;(2)若點(diǎn)到直線的距離為,求直線的方程22.(10分)已知E,F(xiàn)分別是正方體的棱BC和CD的中點(diǎn)(1)求與所成角的大??;(2)求與平面所成角的余弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù),(且),利用累加法求得,再根據(jù)恒成立求解.【詳解】因?yàn)閿?shù)列滿足,,(且)所以,,,,因?yàn)楹愠闪?,所以,則M的最小值是,故選:C2、B【解析】根據(jù)垂直關(guān)系的性質(zhì)可判斷.【詳解】由題,,則或,若,則或或與相交,故充分性不成立;若,則必有,故必要性成立,所以“”是“”的必要不充分條件.故選:B.3、D【解析】取雙曲線的左焦點(diǎn),連接,計(jì)算可得,即.設(shè),則,,解得:,利用勾股定理計(jì)算可得,即可得出結(jié)果.【詳解】取雙曲線的左焦點(diǎn),連接,,則因?yàn)?,所以,?,.設(shè),則,,解得:.,,..故選:D4、D【解析】由橢圓方程可直接求得.【詳解】由橢圓方程知:,長軸長為.故選:D.5、B【解析】由題可得此人每天走的步數(shù)等比數(shù)列,根據(jù)求和公式求出首項(xiàng)可得.【詳解】由題意可知此人每天走的步數(shù)構(gòu)成為公比的等比數(shù)列,由題意和等比數(shù)列的求和公式可得,解得,第此人第二天走里.故選:B6、D【解析】根據(jù)給定條件求出兩圓圓心距,再借助兩圓相切的充要條件列式計(jì)算作答.【詳解】圓的圓心,半徑,圓的圓心,半徑,而,即點(diǎn)不可能在圓內(nèi),則兩圓必外切,于是得,即,解得,所以實(shí)數(shù)a的值為或.故選:D7、A【解析】由直線斜率與方向向量的關(guān)系算出斜率,然后可得.【詳解】記直線的傾斜角為,由題知,又,所以,即.故選:A8、B【解析】利用空間向量的加法和減法法則可得出關(guān)于、、的表達(dá)式.【詳解】故選:B.9、A【解析】根據(jù)列聯(lián)表計(jì)算,對照臨界值即可得出結(jié)論【詳解】根據(jù)列聯(lián)表,計(jì)算,由臨界值表可知,有95%的把握認(rèn)為藥物有效,A正確故選:A10、C【解析】求的最大值即求的最大值,根據(jù)約束條件畫出可行域,將目標(biāo)函數(shù)看成直線,直線經(jīng)過可行域內(nèi)的點(diǎn),將目標(biāo)與直線的截距建立聯(lián)系,然后得到何時目標(biāo)值取得要求的最值,進(jìn)而求得的最大值,最后求出的最大值.【詳解】要求的最大值即求的最大值.根據(jù)實(shí)數(shù),滿足的條件作出可行域,如圖.將目標(biāo)函數(shù)化為.則表示直線在軸上的截距的相反數(shù).要求的最大值,即求直線在軸上的截距最小值.如圖當(dāng)直線過點(diǎn)時,在軸上的截距最小值.由,解得所以的最大值為,則的最大值為16.故選:C.11、D【解析】將條件轉(zhuǎn)化為該雙曲線的一條漸近線的傾斜角為,可得,由離心率公式即可得解.【詳解】由題意,(為坐標(biāo)原點(diǎn)),所以該雙曲線的一條漸近線的傾斜角為,所以,即,所以離心率.故選:D.12、B【解析】函數(shù)既有極大值又有極小值轉(zhuǎn)化為導(dǎo)函數(shù)在定義域上有兩個不同的零點(diǎn).【詳解】因?yàn)榧扔袠O大值又有極小值,且,所以有兩個不等的正實(shí)數(shù)解,所以,且,解得,且.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、15【解析】易得拋物線方程為,根據(jù),求得點(diǎn)P的坐標(biāo),進(jìn)而得到直線l的方程,與拋物線方程聯(lián)立,再利用拋物線定義求解.【詳解】解:因?yàn)閽佄锞€的焦點(diǎn)到準(zhǔn)線的距離為4,所以,則拋物線:,設(shè)點(diǎn)的坐標(biāo)為,的坐標(biāo)為,因?yàn)?,所以,則,則,所以直線的方程為,代入拋物線方程可得,故,則,所以故答案為:1514、【解析】設(shè),,因?yàn)辄c(diǎn)是線段中點(diǎn),所以有,代入坐標(biāo)求出點(diǎn)的軌跡為圓,因?yàn)辄c(diǎn)在漸近線上,所以圓與漸近線有公共點(diǎn),利用點(diǎn)到直線的距離求出臨界狀態(tài)下漸近線的斜率,數(shù)形結(jié)合求出有公共點(diǎn)時漸近線斜率的范圍,從而求出離心率的范圍.【詳解】解:設(shè),,因?yàn)辄c(diǎn)是線段的中點(diǎn),所以有,即有,因?yàn)辄c(diǎn)在圓上,所以滿足:,代入可得:,即,所以點(diǎn)的軌跡是以為圓心,以1為半徑的圓,如圖所示:因?yàn)辄c(diǎn)在漸近線上,所以圓與漸近線有公共點(diǎn),當(dāng)兩條漸近線與圓恰好相切時為臨界點(diǎn),則:圓心到漸近線的距離為,因?yàn)?,所以,即,且,所以,此時,,當(dāng)時,漸近線與圓有公共點(diǎn),.故答案為:.15、②④【解析】①結(jié)合得到P在線段上,結(jié)合圖形可知不同位置下周長不同;②由線面平行得到點(diǎn)到平面距離不變,故體積為定值;③結(jié)合圖形得到不同位置下有,判斷出③錯誤;④結(jié)合圖形得到有唯一的點(diǎn)P,使得線面垂直.【詳解】由題意得:,,,所以P為正方形內(nèi)一點(diǎn),①,當(dāng)時,,即,,所以P在線段上,所以周長為,如圖1所示,當(dāng)點(diǎn)P在處時,,故①錯誤;②,如圖2,當(dāng)時,即,即,,所以P在上,,因?yàn)椤蜝C,平面,平面,所以點(diǎn)P到平面距離不變,即h不變,故②正確;③,當(dāng)時,即,如圖3,M為中點(diǎn),N為BC的中點(diǎn),P是MN上一動點(diǎn),易知當(dāng)時,點(diǎn)P與點(diǎn)N重合時,由于△ABC為等邊三角形,N為BC中點(diǎn),所以AN⊥BC,又⊥BC,,所以BN⊥平面,因?yàn)槠矫?,則,當(dāng)時,點(diǎn)P與點(diǎn)M重合時,可證明出⊥平面,而平面,則,即,故③錯誤;④,當(dāng)時,即,如圖4所示,D為的中點(diǎn),E為的中點(diǎn),則P為DE上一動點(diǎn),易知,若平面,只需即可,取的中點(diǎn)F,連接,又因?yàn)槠矫?,所以,若,只需平面,即即可,如圖5,易知當(dāng)且僅當(dāng)點(diǎn)P與點(diǎn)E重合時,故只有一個點(diǎn)P符合要求,使得平面,故④正確.故選:②④【點(diǎn)睛】立體幾何的壓軸題,通常情況下要畫出圖形,利用線面平行,線面垂直及特殊點(diǎn),特殊值進(jìn)行排除選項(xiàng),或者用等體積法進(jìn)行轉(zhuǎn)化等思路進(jìn)行解決.16、0【解析】計(jì)算每兩個向量的數(shù)量積,判斷該兩個向量是否垂直,可得答案.【詳解】因?yàn)?,?所以中任意兩個向量都不垂直,即α,β,γ中任意兩個平面都不垂直故答案為:0.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2);(3)存在,構(gòu)造棱長均為,底面相鄰兩邊的夾角為的直四棱柱即滿足條件.【解析】(1)由棱臺、棱錐的棱長和相等可得,再由面面平行有,結(jié)合正四面體的結(jié)構(gòu)特征即可證結(jié)論.(2)取BC的中點(diǎn)M,連接PM、DM、AM,由線面垂直的判定可證平面PAM,即是二面角的平面角,進(jìn)而求其大小.(3)設(shè)直四棱柱的棱長均為,底面相鄰兩邊的夾角為,結(jié)合已知條件用表示出即可確定直四棱柱.【小問1詳解】由棱臺與棱錐的棱長和相等,∴,故.又截面底面ABC,則,,∴,從而,故為正四面體.【小問2詳解】取BC的中點(diǎn)M,連接PM、DM、AM,由,,得:平面PAM,而平面PAM,故,從而是二面角的平面角.由(1)知,三棱錐的各棱長均為1,所以.由D是PA的中點(diǎn),得.在Rt△ADM中,,故二面角的大小為.【小問3詳解】存在滿足條件的直四棱柱.棱臺的棱長和為定值6,體積為V.設(shè)直四棱柱的棱長均為,底面相鄰兩邊的夾角為,則該四棱柱的棱長和為6,體積為.因?yàn)檎拿骟w的體積是,所以,,從而,故構(gòu)造棱長均為,底面相鄰兩邊的夾角為的直四棱柱,即滿足條件.18、(1),(2)答案見解析【解析】(1)由題意可直接得到等比數(shù)列的通項(xiàng)公式;求出等差數(shù)列的公差,即可得到其通項(xiàng)公式;(2)若選①,則可確定由數(shù)列前33項(xiàng)的和減去,即可得答案;若選②,則可確定由數(shù)列前27項(xiàng)的和加上,即可得答案.【小問1詳解】因?yàn)閿?shù)列為等比數(shù)列,且,所以.又因,所以,又,則,故等差數(shù)列的通項(xiàng)公式為.【小問2詳解】因?yàn)?,,所以,而若選①因?yàn)樵跀?shù)列前30項(xiàng)內(nèi),不在在數(shù)列前30項(xiàng)內(nèi).,則數(shù)列前30項(xiàng)和為:=1632.若選②因?yàn)樵跀?shù)列前30項(xiàng)內(nèi),不在在數(shù)列前30項(xiàng)內(nèi).,則數(shù)列前30項(xiàng)和為:=1203.19、(1)證明見解析,(2)【解析】(1)由,取倒數(shù)得到,再利用等差數(shù)列的定義求解;(2)由(1)得到,利用錯位相減法求解.【小問1詳解】證明:由,以及,顯然,所以,即,所以數(shù)列是首項(xiàng)為,公差為的等差數(shù)列,所以,所以;【小問2詳解】由(1)可得,,所以數(shù)列的前項(xiàng)和①所以②則由②-①可得:,所以數(shù)列的前項(xiàng)和.20、(1);(2)或.【解析】(1)求出圓心到直線的距離,再由垂徑定理求弦長;(2)由圓心到直線的距離大于半徑列式求解的范圍【詳解】解:(1)圓,圓心為,半徑,圓心到直線的距離為,弦長(2)若直線與圓無公共點(diǎn),則圓心到直線的距離大于半徑解得或21、(1)(2)或【解析】(1)由題意兩立方程組,求兩直線的交點(diǎn)的坐標(biāo),利用兩直線平行的性質(zhì),用待定系數(shù)法求出的方程(2)分類討論直線的斜率,利用點(diǎn)到直線的距離公式,用點(diǎn)斜式求直線的方程【小問1詳解】解:由,解得,所以兩直線和的交點(diǎn)為當(dāng)直線與直線平行,設(shè)的方程為,把點(diǎn)代入求得,可得的方程為【小問2詳解】解:斜率不存在時,直線方程為,滿足點(diǎn)到直線的距離為5當(dāng)?shù)男甭蚀嬖跁r,設(shè)直限的方程為,即,則點(diǎn)到直線的距離為,求得,故的方程為,即綜上,直線的方程為或22、(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度“唐代書法與繪畫藝術(shù)品收藏與投資合同”3篇
- 2025年度體育賽事VI視覺形象合同3篇
- 2024簡約合同封面圖片
- 2025年度文化旅游景區(qū)場地經(jīng)營權(quán)出讓協(xié)議2篇
- 2025年度城市綜合體拆遷補(bǔ)償與開發(fā)合同4篇
- 2025便利店加盟店品牌保護(hù)及知識產(chǎn)權(quán)合同范本3篇
- 2024年03月廣東興業(yè)銀行廣州分行春季校園招考筆試歷年參考題庫附帶答案詳解
- 2024版股權(quán)轉(zhuǎn)讓委托的協(xié)議書
- 專業(yè)會計(jì)咨詢與服務(wù)協(xié)議精簡版版B版
- 2025年二零二五食堂工作人員聘用與食品安全培訓(xùn)及考核合同
- GB/T 14040-2007預(yù)應(yīng)力混凝土空心板
- 帶狀皰疹護(hù)理查房課件整理
- 奧氏體型不銹鋼-敏化處理
- 作物栽培學(xué)課件棉花
- 交通信號控制系統(tǒng)檢驗(yàn)批質(zhì)量驗(yàn)收記錄表
- 弱電施工驗(yàn)收表模板
- 絕對成交課件
- 探究基坑PC工法組合鋼管樁關(guān)鍵施工技術(shù)
- 國名、語言、人民、首都英文-及各地區(qū)國家英文名
- API SPEC 5DP-2020鉆桿規(guī)范
- 組合式塔吊基礎(chǔ)施工專項(xiàng)方案(117頁)
評論
0/150
提交評論