




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
廣東省深圳市福田區(qū)耀華實驗學(xué)校國際班2024屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.瑞士著名數(shù)學(xué)家歐拉在1765年提出定理:三角形的外心、重心、垂心位于同一直線上,這條直線被后人稱為三角形的“歐拉線”.若滿足,頂點,且其“歐拉線”與圓相切,則:①.圓M上的點到原點的最大距離為②.圓M上存在三個點到直線的距離為③.若點在圓M上,則的最小值是④.若圓M與圓有公共點,則上述結(jié)論中正確的有()個A.1 B.2C.3 D.42.?dāng)?shù)學(xué)家歐拉在1765年發(fā)現(xiàn),任意三角形的外心、重心、垂心位于同一條直線上,這條直線稱為歐拉線.已知的頂點,,若其歐拉線的方程為,則頂點的坐標(biāo)為()A. B.C. D.3.圓的圓心坐標(biāo)與半徑分別是()A. B.C. D.4.楊輝三角是二項式系數(shù)在三角形中的一種幾何排列,在中國南宋數(shù)學(xué)家楊輝1261年所著的《詳解九章算法》一書中就有出現(xiàn).在歐洲,帕斯卡(1623~1662)在1654年發(fā)現(xiàn)這一規(guī)律,比楊輝要遲了393年.如圖所示,在“楊輝三角”中,從1開始箭頭所指的數(shù)組成一個鋸齒形數(shù)列:1,2,3,3,6,4,10,5,…,則在該數(shù)列中,第37項是A.153 B.171C.190 D.2105.在中,若,,,則此三角形解的情況為()A.無解 B.兩解C.一解 D.解的個數(shù)不能確定6.已知直線與圓相離,則以,,為邊長的三角形為()A.鈍角三角形 B.直角三角形C.銳角三角形 D.不存在7.焦點坐標(biāo)為,(0,4),且長半軸的橢圓方程為()A. B.C. D.8.若曲線表示圓,則m的取值范圍是()A. B.C. D.9.若方程表示圓,則實數(shù)的取值范圍為()A. B.C. D.10.已知命題:,;命題:,使,若“”為假命題,則實數(shù)的取值范圍是()A. B.C. D.11.已知等差數(shù)列的前n項和為,且,,則為()A. B.C. D.12.若數(shù)列滿足,則()A.2 B.6C.12 D.20二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的前項和為,且滿足,,則___________.14.在圓M:中,過點的最長弦和最短弦分別為AC和BD,則四邊形ABCD的面積為___________.15.一條光線從點射出,經(jīng)x軸反射,其反射光線所在直線與圓相切,則反射光線所在的直線方程為____.16.已知分別是平面α,β,γ的法向量,則α,β,γ三個平面中互相垂直的有________對三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知是拋物線的焦點,直線交拋物線于、兩點.(1)若直線過點且,求;(2)若平分線段,求直線的方程.18.(12分)已知雙曲線的左、右焦點分別為,,動點M滿足(1)求動點M的軌跡方程;(2)若動點M在雙曲線C上,設(shè)雙曲線C的左支上有兩個不同的點P,Q,點,且,直線NQ與雙曲線C交于另一點B.證明:動直線PB經(jīng)過定點19.(12分)如圖,在四棱錐P-ABCD中,底面ABCD,,,且,,點E為棱PC的動點.(1)當(dāng)點E是棱PC的中點時,求直線BE與平面PBD所成角的正弦值;(2)若E為棱PC上任一點,滿足,求二面角P-AB-E的余弦值.20.(12分)紅鈴蟲是棉花的主要害蟲之一,也侵害木棉、錦葵等植物.為了防治蟲害,從根源上抑制害蟲數(shù)量.現(xiàn)研究紅鈴蟲的產(chǎn)卵數(shù)和溫度的關(guān)系,收集到7組溫度和產(chǎn)卵數(shù)的觀測數(shù)據(jù)于表Ⅰ中.根據(jù)繪制的散點圖決定從回歸模型①與回歸模型②中選擇一個來進(jìn)行擬合表Ⅰ溫度x/℃20222527293135產(chǎn)卵數(shù)y/個711212465114325(1)請借助表Ⅱ中的數(shù)據(jù),求出回歸模型①的方程:表Ⅱ(注:表中)18956725.271627810611.06304041.86825.09(2)類似的,可以得到回歸模型②的方程為,試求兩種模型下溫度為時的殘差;(3)若求得回歸模型①的相關(guān)指數(shù),回歸模型②的相關(guān)指數(shù),請結(jié)合(2)說明哪個模型的擬合效果更好參考數(shù)據(jù):.附:回歸方程中,相關(guān)指數(shù).21.(12分)在如圖三角形數(shù)陣中第n行有n個數(shù),表示第i行第j個數(shù),例如,表示第4行第3個數(shù).該數(shù)陣中每一行的第一個數(shù)從上到下構(gòu)成以m為公差的等差數(shù)列,從第三行起每一行的數(shù)從左到右構(gòu)成以m為公比的等比數(shù)列(其中).已知.(1)求m及;(2)記,求.22.(10分)設(shè):實數(shù)滿足,:實數(shù)滿足.(1)若,且為真,求實數(shù)的取值范圍;(2)若是的充分不必要條件,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由題意求出的垂直平分線可得△的歐拉線,再由圓心到直線的距離求得,得到圓的方程,求出圓心到原點的距離,加上半徑判斷A;求出圓心到直線的距離判斷B;再由的幾何意義,即圓上的點與定點連線的斜率判斷C;由兩個圓有公共點可得圓心距與兩個半徑之間的關(guān)系,求得的取值范圍判斷D【詳解】由題意,△的歐拉線即的垂直平分線,,,的中點坐標(biāo)為,,則的垂直平分線方程為,即由“歐拉線”與圓相切,到直線的距離,,則圓的方程為:,圓心到原點的距離為,則圓上的點到原點的最大距離為,故①錯誤;圓心到直線的距離為,圓上存在三個點到直線的距離為,故②正確;的幾何意義:圓上的點與定點連線的斜率,設(shè)過與圓相切的直線方程為,即,由,解得,的最小值是,故③錯誤;的圓心坐標(biāo),半徑為,圓的的圓心坐標(biāo)為,半徑為,要使圓與圓有公共點,則圓心距的范圍為,,,解得,故④錯誤故選:A2、A【解析】設(shè),計算出重心坐標(biāo)后代入歐拉方程,再求出外心坐標(biāo),根據(jù)外心的性質(zhì)列出關(guān)于的方程,最后聯(lián)立解方程即可.【詳解】設(shè),由重心坐標(biāo)公式得,三角形的重心為,,代入歐拉線方程得:,整理得:①的中點為,,的中垂線方程為,即聯(lián)立,解得的外心為則,整理得:②聯(lián)立①②得:,或,當(dāng),時,重合,舍去頂點的坐標(biāo)是故選:A【點睛】關(guān)鍵點睛:解決本題的關(guān)鍵一是求出外心,二是根據(jù)外心的性質(zhì)列方程.3、C【解析】將圓的一般方程化為標(biāo)準(zhǔn)方程,即可得答案.【詳解】由題可知,圓的標(biāo)準(zhǔn)方程為,所以圓心為,半徑為3,故選.4、C【解析】根據(jù)“楊輝三角”找出數(shù)列1,2,3,3,6,4,10,5,…之間的關(guān)系即可?!驹斀狻坑深}意可得從第3行起的每行第三個數(shù):,所以第行的第三個數(shù)為在該數(shù)列中,第37項為第21行第三個數(shù),所以該數(shù)列的第37項為故選:C【點睛】本題主要考查了歸納、推理的能力,屬于中等題。5、C【解析】求出的值,結(jié)合大邊對大角定理可得出結(jié)論.【詳解】由正弦定理可得可得,因為,則,故為銳角,故滿足條件的只有一個.故選:C.6、A【解析】應(yīng)用直線與圓的相離關(guān)系可得,再由余弦定理及三角形內(nèi)角的性質(zhì)即可判斷三角形的形狀.【詳解】由題設(shè),,即,又,所以,且,故以,,為邊長的三角形為鈍角三角形.故選:A.7、B【解析】根據(jù)題意可知,即可由求出,再根據(jù)焦點位置得出橢圓方程【詳解】因為,所以,而焦點在軸上,所以橢圓方程為故選:B8、C【解析】按照圓的一般方程滿足的條件求解即可.【詳解】或.故選:C.9、D【解析】將方程化為標(biāo)準(zhǔn)式即可.【詳解】方程化為標(biāo)準(zhǔn)式得,則.故選:D.10、D【解析】根據(jù)題意,判斷命題和的真假性,結(jié)合判別式與二次函數(shù)恒成立問題,即可求解.【詳解】根據(jù)題意,由為假命題可得“”為真命題,即p、q都為真命題,故,解得故選:D11、C【解析】直接由等差數(shù)列求和公式結(jié)合,求出,再由求和公式求出即可.【詳解】由題意知:,解得,則.故選:C.12、D【解析】由已知條件變形可得,然后累乘法可得,即可求出詳解】由得,,.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】當(dāng)時,,可得,可得數(shù)列隔項成等比數(shù)列,即所以數(shù)列的奇數(shù)項和偶數(shù)項分別是等比數(shù)列,分別求和,即可得解.【詳解】因為,,所以,當(dāng)時,,∴,所以數(shù)列的奇數(shù)項和偶數(shù)項分別是等比數(shù)列,所以.故答案為:.14、【解析】首先將圓的方程配成標(biāo)準(zhǔn)式,即可得到圓心坐標(biāo)與半徑,從而可得點在圓內(nèi),即可得到過點的最長弦、最短弦弦長,即可求出四邊形的面積;【詳解】解:圓M:,即,圓心,半徑,點,則,所以點在圓內(nèi),所以過點的最長弦,又,所以最短弦,所以故答案為:15、或【解析】點關(guān)于軸的對稱點為,即反射光線過點,分別討論反射光線的斜率存在與不存在的情況,進(jìn)而求解即可【詳解】點關(guān)于軸的對稱點為,(1)設(shè)反射光線的斜率為,則反射光線的方程為,即,因為反射光線與圓相切,所以圓心到反射光線的距離,即,解得,所以反射光線方程為:;(2)當(dāng)不存在時,反射光線,此時,也與圓相切,故答案為:或【點睛】本題考查直線在光學(xué)中的應(yīng)用,考查圓的切線方程16、0【解析】計算每兩個向量的數(shù)量積,判斷該兩個向量是否垂直,可得答案.【詳解】因為,,.所以中任意兩個向量都不垂直,即α,β,γ中任意兩個平面都不垂直故答案為:0.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)分析可知直線的方程為,將直線的方程與拋物線方程聯(lián)立,求出點的坐標(biāo),利用拋物線的定義可求得;(2)利用點差法可求得直線的斜率,利用點斜式可得出直線的方程.【小問1詳解】解:設(shè)點、,則直線的傾斜角為,易知點,直線的方程為,聯(lián)立,可得,由題意可知,則,,因此,.【小問2詳解】解:設(shè)、,若軸,則線段的中點在軸上,不合乎題意,所以直線的斜率存在,因為、在拋物線上,則,兩式相減得,又因為為的中點,則,所以,直線的斜率為,此時,直線的方程為,即.18、(1)(2)證明見解析【解析】(1)根據(jù)雙曲線的定義求得的值得雙曲線方程;(2)確定垂直于軸,設(shè)直線BP的方程為,設(shè),,則,直線方程代入雙曲線方程,由相交求得范圍,由韋達(dá)定理,利用N、B、Q三點共線,且NQ斜率存在,由斜率相等得出的關(guān)系,代入韋達(dá)定理的結(jié)論可求得的值,從而得直線BP所過定點【小問1詳解】因為,所以,動點M的軌跡是以點、為左、右焦點的雙曲線的左支,則,可得,,所以,點M的軌跡方程為;【小問2詳解】證明:∵,∴直線PQ垂直于x軸,易知,直線BP的斜率存在且不為0,設(shè)直線BP的方程為,設(shè),,則,聯(lián)立,化簡得:,直線與雙曲線左支、右支各有一個交點,需滿足或,∴,,又,又N、B、Q三點共線,且NQ斜率存在,∴,即,∴,∴,∴,化簡得:,∴,∴,即,滿足判別式大于0,即直線BP方程為,所以直線BP過定點19、(1)(2)【解析】(1)由題意可得兩兩垂直,所以以為原點,以所在的直線分別為軸,建立空間直角坐標(biāo)系,利用空間向量求解,(2)設(shè),表示出點的坐標(biāo),然后根據(jù)求出的值,從而可得點的坐標(biāo),然后利用空間向量求二面角【小問1詳解】因為底面ABCD,平面,所以因為,所以兩兩垂直,所以以為原點,以所在的直線分別為軸,建立空間直角坐標(biāo)系,如圖所示,因為,,點E為棱PC的動點,所以,所以,,設(shè)平面的法向量為,則,令,則設(shè)直線BE與平面PBD所成角為,則,所以直線BE與平面PBD所成角的正弦值為,【小問2詳解】,因為E為棱PC上任一點,所以設(shè),所以,因為,所以,解得,所以,設(shè)平面的法向量為,則,令,則,取平面的一個法向量為,設(shè)二面角P-AB-E的平面角為,由圖可知為銳角,則,所以二面角P-AB-E余弦值為20、(1)(或)(2)模型①:1.54;模型②:65.54(3)模型①【解析】(1)利用兩邊取自然對數(shù),利用表中的數(shù)據(jù)即可求解;(2)分別計算模型①、②在時殘差;(3)根據(jù)相關(guān)指數(shù)的大小判斷摸型①、②的殘差平方和,再得出那個模型的擬合效果更好.【小問1詳解】由,得,令,得,由表Ⅱ數(shù)據(jù)可得,,,所以,所以回歸方程為(或).【小問2詳解】由題意可知,模型①在時殘差為,模型②在時殘差為.【小問3詳解】因為,即模型①的相關(guān)指數(shù)大于模型②的相關(guān)指數(shù),由相關(guān)指數(shù)公式知,模型①的殘差平方和小于模型②的殘差平方和,因此模型①得到的數(shù)據(jù)更接近真實數(shù)據(jù),所以模型①的擬合效果更好.21、(1),;(2)【解析】(1)根據(jù)題意以m表示出,由即可求出,進(jìn)而求出;(2)根據(jù)等差數(shù)列和等比數(shù)列的通項公式求出,再利用錯位相減法即可求出.【詳解】(1)由已知得,,,,,即,又,,,;(2)由(1)得,當(dāng)時,,又,,滿足,,,兩式相減得,.【點睛】方法點睛:數(shù)列求和的常用方法:(1)對于等差等比數(shù)列,利用公式法可直接求解;(2)對于結(jié)構(gòu),其中是等差數(shù)列
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024哈佛大學(xué)人工智能政務(wù)服務(wù)
- 智能食品自助售賣機(jī)創(chuàng)新設(shè)計方案
- 胃腸外科護(hù)理讀書報告
- 學(xué)生上課鼓掌課件
- 患者十大安全目標(biāo)教育
- 幼兒創(chuàng)意美術(shù)梅花課件
- 重慶市萬州區(qū)三中等多校聯(lián)考2024-2025學(xué)年高一3月月考語文試題
- 炸材管理制度
- 2025年腦梗的護(hù)理查房
- 2025年工廠車間安全培訓(xùn)考試試題答案滿分必刷
- 有色金屬冶金概論總論
- 砂石料單價編制
- 海藻學(xué)知到章節(jié)答案智慧樹2023年煙臺大學(xué)
- 六年級下冊道德與法治期中測試卷含答案【考試直接用】
- EIM Book 1 Unit 11 Promise,promise單元知識要點
- 全陜西師范大學(xué)《716文學(xué)綜合》考研真題詳解下載全
- 引航梯的位置和標(biāo)識及保養(yǎng)記錄
- 外科學(xué)急性化膿性腹膜炎
- 苯酚的分子組成和結(jié)構(gòu)課件
- 《羅織經(jīng)》全文及翻譯
- GB∕T 26077-2021 金屬材料 疲勞試驗 軸向應(yīng)變控制方法
評論
0/150
提交評論