廣東省深圳市紅嶺中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第1頁
廣東省深圳市紅嶺中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第2頁
廣東省深圳市紅嶺中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第3頁
廣東省深圳市紅嶺中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第4頁
廣東省深圳市紅嶺中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

廣東省深圳市紅嶺中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末統(tǒng)考模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知點(diǎn)A、是拋物線:上的兩點(diǎn),且線段過拋物線的焦點(diǎn),若的中點(diǎn)到軸的距離為3,則()A.3 B.4C.6 D.82.設(shè)函數(shù)的導(dǎo)函數(shù)是,若,則()A. B.C. D.3.已知函數(shù),,若,使得,則實(shí)數(shù)的取值范圍是()A. B.C. D.4.已知函數(shù),若對任意,都有成立,則a的取值范圍為()A. B.C. D.5.一動(dòng)圓與圓外切,而與圓內(nèi)切,那么動(dòng)圓的圓心的軌跡是()A.橢圓 B.雙曲線C.拋物線 D.雙曲線的一支6.關(guān)于實(shí)數(shù)a,b,c,下列說法正確的是()A.如果,則,,成等差數(shù)列B.如果,則,,成等比數(shù)列C.如果,則,,成等差數(shù)列D.如果,則,,成等差數(shù)列7.直線的傾斜角為()A. B.C. D.8.若雙曲線的一條漸近線方程為.則()A. B.C.2 D.49.設(shè)雙曲線:的左,右焦點(diǎn)分別為,,過的直線與雙曲線的右支交于A,B兩點(diǎn),若,則雙曲線的離心率為()A.4 B.2C. D.10.已知橢圓與橢圓,則下列結(jié)論正確的是()A.長軸長相等 B.短軸長相等C.焦距相等 D.離心率相等11.已知點(diǎn)P在拋物線上,點(diǎn)Q在圓上,則的最小值為()A. B.C. D.12.人教A版選擇性必修二教材的封面圖案是斐波那契螺旋線,它被譽(yù)為自然界最完美的“黃金螺旋”,自然界存在很多斐波那契螺旋線的圖案,例如向日葵、鸚鵡螺等.斐波那契螺旋線的畫法是:以斐波那契數(shù)1,1,2,3,5,8,…為邊長的正方形拼成長方形,然后在每個(gè)正方形中畫一個(gè)圓心角為90°的圓弧,這些圓弧所連起來的弧線就是斐波那契螺旋線.下圖為該螺旋線在正方形邊長為1,1,2,3,5,8的部分,如圖建立平面直角坐標(biāo)系(規(guī)定小方格的邊長為1),則接下來的一段圓弧所在圓的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.命題“若,則”的逆否命題為______14.已知拋物線C:y2=2px(p>0)上的點(diǎn)P(1,y0)(y0>0)到焦點(diǎn)的距離為2,則p=__15.生活中有這樣的經(jīng)驗(yàn):三腳架在不平的地面上也可以穩(wěn)固地支撐一部照相機(jī).這個(gè)經(jīng)驗(yàn)用我們所學(xué)的數(shù)學(xué)公理可以表述為___________.16.已知p:≤0,q:4x+2x-m≤0,若p是q的充分條件,則實(shí)數(shù)m的取值范圍是________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知(1)求的最小正周期及單調(diào)遞增區(qū)間;(2)已知鈍角內(nèi)角A,B,C的對邊長分別a,b,c,若,,.求a的值18.(12分)設(shè)橢圓方程為,短軸長,____________.請?jiān)冖倥c雙曲線有相同的焦點(diǎn),②離心率,③這三個(gè)條件中任選一個(gè)補(bǔ)充在上面的橫線上,完成以下問題.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)求以點(diǎn)為中點(diǎn)的弦所在的直線方程.19.(12分)記數(shù)列的前n項(xiàng)和為,已知點(diǎn)在函數(shù)的圖像上(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前9項(xiàng)和20.(12分)已知函數(shù).(1)當(dāng)時(shí),討論的單調(diào)性;(2)當(dāng)時(shí),證明:.21.(12分)已知滿足,.(1)求證:是等差數(shù)列,求的通項(xiàng)公式;(2)若,的前項(xiàng)和是,求證:.22.(10分)等差數(shù)列的前n項(xiàng)和為,已知(1)求的通項(xiàng)公式;(2)若,求n的最小值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】直接根據(jù)拋物線焦點(diǎn)弦長公式以及中點(diǎn)坐標(biāo)公式求結(jié)果【詳解】設(shè),,則的中點(diǎn)到軸的距離為,則故選:D2、A【解析】求導(dǎo)后,令,可求得,再令可求得結(jié)果.【詳解】因?yàn)椋裕?,所以,所以,所?故選:A【點(diǎn)睛】本題考查了導(dǎo)數(shù)的計(jì)算,考查了求導(dǎo)函數(shù)值,屬于基礎(chǔ)題.3、A【解析】由定義證明函數(shù)的單調(diào)性,再由函數(shù)不等式恒能成立的性質(zhì)得出,從而得出實(shí)數(shù)的取值范圍.【詳解】任取,,即函數(shù)在上單調(diào)遞減,若,使得,則即故選:A【點(diǎn)睛】結(jié)論點(diǎn)睛:本題考查不等式恒成立問題,解題關(guān)鍵是轉(zhuǎn)化為求函數(shù)的最值,轉(zhuǎn)化時(shí)要注意全稱量詞與存在量詞對題意的影響.等價(jià)轉(zhuǎn)化如下:(1),,使得成立等價(jià)于(2),,不等式恒成立等價(jià)于(3),,使得成立等價(jià)于(4),,使得成立等價(jià)于4、C【解析】求出函數(shù)的導(dǎo)數(shù),再對給定不等式等價(jià)變形,分離參數(shù)借助均值不等式計(jì)算作答.【詳解】對函數(shù)求導(dǎo)得:,,,則,,而,當(dāng)且僅當(dāng),即時(shí)“=”,于是得,解得,所以a的取值范圍為.故選:C【點(diǎn)睛】關(guān)鍵點(diǎn)睛:涉及不等式恒成立問題,將給定不等式等價(jià)轉(zhuǎn)化,構(gòu)造函數(shù),利用函數(shù)思想是解決問題的關(guān)鍵.5、A【解析】依據(jù)定義法去求動(dòng)圓的圓心的軌跡即可解決.【詳解】設(shè)動(dòng)圓的半徑為r,又圓半徑為1,圓半徑為8,則,,可得,又則動(dòng)圓的圓心的軌跡是以為焦點(diǎn)長軸長為9的橢圓.故選:A6、B【解析】根據(jù)給定條件結(jié)合取特值、推理計(jì)算等方法逐一分析各個(gè)選項(xiàng)并判斷即可作答.【詳解】對于A,若,取,而,即,,不成等差數(shù)列,A不正確;對于B,若,則,即,,成等比數(shù)列,B正確;對于C,若,取,而,,,不成等差數(shù)列,C不正確;對于D,a,b,c是實(shí)數(shù),若,顯然都可以為負(fù)數(shù)或者0,此時(shí)a,b,c無對數(shù),D不正確.故選:B7、D【解析】由直線斜率概念可寫出傾斜角的正切值,進(jìn)而可求出傾斜角.【詳解】因?yàn)橹本€的斜率為,所以傾斜角.故選D【點(diǎn)睛】本題主要考查直線的傾斜角,由斜率的概念,即可求出結(jié)果.8、C【解析】求出漸近線方程為,列出方程求出.【詳解】雙曲線的漸近線方程為,因?yàn)?,所以,所?故選:C9、B【解析】根據(jù)雙曲線的定義及,求出,,,,再利用余弦定理計(jì)算可得;【詳解】解:依題意可知、,又且,所以,,,,則,且,即,即,所以離心率.故選:B10、C【解析】利用,可得且,即可得出結(jié)論【詳解】∵,且,橢圓與橢圓的關(guān)系是有相等的焦距故選:C11、C【解析】先計(jì)算拋物線上的點(diǎn)P到圓心距離的最小值,再減去半徑即可.【詳解】設(shè),由圓心,得,∴時(shí),,∴故選:C.12、C【解析】由題意可知圖中每90°的圓弧半徑符合斐波那契數(shù)1,1,2,3,5,8,…,從而可求出下一段圓弧的半徑為13,由于每一個(gè)圓弧為四分之一圓,從而可求出下一段圓弧所以圓的圓心,進(jìn)而可得其方程【詳解】解:由題意可知圖中每90°的圓弧半徑符合斐波那契數(shù)1,1,2,3,5,8,…,從而可求出下一段圓弧的半徑為13,由題意可知下一段圓弧過點(diǎn),因?yàn)槊恳欢螆A弧的圓心角都為90°,所以下一段圓弧所在圓的圓心與點(diǎn)的連線平行于軸,因?yàn)橄乱欢螆A弧半徑為13,所以所求圓的圓心為,所以所求圓的方程為,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、若,則【解析】否定原命題條件和結(jié)論,并將條件與結(jié)論互換,即可寫出逆否命題.【詳解】由逆否命題的定義知:原命題的逆否命題為“若,則”.故答案為:若,則.14、2【解析】根據(jù)已知條件,結(jié)合拋物線的定義,即可求解【詳解】解:∵拋物線C:y2=2px(p>0)上的點(diǎn)P(1,y0)(y0>0)到焦點(diǎn)的距離為2,∴由拋物線的定義可得,,解得p=2故答案為:215、不在同一直線上的三點(diǎn)確定一個(gè)平面【解析】根據(jù)題意結(jié)合平面公理2即可得出答案.【詳解】解:根據(jù)題意可知,三腳架與地面接觸的三個(gè)點(diǎn)不在同一直線上,則為數(shù)學(xué)中的平面公理2:不在同一直線上的三點(diǎn)確定一個(gè)平面.故答案為:不在同一直線上的三點(diǎn)確定一個(gè)平面.16、m≥6【解析】分別求出p,q成立的等價(jià)條件,利用p是q的充分條件,轉(zhuǎn)為當(dāng)0<x≤1時(shí),m大于等于的最大值,求出最值即可確定m的取值范圍【詳解】由,得0<x≤1,即p:0<x≤1由4x+2x﹣m≤0得4x+2x≤m因?yàn)?,要使p是q的充分條件,則當(dāng)0<x≤1時(shí),m大于等于的最大值,令,則在上單調(diào)遞增,故當(dāng)時(shí)取到最大值6,所以m≥6故答案為:m≥6【點(diǎn)睛】本題主要考查充分條件和必要條件的應(yīng)用,考查函數(shù)的最值,考查轉(zhuǎn)化的思想,屬于基礎(chǔ)題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2)2.【解析】(1)利用三角恒等變換公式化簡函數(shù),再利用三角函數(shù)性質(zhì)計(jì)算作答.(2)由(1)的結(jié)論及已知求出角C,再利用余弦定理計(jì)算判斷作答.【小問1詳解】依題意,,則的最小正周期,由,解得,則在上單調(diào)遞增,所以的最小正周期為,遞增區(qū)間為.【小問2詳解】由(1)知,,即,在中,,,則,即,,于是得,解得,在中,由余弦定理得:,即,解得或,當(dāng)時(shí),,為直角三角形,與是鈍角三角形矛盾,當(dāng)時(shí),,,此時(shí),是鈍角三角形,則,所以a的值是2.18、(1)答案見解析,.(2).【解析】(1)若選①:求得雙曲線得雙曲線的焦點(diǎn)得出橢圓的,再由,可求得橢圓的標(biāo)準(zhǔn)方程;若選②:根據(jù)已知條件和橢圓的離心率可求得,從而得橢圓的標(biāo)準(zhǔn)方程;若選③:由已知建立方程,求解可求得,從而得橢圓的標(biāo)準(zhǔn)方程.(2)設(shè)直線的斜率為k,所求的直線方程為,代入橢圓的方程并整理得,設(shè)直線與橢圓的交點(diǎn)為,由根與系數(shù)的關(guān)系和中點(diǎn)坐標(biāo)公式可求得答案.【小問1詳解】解:若選①:由雙曲線得雙曲線的焦點(diǎn)和,因?yàn)闄E圓與雙曲線有相同的焦點(diǎn),所以橢圓的,又,所以,所以,所以橢圓的標(biāo)準(zhǔn)方程為;若選②:因?yàn)?,所以,又離心率,所以,即,解得,所以橢圓的標(biāo)準(zhǔn)方程為;若選③:因?yàn)?,所以,即,又,解得,,所以橢圓的標(biāo)準(zhǔn)方程為;【小問2詳解】解:由題意得直線的斜率必存在,設(shè)直線的斜率為k,所求的直線方程為,代入橢圓的方程并整理得,設(shè)直線與橢圓的交點(diǎn)為,則,因?yàn)辄c(diǎn)為AB中點(diǎn),所以,解得,所以所求的直線方程為,即.19、(1)(2)【解析】(1)利用的關(guān)系可求.(2)利用裂項(xiàng)相消法可求數(shù)列的前9項(xiàng)和【小問1詳解】由題意知當(dāng)時(shí),;當(dāng)時(shí),,適合上式所以【小問2詳解】則20、(1)在上單調(diào)遞減,在上單調(diào)遞增(2)證明見解析【解析】(1)當(dāng)時(shí),利用求得的單調(diào)區(qū)間.(2)將問題轉(zhuǎn)化為證明,利用導(dǎo)數(shù)求得的最小值大于零,從而證得不等式成立.【小問1詳解】當(dāng)時(shí),,且,又與均在上單調(diào)遞增,所以在上單調(diào)遞增.當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增綜上,在上單調(diào)遞減,在上單調(diào)遞增.【小問2詳解】因?yàn)?,所以,要證,只需證當(dāng)時(shí),即可.,易知在上單調(diào)遞增,又,所以,且,即,當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增,,所以.【點(diǎn)睛】在證明不等式的過程中,直接證明困難時(shí),可考慮證明和兩個(gè)不等式成立,從而證得成立.21、(1)證明見解析,(2)證明見解析【解析】(1)在等式兩邊同時(shí)除以,結(jié)合等差數(shù)列的定義可證得數(shù)列為等差數(shù)列,確定該數(shù)列的首項(xiàng)和公差,可求得的表達(dá)式;(2)求得,利用裂項(xiàng)相消法求得,即可證得原

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論