




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
河北省巨鹿縣第二中學2023-2024學年高二數(shù)學第一學期期末復習檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在三棱錐中,,D為上的點,且,則()A. B.C. D.2.已知,則下列不等式一定成立的是()A. B.C. D.3.已知直線l:過橢圓的左焦點F,與橢圓在x軸上方的交點為P,Q為線段PF的中點,若,則橢圓的離心率為()A. B.C. D.4.下列命題中正確的是A.命題“若,則”的否命題為:“若,則”B.若命題,是假命題,則實數(shù)C.“”的一個充分不必要條件是“”D.命題“若,則”的逆否命題為真命題5.下列說法中正確的是()A.存在只有4個面的棱柱 B.棱柱的側(cè)面都是四邊形C.正三棱錐的所有棱長都相等 D.所有幾何體的表面都能展開成平面圖形6.若將雙曲線繞其對稱中心順時針旋轉(zhuǎn)120°后可得到某一函數(shù)的圖象,且該函數(shù)在區(qū)間上存在最小值,則雙曲線C的離心率為()A. B.C.2 D.7.拋物線有如下光學性質(zhì):由其焦點射出的光線經(jīng)拋物線反射后,沿平行于拋物線對稱軸的方向射出;反之,平行于拋物線對稱軸的入射光線經(jīng)拋物線反射后必過拋物線的焦點.已知拋物線,O為坐標原點,一條平行于x軸的光線從點射入,經(jīng)過C上的點A反射后,再經(jīng)C上另一點B反射后,沿直線射出,經(jīng)過點N.下列說法正確的是()A.若,則 B.若,則平分C.若,則 D.若,延長AO交直線于點D,則D,B,N三點共線8.古希臘數(shù)學家阿基米德利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.若橢圓C的中心為原點,焦點,均在y軸上,橢圓C的面積為,且短軸長為,則橢圓C的標準方程為()A. B.C. D.9.《周髀算經(jīng)》有這樣一個問題:從冬至日起,依次小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種十二個節(jié)氣日影長減等寸,冬至、立春、春分日影之和為三丈一尺五寸,前九個節(jié)氣日影之和為八丈五尺五寸(注:一丈等于十尺,一尺等于十寸),問立夏日影長為()A.一尺五寸 B.二尺五寸C.三尺五寸 D.四尺五寸10.過拋物線的焦點的直線交拋物線于兩點,點是原點,若;則的面積為()A. B.C. D.11.中國古代數(shù)學著作算法統(tǒng)宗中有這樣一個問題:“三百七十八里關(guān),初步健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見首日行里數(shù),請公仔細算相還.”其大意為:有一個人走里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,恰好走了天到達目的地,則該人第一天走的路程為()A.里 B.里C.里 D.里12.命題“,”的否定是A., B.,C., D.,二、填空題:本題共4小題,每小題5分,共20分。13.如圖,AD與BC是三棱錐中互相垂直的棱,,(c為常數(shù)).若,則實數(shù)的取值范圍為__________.14.一個四面體有五條棱長均為2,則該四面體的體積最大值為_______15.若實數(shù)、滿足,則的取值范圍為___________.16.方程的曲線的一條對稱軸是_______,的取值范圍是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知項數(shù)為的數(shù)列是各項均為非負實數(shù)的遞增數(shù)列.若對任意的,(),與至少有一個是數(shù)列中的項,則稱數(shù)列具有性質(zhì).(1)判斷數(shù)列,,,是否具有性質(zhì),并說明理由;(2)設數(shù)列具有性質(zhì),求證:;(3)若數(shù)列具有性質(zhì),且不是等差數(shù)列,求項數(shù)的所有可能取值.18.(12分)已知函數(shù).(1)當時,求函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)在其定義域上是增函數(shù),求實數(shù)的取值范圍.19.(12分)已知等差數(shù)列的公差為2,且,,成等比數(shù)列.(1)求的通項公式;(2)求數(shù)列的前項和.20.(12分)已知公差不為0的等差數(shù)列,前項和為,首項為,且成等比數(shù)列.(1)求和;(2)設,記,求.21.(12分)如圖,正三棱柱的側(cè)棱長為,底面邊長為,點為的中點,點在直線上,且(1)證明:面;(2)求平面和平面夾角的余弦值22.(10分)某大學藝術(shù)專業(yè)400名學生參加某次測評,根據(jù)男女學生人數(shù)比例,使用分層抽樣的方法從中隨機抽取了100名學生,記錄他們的分數(shù),將數(shù)據(jù)分成7組:[20,30),[30,40),┄,[80,90],并整理得到如下頻率分布直方圖:(1)已知樣本中分數(shù)在[40,50)的學生有5人,試估計總體中分數(shù)小于40的人數(shù);(2)試估計測評成績的75%分位數(shù);(3)已知樣本中有一半男生的分數(shù)不小于70,且樣本中分數(shù)不小于70的男女生人數(shù)相等.試估計總體中男生和女生人數(shù)的比例
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)幾何關(guān)系以及空間向量的線性運算即可解出【詳解】因為,所以,即故選:B2、B【解析】運用不等式的性質(zhì)及舉反例的方法可求解.詳解】對于A,如,滿足條件,但不成立,故A不正確;對于B,因為,所以,所以,故B正確;對于C,因為,所以,所以不成立,故C不正確;對于D,因為,所以,所以,故D不正確.故選:B3、D【解析】由直線的傾斜角為,可得,結(jié)合,可推得是等邊三角形,可得,計算可得離心率【詳解】直線:過橢圓的左焦點,設橢圓的右焦點為,所以,又是的中點,是的中點,所以,又,所以,又,所以是等邊三角形,所以,又在橢圓上,所以,所以,所以離心率為,故選:4、C【解析】.命題的否定是同時否定條件和結(jié)論;.將當成真命題解出的范圍,再取補集即可;.求出“”的充要條件再判斷即可;.判斷原命題的真假即可【詳解】解:對于A:命題“若,則”的否命題為:“若,則“,故A錯誤;對于B:當命題,是真命題時,,所以,又因為命題為假命題,所以,故B錯誤;對于C:由“”解得:,故“”是“”的充分不必要條件,故C正確;對于D:因為命題“若,則”是假命題,所以其逆否命題也是假命題,故D錯誤;故選:C5、B【解析】對于A、B:由棱柱的定義直接判斷;對于C:由正三棱錐的側(cè)棱長和底面邊長不一定相等,即可判斷;對于D:由球的表面不能展開成平面圖形即可判斷【詳解】對于A:棱柱最少有5個面,則A錯誤;對于B:棱柱的所有側(cè)面都是平行四邊形,則B正確;對于C:正三棱錐的側(cè)棱長和底面邊長不一定相等,則C錯誤;對于D:球的表面不能展開成平面圖形,則D錯誤故選:B6、C【解析】由題意,可知雙曲線的一條漸近線的傾斜角為120°,再確定參數(shù)的正負即可求解.【詳解】雙曲線,令,則,顯然,則一條漸近線方程為,繞其對稱中心順時針旋轉(zhuǎn)120°后可得到某一函數(shù)的圖象,則漸近線就需要旋轉(zhuǎn)到與坐標軸重合,故漸近線方程的傾斜角為120°,即,該函數(shù)在區(qū)間上存在最小值,可知,所以,所以.故選:C7、D【解析】根據(jù)求出焦點為、點坐標,可得直線的方程與拋物線方程聯(lián)立得點坐標,由兩點間的距離公式求出可判斷AC;時可得,.由可判斷B;求出點坐標可判斷D.【詳解】如圖,若,則,C的焦點為,因為,所以,直線的方程為,整理得,與拋物線方程聯(lián)立得,解得或,所以,所以,選項A錯誤;時,因為,所以.又,,所以不平分,選項B不正確;若,則,C的焦點為,因為,所以,直線的方程為,所以,所以,選項C錯誤;若,則,C的焦點為,因為,所以,直線的方程為,所以,直線的方程為,延長交直線于點D,所以則,所以D,B,N三點共線,選項D正確;故選:D.8、C【解析】設出橢圓的標準方程,根據(jù)已知條件,求得,即可求得結(jié)果.【詳解】因為橢圓的焦點在軸上,故可設其方程為,根據(jù)題意可得,,故可得,故所求橢圓方程為:.故選:C.9、D【解析】結(jié)合等差數(shù)列知識求得正確答案.【詳解】設冬至日影長,公差為,則,所以立夏日影長丈,即四尺五寸.故選:D10、C【解析】拋物線焦點為,準線方程為,由得或所以,故答案為C考點:1、拋物線的定義;2、直線與拋物線的位置關(guān)系11、C【解析】建立等比數(shù)列的模型,由等比數(shù)列的前項和公式求解【詳解】記第天走的路程為里,則是等比數(shù)列,,,故選:C12、C【解析】特稱命題的否定是全稱命題,改量詞,且否定結(jié)論,故命題的否定是“”.本題選擇C選項.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】分析得都在以為焦點的橢球上,再利用橢球的性質(zhì)得到,化簡即得解.【詳解】解:因為,所以都在以為焦點橢球上,由橢球的性質(zhì)得,是垂直橢球焦點所在直線的弦,的最大值為,此時共面且過中點,即故實數(shù)的取值范圍為.故答案為:14、1【解析】由已知中一個四面體有五條棱長都等于2,易得該四面體必然有兩個面為等邊三角形,根據(jù)棱錐的幾何特征,分析出當這兩個平面垂直時,該四面體的體積最大,將相關(guān)幾何量代入棱錐體積公式,即可得到答案【詳解】一個四面體有五條棱長都等于2,如下圖:設除PC外的棱均為2,設P到平面ABC距離為h,則三棱錐的體積V=,∵是定值,∴當P到平面ABC距離h最大時,三棱錐體積最大,故當平面PAB⊥平面ABC時,三棱錐體積最大,此時h為等邊三角形PAB的AB邊上的高,則h,故三棱錐體積的最大值為:故答案為:115、【解析】直接利用換元法以及基本不等式,求出結(jié)果【詳解】解:設,由于,所以,由于,(當且僅當時取等號)所以(當且僅當時取等號),(當且僅當時取等號),故,,所以,整理得:故的取值范圍為的取值范圍故答案為:16、①.x軸或直線②.【解析】根據(jù)給定條件分析方程的性質(zhì)即可求得對稱軸及x的取值范圍作答.【詳解】方程中,因,則曲線關(guān)于x軸對稱,又,解得,此時曲線與都關(guān)于直線對稱,曲線的對稱軸是x軸或直線,的取值范圍是.故答案為:x軸或直線;三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)數(shù)列,,,不具有性質(zhì);(2)證明見解析;(3)可能取值只有.【解析】(1)由數(shù)列具有性質(zhì)的定義,只需判斷存在與都不是數(shù)列中的項即可.(2)由性質(zhì)知:、,結(jié)合非負遞增性有,再由時,必有,進而可得,,,,,應用累加法即可證結(jié)論.(3)討論、、,結(jié)合性質(zhì)、等差數(shù)列的性質(zhì)判斷是否存在符合題設性質(zhì),進而確定的可能取值.【小問1詳解】數(shù)列,,,不具有性質(zhì).因為,,和均不是數(shù)列,,,中的項,所以數(shù)列,,,不具有性質(zhì).【小問2詳解】記數(shù)列的各項組成的集合為,又,由數(shù)列具有性質(zhì),,所以,即,所以.設,因為,所以.又,則,,,,.將上面的式子相加得:.所以.【小問3詳解】(i)當時,由(2)知,,,這與數(shù)列不是等差數(shù)列矛盾,不合題意.(ii)當時,存在數(shù)列,,,,符合題意,故可取.(iii)當時,由(2)知,.①當時,,所以,.又,,∴,,,,即.由,,得:,,∴.②由①②兩式相減得:,這與數(shù)列不是等差數(shù)列矛盾,不合題意.綜上,滿足題設的的可能取值只有.【點睛】關(guān)鍵點點睛:第二問,由可知,并應用累加法求證結(jié)論;第三問,討論k的取值,結(jié)合的性質(zhì),由性質(zhì)、等差數(shù)列的性質(zhì)判斷不同k的取值情況下數(shù)列的存在性即可.18、(1)在、上遞增,在上遞減;(2).【解析】【小問1詳解】由題設,且定義域為,則,當或時,;當時,.所以在、上遞增,在上遞減.【小問2詳解】由題設,在上恒成立,所以在上恒成立,當時,滿足題設;當時,,可得.綜上,.19、(1)(2)【解析】(1)由,,成等比數(shù)列和,可得,解方程求出,從而可求出的通項公式,(2)由(1)可得,然后利用裂項相消法可求出【小問1詳解】因為等差數(shù)列的公差為2,所以又因為成等比數(shù)列,所以,解得,所以.【小問2詳解】由(1)得,所以.20、(1)(2)【解析】(1)由題意解得等差數(shù)列的公差,代入公式即可求得和;(2)把n分為奇數(shù)和偶數(shù)兩類,分別去數(shù)列的前n項和.【小問1詳解】設等差數(shù)列公差為,由題有,即,解之得或0,又,所以,所以.【小問2詳解】,當為正奇數(shù),,當為正偶數(shù),,所以21、(1)證明見解析(2)【解析】(1)證明平面,可得出,再由結(jié)合線面垂直的判定定理可證得結(jié)論成立;(2)以點為坐標原點,、、的方向分別為、、軸的正方向建立空間直角坐標系,利用空間向量法可求得結(jié)果.【小問1詳解】證明:正中,點為的中點,,因為平面,平面,則,,則平面,平面,則,又,且,平面.【小問2詳解】解:因為,以點為坐標原點,、、的方向分別為、、軸的正方向建立如下圖所示的空間直角坐標系,則、、、,設平面的法向量為,,,則,取,可得,平面,平面,則,又因為,,故平面,所以,平面的一個法向量為,則.因此,平面和平面夾角的余弦值為.22、(1)20人(2)(3)【解析】(1)根據(jù)頻率分布直方圖先求出樣本中分數(shù)在[40,90)的頻率,即可解出;(2)先根據(jù)頻率分布直方圖判斷出75%分位數(shù)在[70,80)之間,即可根據(jù)分位數(shù)公式算出;(3)根據(jù)頻率分布直方圖知分數(shù)不小于70分的人數(shù)中男女各占30人,從而可知樣本中男生有60人,女生有40人,即可求出總體中男生和女生人數(shù)的比例【小問1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 拌合站罐車安全協(xié)議書
- 茶房合作協(xié)議書
- 部門交接協(xié)議書
- 策劃宣傳協(xié)議書
- 研磨介質(zhì)協(xié)議書
- 房屋免打孔分割協(xié)議書
- 終止探望協(xié)議書
- 姑娘和婆婆同住協(xié)議書
- 酒業(yè)入股協(xié)議書
- 碰車解決協(xié)議書
- 委托尋找房源協(xié)議書
- 法洛四聯(lián)癥的護理課件
- 2025年佛山市三水海江建設投資有限公司招聘筆試參考題庫附帶答案詳解
- 2025屆高考語文寫作押題作文10篇
- 跨國醫(yī)療體檢代理合作協(xié)議
- 2024年廣東省乳源瑤族自治縣事業(yè)單位公開招聘高層次緊缺人才24名筆試題帶答案
- 中國成人呼吸系統(tǒng)疾病家庭氧療指南(2024年)解讀
- HY/T 0460.5-2024海岸帶生態(tài)系統(tǒng)現(xiàn)狀調(diào)查與評估技術(shù)導則第5部分:珊瑚礁
- 大同市勞動和社會保障局勞動合同書模板
- 醫(yī)療臨床試驗患者篩選
- 人力資源數(shù)字化平臺的建設與維護
評論
0/150
提交評論