湖南省株洲市攸縣第四中學(xué)2023年數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第1頁
湖南省株洲市攸縣第四中學(xué)2023年數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第2頁
湖南省株洲市攸縣第四中學(xué)2023年數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第3頁
湖南省株洲市攸縣第四中學(xué)2023年數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第4頁
湖南省株洲市攸縣第四中學(xué)2023年數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

湖南省株洲市攸縣第四中學(xué)2023年數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)(其中)的部分圖像如圖所示,則函數(shù)的解析式為()A. B.C. D.2.已知空間中四點(diǎn),,,,則點(diǎn)D到平面ABC的距離為()A. B.C. D.03.設(shè)等差數(shù)列的前項(xiàng)和為,若,則的值為()A.28 B.39C.56 D.1174.與空間向量共線的一個(gè)向量的坐標(biāo)是()A. B.C. D.5.若圓與直線相切,則實(shí)數(shù)的值為()A. B.或3C. D.或6.已如雙曲線(,)的左、右焦點(diǎn)分別為,,過的直線交雙曲線的右支于A,B兩點(diǎn),若,且,則該雙曲線的離心率為()A. B.C. D.7.已知圓的圓心在x軸上,半徑為1,且過點(diǎn),圓:,則圓,的公共弦長(zhǎng)為A. B.C. D.28.函數(shù),則的值為()A. B.C. D.9.函數(shù)的圖象如圖所示,則函數(shù)的圖象可能是A. B.C. D.10.經(jīng)過點(diǎn)且與雙曲線有共同漸近線的雙曲線方程為()A. B.C. D.11.已知集合A={1,a,b},B={a2,a,ab},若A=B,則a2021+b2020=()A.-1 B.0C.1 D.212.設(shè),,則“”是“”的A.充要條件 B.充分而不必要條件C.必要而不充分條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.甲口袋中裝有2個(gè)黑球和1個(gè)白球,乙口袋中裝有3個(gè)白球.現(xiàn)同時(shí)從甲、乙兩口袋中各任取一個(gè)球交換放入對(duì)方口袋,共進(jìn)行了2次這樣的操作后,甲口袋中恰有2個(gè)黑球的概率為__________________.14.如圖,橢圓的左右焦點(diǎn)為,,以為圓心的圓過原點(diǎn),且與橢圓在第一象限交于點(diǎn),若過、的直線與圓相切,則直線的斜率______;橢圓的離心率______.15.已知正四面體ABCD中,E,F(xiàn)分別是線段BC,AD的中點(diǎn),點(diǎn)G是線段CD上靠近D的四等分點(diǎn),則直線EF與AG所成角的余弦值為______16.歷史上第一個(gè)研究圓錐曲線的是梅納庫莫斯(公元前375年—325年),大約100年后,阿波羅尼奧更詳盡、系統(tǒng)地研究了圓錐曲線,并且他還進(jìn)一步研究了這些圓錐曲線的光學(xué)性質(zhì),比如:從拋物線的焦點(diǎn)發(fā)出的光線或聲波在經(jīng)過拋物線反射后,反射光線平行于拋物線的對(duì)稱軸:反之,平行于拋物線對(duì)稱軸的光線,經(jīng)拋物線反射后,反射光線經(jīng)過拋物線的焦點(diǎn).已知拋物線,經(jīng)過點(diǎn)一束平行于C對(duì)稱軸的光線,經(jīng)C上點(diǎn)P反射后交C于點(diǎn)Q,則PQ的長(zhǎng)度為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐的底面是正方形,平面平面,E為的中點(diǎn)(1)若,證明:;(2)求直線與平面所成角的余弦值的取值范圍18.(12分)已知函數(shù)在與處都取得極值.(1)求a,b的值;(2)若對(duì)任意,不等式恒成立,求實(shí)數(shù)c的取值范圍.19.(12分)在等差數(shù)列中,,.(1)求的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.20.(12分)已知橢圓上的點(diǎn)到焦點(diǎn)的最大距離為3,離心率為.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)直線與橢圓交于不同兩點(diǎn),與軸交于點(diǎn),且滿足,若,求實(shí)數(shù)的取值范圍.21.(12分)已知函數(shù),記f(x)的導(dǎo)數(shù)為f′(x).若曲線f(x)在點(diǎn)(1,f(1))處的切線斜率為﹣3,且x=2時(shí)y=f(x)有極值,(Ⅰ)求函數(shù)f(x)的解析式;(Ⅱ)求函數(shù)f(x)在[﹣1,1]上的最大值和最小值22.(10分)已知橢圓:經(jīng)過點(diǎn)為,且.(1)求橢圓的方程;(2)若直線與橢圓相切于點(diǎn),與直線相交于點(diǎn).已知點(diǎn),且,求此時(shí)的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)題圖有且,結(jié)合五點(diǎn)法求參數(shù),即可得的解析式.【詳解】由圖知:且,則,所以,則,即,又,可得,,則,,又,即有.綜上,.故選:B2、C【解析】根據(jù)題意,求得平面的一個(gè)法向量,結(jié)合距離公式,即可求解.【詳解】由題意,空間中四點(diǎn),,,,可得,設(shè)平面的法向量為,則,令,可得,所以,所以點(diǎn)D到平面ABC的距離為.故選:C.3、B【解析】由已知結(jié)合等差數(shù)列的求和公式及等差數(shù)列的性質(zhì)即可求解.【詳解】因?yàn)榈炔顢?shù)列中,,則.故選:B.4、C【解析】根據(jù)空間向量共線的坐標(biāo)表示即可得出結(jié)果.【詳解】.故選:C.5、D【解析】利用圓心到直線的距離等于半徑可得答案.【詳解】若圓與直線相切,則到直線的距離為,所以,解得,或.故選:D.6、A【解析】先作輔助線,設(shè)出邊長(zhǎng),結(jié)合題干條件得到,,利用勾股定理得到關(guān)于的等量關(guān)系,求出離心率.【詳解】連接,設(shè),則根據(jù)可知,,因?yàn)椋晒垂啥ɡ淼茫?,由雙曲線定義可知:,,解得:,,從而,解得:,所以,,由勾股定理得:,從而,即該雙曲線的離心率為.故選:A7、A【解析】根據(jù)題意設(shè)圓方程為:,代點(diǎn)即可求出,進(jìn)而求出方程,兩圓方程做差即可求得公共弦所在直線方程,再利用垂徑定理去求弦長(zhǎng).【詳解】設(shè)圓的圓心為,則其標(biāo)準(zhǔn)方程為:,將點(diǎn)代入方程,解得,故方程為:,兩圓,方程作差得其公共弦所在直線方程為:,圓心到該直線的距離為,因此公共弦長(zhǎng)為,故選:A.【點(diǎn)睛】本題綜合考查圓的方程及直線與圓,圓與圓位置關(guān)系,屬于中檔題.一般遇見直線與圓相交問題時(shí),常利用垂徑定理解決問題.8、B【解析】求出函數(shù)的導(dǎo)數(shù),代入求值即可.【詳解】函數(shù),故,所以,故選:B9、D【解析】原函數(shù)先減再增,再減再增,且位于增區(qū)間內(nèi),因此選D【名師點(diǎn)睛】本題主要考查導(dǎo)數(shù)圖象與原函數(shù)圖象的關(guān)系:若導(dǎo)函數(shù)圖象與軸的交點(diǎn)為,且圖象在兩側(cè)附近連續(xù)分布于軸上下方,則為原函數(shù)單調(diào)性的拐點(diǎn),運(yùn)用導(dǎo)數(shù)知識(shí)來討論函數(shù)單調(diào)性時(shí),由導(dǎo)函數(shù)的正負(fù),得出原函數(shù)的單調(diào)區(qū)間10、C【解析】共漸近線的雙曲線方程,設(shè),把點(diǎn)代入方程解得參數(shù)即可.【詳解】設(shè),把點(diǎn)代入方程解得參數(shù),所以化簡(jiǎn)得方程故選:C.11、A【解析】根據(jù)A=B,可得兩集合元素全部相等,分別求得和ab=1兩種情況下,a,b的取值,分析討論,即可得答案.【詳解】因?yàn)锳=B,若,解得,當(dāng)時(shí),不滿足互異性,舍去,當(dāng)時(shí),A={1,-1,b},B={1,-1,-b},因?yàn)锳=B,所以,解得,所以;若ab=1,則,所以,若,解得或1,都不滿足題意,舍去,若,解得,不滿足互異性,舍去,故選:A【點(diǎn)睛】本題考查兩集合相等的概念,在集合相等問題中由一個(gè)條件求出參數(shù)后需進(jìn)行代入檢驗(yàn),檢驗(yàn)是否滿足互異性、題設(shè)條件等,屬基礎(chǔ)題.12、C【解析】不能推出,反過來,若則成立,故為必要不充分條件.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】分兩類:兩次都互相交換白球的概率和第一次甲交出黑球收到白球,且第二次甲交出白球收到黑球的概率求和可得答案.【詳解】分兩類:①兩次都互相交換白球的概率為;②第一次甲交出黑球收到白球,且第二次甲交出白球收到黑球的概率為.故答案為:.14、①.②.【解析】根據(jù)直角三角形的性質(zhì)求得,由此求得,結(jié)合橢圓的定義求得離心率.【詳解】連接,由于是圓的切線,所以.在中,,所以,所以,所以直線的斜率.,根據(jù)橢圓的定義可知.故答案為:;【點(diǎn)睛】本小題主要考查橢圓的定義、橢圓的離心率,屬于中檔題.15、【解析】建立空間直角坐標(biāo)系,令正四面體的棱長(zhǎng)為,即可求出點(diǎn)的坐標(biāo),從而求出異面直線所成角的余弦值;【詳解】解:如圖建立空間直角坐標(biāo)系,令正四面體的棱長(zhǎng)為,則,所以,所以,所以,,,,,設(shè),因?yàn)?,所以,所以,所以,,設(shè)直線與所成角為,則故答案為:16、####【解析】根據(jù)題意,求得點(diǎn)以及拋物線焦點(diǎn)的坐標(biāo),即可求得所在直線方程,聯(lián)立其與拋物線方程,求得點(diǎn)的坐標(biāo),即可求得.【詳解】因?yàn)榻?jīng)過點(diǎn)一束平行于C對(duì)稱軸的光線交拋物線于點(diǎn),故對(duì),令,則可得,也即的坐標(biāo)為,又拋物線的焦點(diǎn)的坐標(biāo)為,故可得直線方程為,聯(lián)立拋物線方程可得:,,解得或,將代入,可得,即的坐標(biāo)為,則.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)取的中點(diǎn)F,連接.先證明,,即證平面,原題即得證;(2)分別取的中點(diǎn)G,H,連接,證明為直線與平面所成的角,設(shè)正方形的邊長(zhǎng)為1,,在中,,即得解.【小問1詳解】解:取的中點(diǎn)F,連接因?yàn)椋瑒t為正三角形,所以因?yàn)槠矫嫫矫?,則平面因?yàn)槠矫妫瑒t.①因?yàn)樗倪呅螢檎叫?,E為的中點(diǎn),則,所以,從而,所以.②又平面,結(jié)合①②知,平面,所以【小問2詳解】解:分別取的中點(diǎn)G,H,則,又,,則,所以四邊形為平行四邊形,從而.因?yàn)?,則因?yàn)槠矫嫫矫妫?,則平面,從而,因?yàn)槠矫?,所以平面,從而平面連接,則為直線與平面所成的角.設(shè)正方形的邊長(zhǎng)為1,,則從而,.在中,因?yàn)楫?dāng)時(shí),單調(diào)遞增,則,所以直線與平面所成角的余弦值的取值范圍是.18、(1),;(2).【解析】(1)極值點(diǎn)處導(dǎo)數(shù)值為零,據(jù)此即可求出a和b;(2)利用導(dǎo)數(shù)求出f(x)在時(shí)的最大值即可.【小問1詳解】由題設(shè),,又,,解得,.【小問2詳解】由(1)得,即,當(dāng)時(shí),,隨的變化情況如下表:1+0-0+遞增極大值遞減極小值遞增∴在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,∴當(dāng)時(shí),為極大值,又,顯然f(-)<f(2)所以為在上的最大值.要使對(duì)任意恒成立,則只需,解得或c>1.∴實(shí)數(shù)c的取值范圍為.19、(1)(2)【解析】(1)設(shè)的公差為,根據(jù)題意列出關(guān)于和的方程組,求解方程組,再根據(jù)等差數(shù)列的通項(xiàng)公式,即可求出結(jié)果.(2)對(duì)數(shù)列中項(xiàng)的正負(fù)情況進(jìn)行討論,再結(jié)合等差數(shù)列的前項(xiàng)和公式,即可求出結(jié)果.【小問1詳解】解:設(shè)的公差為d,因?yàn)椋?,所以解得?【小問2詳解】解:設(shè)的前項(xiàng)和為,則.當(dāng)時(shí),,所以所以;當(dāng)時(shí),.所以.20、(1)(2),或【解析】(1)由橢圓的性質(zhì)可知:,解得a和c的值,即可求得橢圓C的標(biāo)準(zhǔn)方程;(2)將直線方程代入橢圓方程,由韋達(dá)定理求得:,,λ,根據(jù)向量的坐標(biāo)坐標(biāo),(x1+1,y1)=λ(x2+1,y2),求得,由,代入即可求得實(shí)數(shù)m的取值范圍【詳解】(1)由已知,解得,所以,所以橢圓的標(biāo)準(zhǔn)方程為.(2)由已知,設(shè),聯(lián)立方程組,消得,由韋達(dá)定理得①②因?yàn)?,所以,所以③,將③代入①②,,消去得,所?因?yàn)?,所以,即,解得,所以,?【點(diǎn)睛】本題考查橢圓的標(biāo)準(zhǔn)方程及簡(jiǎn)單性質(zhì),直線與橢圓的位置關(guān)系,韋達(dá)定理,向量的坐標(biāo)表示,不等式的解法,考查計(jì)算能力,屬于中檔題21、(Ⅰ)f(x)=x3﹣3x2+1;(Ⅱ)最大值為1,最小值為﹣3【解析】(Ⅰ)求導(dǎo)可得f′(x)的解析式,根據(jù)導(dǎo)數(shù)的幾何意義,可得k=f′(1)=-3,又在x=2處有極值,所以f′(2)=0,即可求得a,b的值,即可得答案;(Ⅱ)由(Ⅰ)可得f′(x)的解析式,令f′(x)=0,解得x=0或x=2,討論f(x)在﹣1<x<0,0<x<1上的單調(diào)性,即可求得f(x)的極值,檢驗(yàn)邊界值,即可得答案.【詳解】(Ⅰ)由題意得:f′(x)=3x2+2ax+b,所以k=f′(1)=3+2a+b=﹣3,f′(2)=12+4a+b=0,解得a=﹣3,b=0,所以f(x)=x3﹣3x2+1;(Ⅱ)由(Ⅰ)知,令f′(x)=3x2﹣6x=0,解得x=0或x=2,當(dāng)﹣1<x<0時(shí),f′(x)>0,f(x

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論