湖北省華中師范大學東湖開發(fā)區(qū)第一附屬中學2024屆數(shù)學高二上期末學業(yè)水平測試試題含解析_第1頁
湖北省華中師范大學東湖開發(fā)區(qū)第一附屬中學2024屆數(shù)學高二上期末學業(yè)水平測試試題含解析_第2頁
湖北省華中師范大學東湖開發(fā)區(qū)第一附屬中學2024屆數(shù)學高二上期末學業(yè)水平測試試題含解析_第3頁
湖北省華中師范大學東湖開發(fā)區(qū)第一附屬中學2024屆數(shù)學高二上期末學業(yè)水平測試試題含解析_第4頁
湖北省華中師范大學東湖開發(fā)區(qū)第一附屬中學2024屆數(shù)學高二上期末學業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

湖北省華中師范大學東湖開發(fā)區(qū)第一附屬中學2024屆數(shù)學高二上期末學業(yè)水平測試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線C:-=1的焦距為10,點P(2,1)在C的漸近線上,則C的方程為A.-=1 B.-=1C.-=1 D.-=12.等比數(shù)列的各項均為正數(shù),且,則A. B.C. D.3.已知拋物線的焦點為,拋物線的焦點為,點在上,且,則直線的斜率為A. B.C. D.4.下列四個命題中,為真命題的是()A.若a>b,則ac2>bc2B.若a>b,c>d,則a﹣c>b﹣dC.若a>|b|,則a2>b2D.若a>b,則5.已知雙曲線(,)的左、右焦點分別為,,.若雙曲線M的右支上存在點P,使,則雙曲線M的離心率的取值范圍為()A. B.C. D.6.某機構通過抽樣調(diào)查,利用列聯(lián)表和統(tǒng)計量研究患肺病是否與吸煙有關,計算得,經(jīng)查對臨界值表知,,現(xiàn)給出四個結(jié)論,其中正確的是()A.因為,故有90%的把握認為“患肺病與吸煙有關"B.因為,故有95%把握認為“患肺病與吸煙有關”C.因為,故有90%的把握認為“患肺病與吸煙無關”D.因為,故有95%的把握認為“患肺病與吸煙無關”7.拋物線的準線方程為()A. B.C. D.8.函數(shù)在單調(diào)遞增的一個必要不充分條件是()A. B.C. D.9.復數(shù)的共軛復數(shù)的虛部為()A. B.C. D.10.已知數(shù)列中,,(),則()A. B.C. D.211.已知點與不重合的點A,B共線,若以A,B為圓心,2為半徑的兩圓均過點,則的取值范圍為()A. B.C. D.12.函數(shù)的定義域為開區(qū)間,導函數(shù)在內(nèi)的圖像如圖所示,則函數(shù)在開區(qū)間內(nèi)有極小值點()A.個 B.個C.個 D.個二、填空題:本題共4小題,每小題5分,共20分。13.已知命題:,總有.則為______14.雙曲線的右焦點到C的漸近線的距離為,則C漸近線方程為______15.在等比數(shù)列中,,,則公比________.16.雙曲線的漸近線方程為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在如圖所示的幾何體中,四邊形是平行四邊形,,,,四邊形是矩形,且平面平面,,點是線段上的動點(1)證明:;(2)設平面與平面的夾角為,求的最小值18.(12分)共享電動車(sharedev)是一種新的交通工具,通過掃碼開鎖,實現(xiàn)循環(huán)共享.某記者來到中國傳媒大學探訪,在校園噴泉旁停放了10輛共享電動車,這些電動車分為熒光綠和橙色兩種顏色,已知從這些共享電動車中任取1輛,取到的是橙色的概率為,若從這些共享電動車中任意抽取3輛.(1)求取出的3輛共享電動車中恰好有一輛是橙色的概率;(2)求取出的3輛共享電動車中橙色的電動車的輛數(shù)X的分布列與數(shù)學期望.19.(12分)已知函數(shù)(1)當時,求的單調(diào)區(qū)間;(2)當時,證明:存在最大值,且恒成立.20.(12分)已知中心在坐標原點O的橢圓,左右焦點分別為,,離心率為,M,N分別為橢圓的上下頂點,且滿足.(1)求橢圓方程;(2)已知點C滿足,點T在橢圓上(T異于橢圓的頂點),直線NT與以C為圓心的圓相切于點P,若P為線段NT的中點,求直線NT的方程;(3)過橢圓內(nèi)的一點D(0,t),作斜率為k的直線l,與橢圓交于A,B兩點,直線OA,OB的斜率分別是,,若對于任意實數(shù)k,存在實數(shù)m,使得,求實數(shù)m的取值范圍.21.(12分)如圖①,等腰梯形中,,分別為的中點,,現(xiàn)將四邊形沿折起,使平面平面,得到如圖②所示的多面體,在圖②中:(1)證明:平面平面;(2)求四棱錐的體積.22.(10分)已知的內(nèi)角的對邊分別為a,,若向量,且(1)求角的值;(2)已知的外接圓半徑為,求周長的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由題意得,雙曲線的焦距為,即,又雙曲線的漸近線方程為,點在的漸近線上,所以,聯(lián)立方程組可得,所以雙曲線的方程為考點:雙曲線的標準方程及簡單的幾何性質(zhì)2、B【解析】根據(jù)等比數(shù)列的性質(zhì),結(jié)合已知條件,求得,進而求得的值.【詳解】由于數(shù)列是等比數(shù)列,故,所以,故.故選B.【點睛】本小題主要考查等比數(shù)列的性質(zhì),考查對數(shù)運算,屬于基礎題.3、B【解析】根據(jù)拋物線的定義,求得p的值,即可得拋物線,的標準方程,求得拋物線的焦點坐標后,再根據(jù)斜率公式求解.【詳解】因為,所以,解得,所以直線的斜率為.故選B.【點睛】本題考查了拋物線的定義的應用,考查了拋物線的簡單性質(zhì),涉及了直線的斜率公式;拋物線上的點到焦點的距離等于其到準線的距離;解題過程中注意焦點的位置.4、C【解析】利用不等式的性質(zhì)結(jié)合特殊值法依次判斷即可【詳解】當c=0時,A不成立;2>1,3>-1,而2-3<1-(-1),故B不成立;a=2,b=1時,,D不成立;由a>|b|知a>0,所以a2>b2,C正確故選:C5、A【解析】利用三角形正弦定理結(jié)合,用a,c表示出,再由點P的位置列出不等式求解即得.【詳解】依題意,點P不與雙曲線頂點重合,在中,由正弦定理得:,因,于是得,而點P在雙曲線M的右支上,即,從而有,點P在雙曲線M的右支上運動,并且異于頂點,于是有,因此,,而,整理得,即,解得,又,故有,所以雙曲線M的離心率的取值范圍為.故選:A6、A【解析】根據(jù)給定條件利用獨立性檢驗的知識直接判斷作答.【詳解】因,且,由臨界值表知,,,所以有90%的把握認為“患肺病與吸煙有關”,則A正確,C不正確;.因臨界值3.841>3.305,則不能確定有95%的把握認為“患肺病與吸煙有關”,也不能確定有95%的把握認為“患肺病與吸煙無關”,即B,D都不正確.故選:A7、A【解析】將拋物線的方程化成標準形式,即可得到答案;【詳解】拋物線的方程化成標準形式,準線方程為,故選:A.8、D【解析】求出導函數(shù),由于函數(shù)在區(qū)間單調(diào)遞增,可得在區(qū)間上恒成立,求出的范圍,再根據(jù)充分必要條件的定義即可判斷得解.【詳解】由題得,函數(shù)在區(qū)間單調(diào)遞增,在區(qū)間上恒成立,而在區(qū)間上單調(diào)遞減,選項中只有是的必要不充分條件.選項AC是的充分不必要條件,選項B是充要條件.故選:D9、B【解析】先根據(jù)復數(shù)除法與加法運算求解得,再求共軛復數(shù)及其虛部.【詳解】解:,所以其共軛復數(shù)為,其虛部為故選:B10、A【解析】由已知條件求出,可得數(shù)是以3為周期的周期數(shù)列,從而可得,進而可求得答案【詳解】因為,(),所以,所以數(shù)列的周期為3,,故選:A11、D【解析】由題意可得兩點的坐標滿足圓,然后由圓的性質(zhì)可得當時,弦長最小,當過點時,弦長最長,再根據(jù)向量數(shù)量積的運算律求解即可【詳解】設點,則以A,B為圓心,2為半徑的兩圓方程分別為和,因為兩圓過,所以和,所以兩點的坐標滿足圓,因為點與不重合的點A,B共線,所以為圓的一條弦,所以當弦長最小時,,因為,半徑為2,所以弦長的最小值為,當過點時,弦長最長為4,因為,所以當弦長最小時,的最大值為,當弦長最大時,的最小值為,所以的取值范圍為,故選:D12、A【解析】利用極小值的定義判斷可得出結(jié)論.【詳解】由導函數(shù)在區(qū)間內(nèi)的圖象可知,函數(shù)在內(nèi)的圖象與軸有四個公共點,在從左到右第一個點處導數(shù)左正右負,在從左到右第二個點處導數(shù)左負右正,在從左到右第三個點處導數(shù)左正右正,在從左到右第四個點處導數(shù)左正右負,所以函數(shù)在開區(qū)間內(nèi)的極小值點有個,故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、,使得【解析】全稱命題改否定,首先把全稱量詞改成特稱量詞,然后把后面結(jié)論改否定即可.【詳解】解:因為命題,總有,所以的否定為:,使得故答案為,使得【點睛】本題考查了全稱命題的否定,全稱命題(特稱命題)改否定,首先把全稱量詞(特稱量詞)改成特稱量詞(全稱量詞),然后把后面結(jié)論改否定即可.14、【解析】根據(jù)給定條件求出雙曲線漸近線,再用點到直線的距離公式計算作答【詳解】雙曲線的漸近線為:,即,依題意,,即,解得,所以C漸近線方程為.故答案為:15、【解析】根據(jù)等比數(shù)列的性質(zhì)求解即可.【詳解】因為等比數(shù)列中,故,又,故,故.故答案為:【點睛】本題主要考查了等比數(shù)列的性質(zhì)運用,需要注意分析項與公比的正負,屬于基礎題.16、【解析】將雙曲線方程化成標準方程,得到且,利用雙曲線漸近線方程,可得結(jié)果【詳解】把雙曲線化成標準方程為,且,雙曲線的漸近線方程為,即故答案為【點睛】本題主要考查利用雙曲線的方程求漸近線方程,意在考查對基礎知識的掌握情況,屬于基礎題.若雙曲線方程為,則漸近線方程為;若雙曲線方程為,則漸近線方程為.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)要證,只需證平面,只需證(由勾股定理可證),,只需證平面,只需證(由平面平面可證),(由可證),即可證明結(jié)論.(2)以為原點,所在直線分別為x軸,y軸,z軸,建立空間直角坐標系寫出點與點的坐標由于軸,可設,可得出與的坐標設為平面的法向量,求出法向量.是關于的一個式子,求出的取值范圍,即可求出的最小值【小問1詳解】在中,,,,所以,所以所以是等腰直角三角形,即因為,所以又因為平面平面,平面平面,,所以平面又平面,所以又因為,EC,平面所以平面又平面,所以,所以在中,,,所以所以又因為,,所以,所以又,,平面所以平面又平面,所以【小問2詳解】以為原點,所在直線分別為x軸,y軸,z軸,建立如圖所示的空間直角坐標系則,因為軸,可設,可求得,設為平面的法向量則令,解得,所以又因為是平面的法向量所以,因為,所以所以當時,取到最小值18、(1);(2)分布列見解析,數(shù)學期望為.【解析】(1)先求出兩種顏色的電動車各有多少輛,然后根據(jù)超幾何分布求概率的方法即可求得答案;(2)先確定X的所有可能取值,進而求出概率并列出分布列,然后根據(jù)期望公式求出答案.【小問1詳解】因為從10輛共享電動車中任取一輛,取到橙色的概率為0.4,所以橙色的電動車有4輛,熒光綠的電動車有6輛.記A為“從中任取3輛共享單車中恰好有一輛是橙色”,則.【小問2詳解】隨機變量X的所有可能取值為0,1,2,3.所以,,,.所以分布列為0123數(shù)學期望.19、(1)的單增區(qū)間為,;單減區(qū)間為,,;(2)證明見解析.【解析】(1)先求出函數(shù)的定義域,求出,由,結(jié)合函數(shù)的定義域可得出函數(shù)的單調(diào)區(qū)間.(2)當時,定義域R,求出,從而得出單調(diào)區(qū)間,由當時,,當時,,以及極值點與2的大小關系可得出當時,函數(shù)有最大值,然后再證明即可.【詳解】解:(1)定義域,可得且且,,可得且3無0無0減無減增無增減所以,的單增區(qū)間為,;單減區(qū)間為,,.(2)當時,定義域R因為,當時,,當時,,所以的最大值在時取得;由,即,得由,得,或由,得所以在上單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞減.當時,,且,由所以當時,函數(shù)有最大值.所以,因為,所以,設,則所以化為由,則,則,所以所以20、(1)1(2)或(3)【解析】(1)由已知可得,,再結(jié)合可求出,從而可求得橢圓方程,(2)設直線,代入橢圓方程中消去,解方程可求出點的坐標,從而可得NT中點的坐標,而,可得解方程可求出的值,即可得到直線NT的方程,(3)設直線,代入橢圓方程中消去,利用根與系數(shù)的關系結(jié)合直線的斜率公式可得,再由,可求出m的取值范圍【小問1詳解】設(c,0),M(0,b),N(0,b),①,又②,③,由①②③得,所以橢圓方程為1.【小問2詳解】由題C,0),設直線聯(lián)立得,那么,N(0,)NT中點.所以,因為直線NT與以C為圓心的圓相切于點P,所以所以所以得,解得或所以直線NT為:或.【小問3詳解】設直線,聯(lián)立方程得設A(,),B,),則…由對任意k成立,得點D在橢圓內(nèi),所以,所以,所以m的取值范圍為.21、(1)證明見解析.(2)2【解析】(1)根據(jù)面面平行的判定定理結(jié)合已知條件即可證明;(2)將所求四棱錐的體積轉(zhuǎn)化為求即可.【小問1詳解】證明:因為,面,面,所以面,同理面,又因為面,所以面面.【小問2詳解】解:因為在圖①等腰梯形中,分別為的中點,所以,在圖

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論