湖北省黃岡、華師大附中等八校2024屆高二數(shù)學第一學期期末經(jīng)典模擬試題含解析_第1頁
湖北省黃岡、華師大附中等八校2024屆高二數(shù)學第一學期期末經(jīng)典模擬試題含解析_第2頁
湖北省黃岡、華師大附中等八校2024屆高二數(shù)學第一學期期末經(jīng)典模擬試題含解析_第3頁
湖北省黃岡、華師大附中等八校2024屆高二數(shù)學第一學期期末經(jīng)典模擬試題含解析_第4頁
湖北省黃岡、華師大附中等八校2024屆高二數(shù)學第一學期期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

湖北省黃岡、華師大附中等八校2024屆高二數(shù)學第一學期期末經(jīng)典模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知平面,的法向量分別為,,且,則()A. B.C. D.2.已知命題p:?x>2,x2>2x,命題q:?x0∈R,ln(x02+1)<0,則下列命題是真命題的是()A.p∧ B.p∨C.p∧q D.p∨q3.命題“存在,使得”的否定為()A.存在, B.對任意,C.對任意, D.對任意,4.如下圖,面與面所成二面角的大小為,且A,B為其棱上兩點.直線AC,BD分別在這個二面角的兩個半平面中,且都垂直于AB,已知,,,則()A. B.C. D.5.已知p:,那么p的一個充分不必要條件是()A. B.C. D.6.以下說法:①將一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差不變;②設有一個回歸方程,變量增加1個單位時,平均增加5個單位③線性回歸方程必過④設具有相關關系的兩個變量的相關系數(shù)為,那么越接近于0,之間的線性相關程度越高;⑤在一個列聯(lián)表中,由計算得的值,那么的值越大,判斷兩個變量間有關聯(lián)的把握就越大。其中錯誤的個數(shù)是()A.0 B.1C.2 D.37.已知f(x)=x3+(a-1)x2+x+1沒有極值,則實數(shù)a的取值范圍是()A.[0,1] B.(-∞,0]∪[1,+∞)C.[0,2] D.(-∞,0]∪[2,+∞)8.古希臘數(shù)學家歐幾里得在《幾何原本》中描述了圓錐曲線共性,并給出了圓錐曲線的統(tǒng)一定義,只可惜對這一定義歐幾里得沒有給出證明.經(jīng)過了500年,到了3世紀,希臘數(shù)學家帕普斯在他的著作《數(shù)學匯篇》中,完善了歐幾里得關于圓錐曲線的統(tǒng)一定義,并對這一定義進行了證明.他指出,到定點的距離與到定直線的距離的比是常數(shù)的點的軌跡叫做圓錐曲線;當時,軌跡為橢圓;當時,軌跡為拋物線;當時,軌跡為雙曲線.現(xiàn)有方程表示的曲線是雙曲線,則的取值范圍為()A. B.C. D.9.設是函數(shù)的導函數(shù),的圖象如圖所示,則的圖象最有可能的是()A. B.C. D.10.設是等比數(shù)列,且,,則()A.12 B.24C.30 D.3211.【山東省濰坊市二?!恳阎p曲線的離心率為,其左焦點為,則雙曲線的方程為()A. B.C. D.12.已知點,則滿足點到直線的距離為,點到直線距離為的直線的條數(shù)有()A.1 B.2C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.若,且,則的最小值是____________.14.已知數(shù)列是公差不為零的等差數(shù)列,,,成等比數(shù)列,第1,2項與第10,11項的和為68,則數(shù)列的通項公式是________.15.某人實施一項投資計劃,從2021年起,每年1月1日,把上一年工資的10%投資某個項目.已知2020年他的工資是10萬元,預計未來十年每年工資都會逐年增加1萬元;若投資年收益是10%,一年結算一次,當年的投資收益自動轉(zhuǎn)入下一年的投資本金,若2031年1月1日結束投資計劃,則他可以一次性取出的所有投資以及收益應有__________萬元.(參考數(shù)據(jù):,,)16.已知函數(shù),則函數(shù)在上的最大值為_______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖1,在四邊形ABCD中,,,E是AD的中點,將沿BF折起至的位置,使得二面角的大小為120°(如圖2),M,N分別是,的中點.(1)證明:平面;(2)求平面與平面夾角的余弦值.18.(12分)在中,角A,B,C的對邊分別是a,b,c,且.(1)求角B的大小;(2)若,,且,求a.19.(12分)已知函數(shù)的圖像在(為自然對數(shù)的底數(shù))處取得極值.(1)求實數(shù)的值;(2)若不等式在恒成立,求的取值范圍.20.(12分)已知點,,雙曲線C上除頂點外任一點滿足直線RM與QM的斜率之積為4.(1)求C方程;(2)若直線l過C上的一點P,且與C的漸近線相交于A,B兩點,點A,B分別位于第一、第二象限,,求的最小值.21.(12分)在平面直角坐標系xOy中,點A(2,4),直線l:,設圓C的半徑為1,圓心在直線l上,圓心也在直線上.(1)求圓C的方程;(2)過點A作圓C的切線,求切線的方程.22.(10分)數(shù)字人民幣是由央行發(fā)行的法定數(shù)字貨幣,它由指定運營機構參與運營并向公眾兌換,與紙鈔和硬幣等價.截至2021年6月30日,數(shù)字人民幣試點場景已超132萬個,覆蓋生活繳費、餐飲服務、交通出行、購物消費、政務服務等領域.為了進一步了解普通大眾對數(shù)字人民幣的感知以及接受情況,某機構進行了一次問卷調(diào)查,結果如下:學歷小學及以下初中高中大學??拼髮W本科碩士研究生及以上不了解數(shù)字人民幣35358055646了解數(shù)字人民幣406015011014025(1)如果將高中及高中以下的學歷稱為“低學歷”,大學??萍耙陨蠈W歷稱為“高學歷”,根據(jù)所給數(shù)據(jù),完成列聯(lián)表.低學歷高學歷合計不了解數(shù)字人民幣了解數(shù)字人民幣合計(2)若從低學歷的被調(diào)查者中隨機抽取2人進行進一步調(diào)查,求被選中的2人中至少有1人對數(shù)字人民幣不了解的概率:(3)根據(jù)列聯(lián)表,判斷是否有的把握認為“是否了解數(shù)字人民幣”與“學歷高低”有關?0.0500.0100.001k3.8416.63510.828附:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由題得,解方程即得解.【詳解】解:因為,所以所以,所以,所以.故選:D2、B【解析】取x=4,得出命題p是假命題,由對數(shù)的運算得出命題q是假命題,再判斷選項.【詳解】命題p:?x>2,x2>2x,是假命題,例如取x=4,則42=24;命題q:?x0∈R,ln(x02+1)<0,是假命題,∵?x∈R,ln(x2+1)≥0.則下列命題是真命題的是.故選:B.3、D【解析】根據(jù)特稱命題否定的方法求解,改變量詞,否定結論.【詳解】由題意可知命題“存在,使得”的否定為“對任意,”.故選:D.4、B【解析】根據(jù)題意,作,且,則四邊形ABDE為平行四邊形,進一步判斷出該四邊形為矩形,然后確定出為二面角的平面角,進而通過余弦定理和勾股定理求得答案.【詳解】如圖,作,且,則四邊形ABDE為平行四邊形,所以.因為,所以,又,所以是該二面角的一個平面角,即,由余弦定理.因為,,所以,易得四邊形ABDE為矩形,則,而,所以平面ACE,則,于是.故選:B.5、C【解析】按照充分不必要條件依次判斷4個選項即可.【詳解】A選項:,錯誤;B選項:,錯誤;C選項:,,正確;D選項:,錯誤.故選:C.6、C【詳解】方差反映一組數(shù)據(jù)的波動大小,將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差不變,故①正確;一個回歸方程,變量增加1個單位時,平均減少5個單位,故②不正確;線性回歸方程必過樣本中心點,故③正確;根據(jù)線性回歸分析中相關系數(shù)的定義:在線性回歸分析中,相關系數(shù)為r,越接近于1,相關程度越大,故④不正確;對于觀察值來說,越大,“x與y有關系”的可信程度越大,故⑤正確.故選:C【點睛】本題主要考查用樣本估計總體、線性回歸方程、獨立性檢驗的基本思想.7、C【解析】求導得,再解不等式即得解.【詳解】由得,根據(jù)題意得,解得故選:C8、C【解析】對方程進行化簡可得雙曲線上一點到定點與定直線之比為常數(shù),進而可得結果.【詳解】已知方程可以變形為,即,∴其表示雙曲線上一點到定點與定直線之比為常數(shù),又由,可得,故選:C.9、C【解析】利用導函數(shù)的圖象,判斷導函數(shù)的符號,得到函數(shù)的單調(diào)性以及函數(shù)的極值點,然后判斷選項即可【詳解】解:由題意可知:和時,,函數(shù)是增函數(shù),時,,函數(shù)是減函數(shù);是函數(shù)的極大值點,是函數(shù)的極小值點;所以函數(shù)的圖象只能是故選:C10、D【解析】根據(jù)已知條件求得的值,再由可求得結果.【詳解】設等比數(shù)列的公比為,則,,因此,.故選:D.【點睛】本題主要考查等比數(shù)列基本量的計算,屬于基礎題11、D【解析】分析:根據(jù)題設條件,列出方程,求出,,的值,即可求得雙曲線得標準方程詳解:∵雙曲線的離心率為,其左焦點為∴,∴∵∴∴雙曲線的標準方程為故選D.點睛:本題考查雙曲線的標準方程,雙曲線的簡單性質(zhì)的應用,根據(jù)題設條件求出,,的值是解決本題的關鍵.12、D【解析】以為圓心,為半徑,為圓心,為半徑分別畫圓,將所求轉(zhuǎn)化為求圓與圓的公切線條數(shù),判斷兩圓的位置關系,從而得公切線條數(shù).【詳解】以為圓心,為半徑,為圓心,為半徑分別畫圓,如圖所示,由題意,滿足點到直線的距離為,點到直線距離為的直線的條數(shù)即為圓與圓的公切線條數(shù),因為,所以兩圓外離,所以兩圓的公切線有4條,即滿足條件的直線有4條.故選:D【點睛】解答本題的關鍵是將滿足點到直線的距離為,點到直線距離為的直線的條數(shù)轉(zhuǎn)化為圓與圓的公切線條數(shù),從而根據(jù)圓與圓的位置關系判斷出公切線條數(shù).二、填空題:本題共4小題,每小題5分,共20分。13、【解析】應用基本不等式“1”的代換求a+4b的最小值即可.【詳解】由,有,則,當且僅當,且,即時等號成立,∴最小值為.故答案為:14、【解析】利用基本量結合已知列方程組求解即可.【詳解】設等差數(shù)列的公差為由題可知即因為,所以解得:所以.故答案為:15、24【解析】根據(jù)條件求得每一年投入在最終結算時的總收入,利用錯位相減法求得總收入.【詳解】由題知,2021年的投入在結算時的收入為,2022年的投入在結算時的收入為,,2030年的投入在結算時的收入為,則結算時的總投資及收益為:①,則②,由①-②得,,則,故答案為:2416、【解析】利用導數(shù)單調(diào)性求出的單調(diào)性,比較極小值與兩端點,的大小求出在上的最大值.【詳解】因為,則,令,即時,函數(shù)單調(diào)遞增.令,即時,函數(shù)單調(diào)遞減.所以的單調(diào)遞減區(qū)間為,的單調(diào)遞增區(qū)間為,所以在上單調(diào)遞減,在上單調(diào)遞增,所以函數(shù)的極小值也是函數(shù)的最小值.,兩端點為,,即最大值為.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)構造中位線,利用面面平行,可以證明;(2)建立空間直角坐標系,用空間向量的方法即可.【小問1詳解】證明:如圖,取ED的中點P,連接MP,NP.在平行四邊形ABCD中,因為E是AD的中點,,所以,又,所以四邊形BCDE是平行四邊形;因為M,N分別是,BC的中點,所以,.又平面,平面,所以平面,平面.因為,所以平面平面.又平面,所以平面【小問2詳解】取BE的中點O,連接,CO,CE.在圖1中,因為,所以是等邊三角形,,又四邊形ABCD等腰梯形,所以,即是等邊三角形;所以如圖,,,所以.以為原點,射線OB為x軸的正半軸建立如圖所示的空間直角坐標系.因為,則,,,,則,設平面的法向量為,,得令,則,,即,由題可知,平面BCD的一個法向量為,.由圖可知,平面與平面BDC夾角余弦值為;18、(1);(2).【解析】(1)根據(jù)已知條件,運用余弦定理化簡可求出;(2)由可求出,利用誘導公式和兩角和的正弦公式求出,再利用正弦定理即求.【小問1詳解】)∵且,∴,∴,∴,∵,∴.【小問2詳解】∵,∴,∴,∵,∴,∵,∴,又∵,,,∴.19、(1)(2)【解析】(1)由求得的值.(2)由分離常數(shù),通過構造函數(shù)法,結合導數(shù)求得的取值范圍.【小問1詳解】因為,所以,因為函數(shù)的圖像在點處取得極值,所以,,經(jīng)檢驗,符合題意,所以;【小問2詳解】由(1)知,,所以在恒成立,即對任意恒成立.令,則.設,易得是增函數(shù),所以,所以,所以函數(shù)在上為增函數(shù),則,所以.20、(1)(2)1【解析】(1)由題意得,化簡可得答案,(2)求出漸近線方程,設點,,,,,由可得,代入雙曲線方程化簡可得,然后表示的坐標,再進行數(shù)量積運算,化簡后利用基本不等式可得答案【小問1詳解】由題意得,即,整理得,因為雙曲線的頂點坐標滿足上式,所以C的方程為.【小問2詳解】由(1)可知,曲線C的漸近線方程為,設點,,,,,由,得,整理得,①,把①代入,整理得②,因為,,所以.由,得,則,當且僅當時等號成立,所以的最小值是1.21、(1)(2)或【解析】(1)直接求出圓心的坐標,寫出圓的方程;(2)分斜率存在和斜率不存在進行分類討論,利用幾何法列方程,即可求解.【小問1詳解】由圓心C在直線l:上可設:點,又C也在直線上,∴,∴又圓C的半徑為1,∴圓C的方程為.【小問2詳解】當直線垂直于x軸時,與圓C相切,此時直線方程為.當直線與x軸不垂直時,設過A點的切線方程為,即,則,解得.此時切線方程,.綜上所述,所求切線為或22、(1)列聯(lián)表答案見解析;(2);(3)沒有的把握認為“是否了解數(shù)字人民幣”與“學歷高低”有關.【解析】(1)根據(jù)給定表中數(shù)據(jù)列出列聯(lián)表作答.(2)利

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論