版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖北省黃石二中等三校2024屆高二上數(shù)學期末調(diào)研試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.展開式的第項為()A. B.C. D.2.已知數(shù)列的前n項和為,,,則()A. B.C.1025 D.20493.已知,,且,則向量與的夾角為()A. B.C. D.4.已知數(shù)列是以1為首項,2為公差的等差數(shù)列,是以1為首項,2為公比的等比數(shù)列,設(shè),,則當時,n的最大值是()A.8 B.9C.10 D.115.已知是橢圓右焦點,點在橢圓上,線段與圓相切于點,且,則橢圓的離心率等于()A. B.C. D.6.已知四棱柱ABCD-A1B1C1D1的底面是邊長為2的正方形,側(cè)棱與底面垂直,若點C到平面AB1D1的距離為,則直線與平面所成角的余弦值為()A. B.C. D.7.展開式中第3項的二項式系數(shù)為()A.6 B.C.24 D.8.已知直線過點,,則該直線的傾斜角是()A. B.C. D.9.已知分別是雙曲線的左、右焦點,動點P在雙曲線的左支上,點Q為圓上一動點,則的最小值為()A.6 B.7C. D.510.設(shè)雙曲線與橢圓:有公共焦點,.若雙曲線經(jīng)過點,設(shè)為雙曲線與橢圓的一個交點,則的余弦值為()A. B.C. D.11.一盒子里有黑色、紅色、綠色的球各一個,現(xiàn)從中選出一個球.事件選出的球是紅色,事件選出的球是綠色.則事件與事件()A.是互斥事件,不是對立事件 B.是對立事件,不是互斥事件C.既是互斥事件,也是對立事件 D.既不是互斥事件也不是對立事件12.在等差數(shù)列{an}中,已知a1=2,a2+a3=13,則a4+a5+a6等于()A.40 B.42C.43 D.45二、填空題:本題共4小題,每小題5分,共20分。13.若關(guān)于的不等式恒成立,則實數(shù)的取值范圍是______.14.過雙曲線的右焦點作一條與其漸近線平行的直線,交于點.若點的橫坐標為,則的離心率為-.15.如圖,在邊長為2的正方形ABCD中,點E,F(xiàn)分別是AB,BC的中A點,將,,,分別沿DE,EF,DF折起,使得A,B,C三點重合于點P,則四面體的外接球表面積為____________.16.某單位現(xiàn)有三個部門競崗,甲、乙、丙三人每人只競選一個部門,設(shè)事件A為“三人競崗部門都不同”,B為“甲獨自競崗一個部門”,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在復數(shù)集C內(nèi)方程有六個根分別為(1)解出這六個根;(2)在復平面內(nèi),這六個根對應的點分別為A,B,C,D,E,F(xiàn);求多邊形ABCDEF的面積18.(12分)已知點和直線.(1)求以為圓心,且與直線相切的圓的方程;(2)過直線上一點作圓的切線,其中為切點,求四邊形PAMB的面積的最小值.19.(12分).在直角坐標系中,點,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為,直線與曲線相交于A,B兩點(1)求曲線的直角坐標方程和直線的普通方程;(2)若,求值20.(12分)在三棱柱中,側(cè)面正方形的中心為點平面,且,點滿足(1)若平面,求的值;(2)求點到平面的距離;(3)若平面與平面所成角的正弦值為,求的值21.(12分)已知橢圓的左焦點為,點到短袖的一個端點的距離為.(1)求橢圓的方程;(2)過點作斜率為的直線,與橢圓交于,兩點,若,求的取值范圍.22.(10分)如圖,在四棱錐P-ABCD中,平面ABCD,,,,,.(1)證明:平面平面PAC;(2)求平面PCD與平面PAB夾角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由展開式的通項公式求解即可【詳解】因為,所以展開式的第項為,故選:B2、B【解析】根據(jù)題意得,進而根據(jù)得數(shù)列是等比數(shù)列,公比為,首項為,再根據(jù)等比數(shù)列求和公式求解即可.【詳解】解:因為數(shù)列的前n項和為滿足,所以當時,,解得,當時,,即所以,解得或,因為,所以.所以,,所以當時,,所以,即所以數(shù)列是等比數(shù)列,公比為,首項為,所以故選:B3、B【解析】先求出向量與的夾角的余弦值,即可求出與的夾角.【詳解】,所以,∴,∴,∴,又∵,∴與的夾角為.故選:B.4、B【解析】先求出數(shù)列和的通項公式,然后利用分組求和求出,再對進行賦值即可求解.【詳解】解:因為數(shù)列是以1為首項,2為公差的等差數(shù)列所以因為是以1為首項,2為公比的等比數(shù)列所以由得:當時,即當時,當時,所以n的最大值是.故選:B.【點睛】關(guān)鍵點睛:本題的關(guān)鍵是利用分組求和求出,再通過賦值法即可求出使不等式成立的的最大值.5、A【解析】結(jié)合橢圓的定義、勾股定理列方程,化簡求得,由此求得離心率.【詳解】圓的圓心為,半徑為.設(shè)左焦點為,連接,由于,所以,所以,所以,由于,所以,所以,,.故選:A6、A【解析】先由等面積法求得的長,再以為坐標原點,建立如圖所示的空間直角坐標系,運用線面角的向量求解方法可得答案【詳解】如圖,連接交于點,過點作于,則平面,則,設(shè),則,則根據(jù)三角形面積得,代入解得以為坐標原點,建立如圖所示的空間直角坐標系則,,設(shè)平面的法向量為,,,則,即,令,得,所以直線與平面所成的角的余弦值為,故選:7、A【解析】根據(jù)二項展開式的通項公式,即可求解.【詳解】由題意,二項式展開式中第3項,所以展開式中第3項的二項式系數(shù)為.故選:A.8、C【解析】根據(jù)直線的斜率公式即可求得答案.【詳解】設(shè)該直線的傾斜角為,該直線的斜率,即.故選:C9、A【解析】由雙曲線的定義及三角形的幾何性質(zhì)可求解.【詳解】如圖,圓的圓心為,半徑為1,,,當,,三點共線時,最小,最小值為,而,所以故選:A10、A【解析】求出雙曲線方程,根據(jù)橢圓和雙曲線的第一定義求出的長度,從而根據(jù)余弦定理求出的余弦值【詳解】由題得,雙曲線中,所以,雙曲線方程為:,假設(shè)在第一象限,根據(jù)橢圓和雙曲線的定義可得:,解得:,,所以根據(jù)余弦定理,故選:A11、A【解析】根據(jù)事件的關(guān)系進行判斷即可.【詳解】由題意可知,事件與為互斥事件,但事件不是必然事件,所以,事件與事件是互斥事件,不是對立事件.故選:A.【點睛】本題考查事件關(guān)系的判斷,考查互斥事件和對立事件概率的理解,屬于基礎(chǔ)題.12、B【解析】根據(jù)已知求出公差即可得出.【詳解】設(shè)等差數(shù)列的公差為,因為,,所以,則.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)由題可知,當時,可得適合題意,當時,可求函數(shù)的最小值即得,當時不合題意,即得.【詳解】設(shè),由題可知,∴,當時,,適合題意,所以,當時,令,則,此時時,,單調(diào)遞減,,,單調(diào)遞增,∴,又,∴,∴,即,解得,當時,時,,,故的值有正有負,不合題意;綜上,實數(shù)的取值范圍是.故答案為:.【點睛】關(guān)鍵點點睛:本題考查不等式恒成立求參數(shù)的取值范圍,設(shè)由題可知,當時,利用導數(shù)可求函數(shù)的最小值,結(jié)合,可得,進而通過解,即得.14、【解析】雙曲線的右焦點為.不妨設(shè)所作直線與雙曲線的漸近線平行,其方程為,代入求得點的橫坐標為,由,得,解之得,(舍去,因為離心率),故雙曲線的離心率為.考點:1.雙曲線的幾何性質(zhì);2.直線方程.15、【解析】由題意在四面體中兩兩垂直,將該四面體補成長方體,則長方體與四面體的外接球相同,從而可求解.【詳解】將直角,,,分別沿DE,EF,DF折起,使得A,B,C三點重合于點P,所以在四面體中兩兩垂直,將該四面體補成長方體,如圖.則長方體與四面體的外接球相同.長方體的外接球在其對角線的中點處.由題意可得,則長方體的外接球的半徑為所以四面體的外接球表面積為故答案為:16、##0.5【解析】根據(jù)給定條件求出事件B和AB的概率,再利用條件概率公式計算作答.【詳解】依題意,,,所以.故答案:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)原式可因式分解為,令,設(shè)可求解出的兩個虛根,同理可求解的兩個虛根,即得解;(2)六個點構(gòu)成的圖形為正六邊形,邊長為1,計算即可【小問1詳解】由題意,當時,設(shè)故,所以解得:,即當時,設(shè)故所以解得:,即故:【小問2詳解】六個根對應的點分別為A,B,C,D,E,F(xiàn),其中在復平面中描出這六個點如圖所示:六個點構(gòu)成的圖形為正六邊形,邊長為1故18、(1)(2)【解析】(1)利用到直線的距離求得半徑,由此求得圓的方程.(2)結(jié)合到直線的距離來求得四邊形面積的最小值.【小問1詳解】圓的半徑,圓的方程為.【小問2詳解】由四邊形的面積知,當時,面積最小.此時...19、(1)曲線的直角坐標方程為,直線的普通方程為;(2).【解析】(1)根據(jù)極坐標與直角坐標互化公式,結(jié)合加法消元法進行求解即可;(2)利用直線參數(shù)方程的意義,結(jié)合一元二次方程根與系數(shù)關(guān)系進行求解即可.小問1詳解】由;;【小問2詳解】把直線的參數(shù)方程代入曲線的直角坐標方程中,得,,因為在直線上,所以,或而,所以.20、(1);(2);(3)或.【解析】(1)連接ME,證明即可計算作答.(2)以為原點,的方向分別為軸正方向建立空間直角坐標系,借助空間向量計算點到平面的距離即可.(3)由(2)中空間直角坐標系,借助空間向量求平面與平面所成角的余弦即可計算作答.【小問1詳解】在三棱柱中,因,即點在上,連接ME,如圖,因平面面,面面,則有,而為中點,于是得為的中點,所以.【小問2詳解】在三棱柱中,面面,則點到平面的距離等于點到平面的距離,又為正方形,即,而平面,以為原點,的方向分別為軸正方向建立空間直角坐標系,如圖,依題意,,則,,設(shè)平面的法向量為,則,令,得,又,則到平面的距離,所以點到平面的距離為.【小問3詳解】因,則,,設(shè)面的法向量為,則,令,得,于是得,而平面與平面所成角的正弦值為,則,即,整理得,解得或,所以的值是或.【點睛】易錯點睛:空間向量求二面角時,一是兩平面的法向量的夾角不一定是所求的二面角,二是利用方程思想進行向量運算,要認真細心,準確計算.21、(1)(2)或【解析】(1)根據(jù)焦點坐標可得,根據(jù)點到短袖一個端點的距離為,然后根據(jù)即可;(2)先設(shè)聯(lián)立直線與橢圓的方程,然后根據(jù)韋達定理得到,兩點的坐標關(guān)系,然后根據(jù)建立關(guān)于直線的斜率的不等式,解出不等式即可.【小問1詳解】根據(jù)題意,已知橢圓的左焦點為,則有:點到短袖一個端點的距離為,則有:則有:故橢圓的方程為:【小問2詳解】設(shè)過點作斜率為的直線的方程為:聯(lián)立直線與橢圓的方程可得:則有:,直線過點,所以恒成立,不妨設(shè),兩點的坐標分別為:,則有:又且則有:將,代入后可得:若,則有:解得:或22、(1)證明見解析(2)【解析】(1)過點C作于點H,由平面幾何知識證明,然后由線面垂直的性質(zhì)得線線垂直,從而得線面垂直,然后可得面面垂直;(2)建立如圖所示的空間直角坐標系,用空間向量法求二面角【小問1詳解】在梯形ABCD中,過點C作于點H.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版代持合同合規(guī)審查協(xié)議3篇
- 2025年消防工程安全生產(chǎn)監(jiān)理合同集錦3篇
- 2025版煤礦公司員工薪酬及福利保障合同4篇
- 2025版高速公路車輛通行費收取合同范本3篇
- 2025年度智能淋浴房定制銷售與專業(yè)安裝服務合同4篇
- 二零二五年度市政基礎(chǔ)設(shè)施水電維護及應急搶修合同范本4篇
- 二零二五年度網(wǎng)絡(luò)安全風險評估服務合同樣本4篇
- 二零二五版集裝箱制造與全球物流配送及維修保養(yǎng)合同范本3篇
- 2025年度金融產(chǎn)品銷售服務外包合同
- 2025年物業(yè)公司物業(yè)服務與社區(qū)環(huán)?;顒雍贤?篇
- 2024年江蘇蘇州中考數(shù)學試卷及答案
- 2024年山東省高中自主招生數(shù)學模擬試卷試題(含答案)
- 算術(shù)平方根2課件
- 【人教版】九年級化學上冊期末試卷及答案【【人教版】】
- 四年級數(shù)學上冊期末試卷及答案【可打印】
- 人教版四年級數(shù)學下冊課時作業(yè)本(含答案)
- 中小學人工智能教育方案
- 高三完形填空專項訓練單選(部分答案)
- 護理查房高鉀血癥
- 項目監(jiān)理策劃方案匯報
- 《職業(yè)培訓師的培訓》課件
評論
0/150
提交評論