江蘇省吳江市平望中學(xué)2023-2024學(xué)年數(shù)學(xué)高二上期末學(xué)業(yè)水平測試模擬試題含解析_第1頁
江蘇省吳江市平望中學(xué)2023-2024學(xué)年數(shù)學(xué)高二上期末學(xué)業(yè)水平測試模擬試題含解析_第2頁
江蘇省吳江市平望中學(xué)2023-2024學(xué)年數(shù)學(xué)高二上期末學(xué)業(yè)水平測試模擬試題含解析_第3頁
江蘇省吳江市平望中學(xué)2023-2024學(xué)年數(shù)學(xué)高二上期末學(xué)業(yè)水平測試模擬試題含解析_第4頁
江蘇省吳江市平望中學(xué)2023-2024學(xué)年數(shù)學(xué)高二上期末學(xué)業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

江蘇省吳江市平望中學(xué)2023-2024學(xué)年數(shù)學(xué)高二上期末學(xué)業(yè)水平測試模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在直三棱柱中,底面是等腰直角三角形,,則與平面所成角的正弦值為()A. B.C. D.2.在直三棱柱中,側(cè)面是邊長為的正方形,,,且,則異面直線與所成的角為()A. B.C. D.3.有3個興趣小組,甲、乙兩位同學(xué)各自參加其中一個小組,每位同學(xué)參加各個小組可能性相同,則這兩位同學(xué)參加同一個興趣小組的概率為A. B.C. D.4.如圖,在三棱錐中,,二面角的正弦值是,則三棱錐外接球的表面積是()A. B.C. D.5.拋物線的焦點(diǎn)為,準(zhǔn)線為,焦點(diǎn)在準(zhǔn)線上的射影為點(diǎn),過任作一條直線交拋物線于兩點(diǎn),則為()A.銳角 B.直角C.鈍角 D.銳角或直角6.已知橢圓的兩個焦點(diǎn)分別為,且平行于軸的直線與橢圓交于兩點(diǎn),那么的值為()A. B.C. D.7.直線是雙曲線的一條漸近線,,分別是雙曲線左、右焦點(diǎn),P是雙曲線上一點(diǎn),且,則()A.2 B.6C.8 D.108.第24屆冬季奧林匹克運(yùn)動會,將于2022年2月4日在北京市和張家口市聯(lián)合舉行.北京將成為奧運(yùn)史上第一個舉辦過夏季奧林匹克運(yùn)動會和冬季奧林匹克運(yùn)動會的城市.根據(jù)安排,國家體育場(鳥巢)成為北京冬奧會開、閉幕式的場館.國家體育場“鳥巢”的鋼結(jié)構(gòu)鳥瞰圖如圖所示,內(nèi)外兩圈的鋼骨架是兩個“相似橢圓”(離心率相同的兩個橢圓我們稱為“相似橢圓”).如圖,由外層橢圓長軸一端點(diǎn)A和短軸一端點(diǎn)B分別向內(nèi)層橢圓引切線AC,BD,若兩切線斜率之積等于,則橢圓的離心率為()A. B.C. D.9.已知角的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊與x軸的非負(fù)半軸重合,角終邊上有一點(diǎn)(1,2),為銳角,且,則()A.-18 B.-6C. D.10.已知拋物線,則拋物線的焦點(diǎn)到其準(zhǔn)線的距離為()A. B.C. D.11.已知的展開式中,各項(xiàng)系數(shù)的和與其各項(xiàng)二項(xiàng)式系數(shù)的和之比為,則()A.4 B.5C.6 D.712.若,則()A.1 B.2C.4 D.8二、填空題:本題共4小題,每小題5分,共20分。13.已知圓:,:.則這兩圓的連心線方程為_________(答案寫成一般式方程)14.過拋物線焦點(diǎn)的直線交拋物線于A,B兩點(diǎn),若線段AB中點(diǎn)的縱坐標(biāo)為4,則線段AB的長度為___________.15.已知雙曲線過點(diǎn),且漸近線方程為,則該雙曲線的標(biāo)準(zhǔn)方程為____________________.16.兩條平行直線與的距離是__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱柱中,面ABC,,,D為BC的中點(diǎn)(1)求證:平面;(2)若F為中點(diǎn),求與平面所成角的正弦值18.(12分)已知雙曲線(1)若,求雙曲線的焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)和漸近線方程;(2)若雙曲線的離心率為,求實(shí)數(shù)的取值范圍19.(12分)已知各項(xiàng)為正數(shù)的等比數(shù)列中,,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前n項(xiàng)和.20.(12分)如圖,在四棱錐P-ABCD中,底面ABCD,,,且,,點(diǎn)E為棱PC的動點(diǎn).(1)當(dāng)點(diǎn)E是棱PC的中點(diǎn)時,求直線BE與平面PBD所成角的正弦值;(2)若E為棱PC上任一點(diǎn),滿足,求二面角P-AB-E的余弦值.21.(12分)已知圓經(jīng)過點(diǎn)和,且圓心在直線上.(1)求圓的方程;(2)過原點(diǎn)的直線與圓交于M,N兩點(diǎn),若的面積為,求直線的方程.22.(10分)已知的展開式中,只有第6項(xiàng)的二項(xiàng)式系數(shù)最大(1)求n的值;(2)求展開式中含的項(xiàng)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】取的中點(diǎn),連接,易證平面,進(jìn)一步得到線面角,再解三角形即可.【詳解】如圖,取的中點(diǎn),連接,三棱柱為直三棱柱,則平面,又平面,所以,又由題意可知為等腰直角三角形,且為斜邊的中點(diǎn),從而,而平面,平面,且,所以平面,則為與平面所成的角.在直角中,.故選:C2、C【解析】分析得出,以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,利用空間向量法可求得異面直線與所成的角.【詳解】由題意可知,,因?yàn)椋?,則,,因?yàn)槠矫妫渣c(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立如下圖所示的空間直角坐標(biāo)系,則點(diǎn)、、、,,,,因此,異面直線與所成的角為.故選:C.3、A【解析】每個同學(xué)參加的情形都有3種,故兩個同學(xué)參加一組的情形有9種,而參加同一組的情形只有3種,所求的概率為p=選A4、A【解析】利用二面角S﹣AC﹣B的余弦值求得,由此判斷出,且兩兩垂直,由此將三棱錐補(bǔ)形成正方體,利用正方體的外接球半徑,求得外接球的表面積.【詳解】設(shè)是的中點(diǎn),連接,由于,所以,所以是二面角的平面角,所以.在三角形中,,在三角形中,,在三角形中,由余弦定理得:,所以,由于,所以兩兩垂直.由此將三棱錐補(bǔ)形成正方體如下圖所示,正方體的邊長為2,則體對角線長為.設(shè)正方體外接球的半徑為,則,所以外接球的表面積為,故選:.5、D【解析】設(shè)出直線方程,聯(lián)立拋物線方程,利用韋達(dá)定理,求得,根據(jù)其結(jié)果即可判斷和選擇.【詳解】為說明問題,不妨設(shè)拋物線方程,則,直線斜率顯然不為零,故可設(shè)直線方程為,聯(lián)立,可得,設(shè)坐標(biāo)為,則,故,當(dāng)時,,;當(dāng)時,,;故為銳角或直角.故選:D.6、A【解析】根據(jù)橢圓的方程求出,再由橢圓的對稱性及定義求解即可.【詳解】由橢圓的對稱性可知,,所以,又橢圓方程為,所以,解得,所以,故選:A7、C【解析】根據(jù)漸近線可求出a,再由雙曲線定義可求解.【詳解】因?yàn)橹本€是雙曲線的一條漸近線,所以,,又或,或(舍去),故選:C8、C【解析】設(shè)內(nèi)層橢圓的方程為,可得外層橢圓的方程為,設(shè)切線的方程為,聯(lián)立方程組,根據(jù),得到,同理得到,結(jié)合題意求得,進(jìn)而求得離心率.【詳解】設(shè)內(nèi)層橢圓方程為,因?yàn)閮?nèi)外層的橢圓的離心率相同,可設(shè)外層橢圓的方程為,設(shè)切線的方程為,聯(lián)立方程組,整理得,由,整理得,設(shè)切線的方程為,同理可得,因?yàn)閮汕芯€斜率之積等于,可得,可得,所以離心率為.故選:C.9、A【解析】由終邊上的點(diǎn)可得,由同角三角函數(shù)的平方、商數(shù)關(guān)系有,再應(yīng)用差角、倍角正切公式即可求.【詳解】由題設(shè),,,則,又,,所以.故選:A10、D【解析】將拋物線方程化為標(biāo)準(zhǔn)方程,由此確定的值即可.【詳解】由可得拋物線標(biāo)準(zhǔn)方程為:,,拋物線的焦點(diǎn)到其準(zhǔn)線的距離為.故選:D.11、C【解析】利用賦值法確定展開式中各項(xiàng)系數(shù)的和以及二項(xiàng)式系數(shù)的和,利用比值為,列出關(guān)于的方程,解方程.【詳解】二項(xiàng)式的各項(xiàng)系數(shù)的和為,二項(xiàng)式的各項(xiàng)二項(xiàng)式系數(shù)的和為,因?yàn)楦黜?xiàng)系數(shù)的和與其各項(xiàng)二項(xiàng)式系數(shù)的和之比為,所以,.故選:C.12、D【解析】由題意結(jié)合導(dǎo)數(shù)的運(yùn)算可得,再由導(dǎo)數(shù)的概念即可得解.【詳解】由題意,所以,所以.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出兩圓的圓心坐標(biāo),再利用兩點(diǎn)式求出直線方程,再化成一般式即可【詳解】解:圓,即,兩圓的圓心為:和,這兩圓的連心線方程為:,即故答案為:14、9【解析】由焦點(diǎn)弦公式和中點(diǎn)坐標(biāo)公式可得.詳解】設(shè),則,即,.故答案為:915、【解析】依題意,設(shè)所求的雙曲線的方程為.點(diǎn)為該雙曲線上的點(diǎn),.該雙曲線的方程為:,即.故本題正確答案是.16、5【解析】根據(jù)兩平行直線,可求得a值,根據(jù)兩平行線間距離公式,即可得答案.【詳解】因?yàn)閮善叫兄本€與,所以,解得,所以兩平行線的距離.故答案為:5三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)連接交于點(diǎn)O,連接OD,通過三角形中位線證明即可;(2)建立空間直角坐標(biāo)系,利用向量法求解即可.【小問1詳解】解法1:如圖,連接交于點(diǎn)O,連接OD,因?yàn)樵谌庵?,四邊形是平行四邊形,所以O(shè)是的中點(diǎn),因?yàn)镈為BC的中點(diǎn),所以在中,,因?yàn)槠矫?,平面,所以平面平面解?:因?yàn)樵谌庵校鍭BC,,所以BA,BC,兩兩垂直,故以B點(diǎn)為坐標(biāo)原點(diǎn),建立如圖的空間直角坐標(biāo)系,因?yàn)?,所以B(0,0,0),A(2,0,0),D(0,1,0),,,所以,,,設(shè)平面的一個法向量為,則,即,令,則,∴,平面,所以平面;【小問2詳解】設(shè)與平面所成角為,由(1)知平面法向量為,F(xiàn)為中點(diǎn),∴,,∴即與平面所成角正弦值為.18、(1)焦點(diǎn)坐標(biāo)為,,頂點(diǎn)坐標(biāo)為,,漸近線方程為;(2).【解析】(1)根據(jù)雙曲線方程確定,即可按照概念對應(yīng)寫出焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)和漸近線方程;(2)先求(用表示),再根據(jù)解不等式得結(jié)果.【詳解】(1)當(dāng)時,雙曲線方程化為,所以,,,所以焦點(diǎn)坐標(biāo)為,,頂點(diǎn)坐標(biāo)為,,漸近線方程為.(2)因?yàn)椋?,解得,所以?shí)數(shù)的取值范圍是【點(diǎn)睛】本題根據(jù)雙曲線方程求焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)和漸近線方程,根據(jù)離心率求參數(shù)范圍,考查基本分析求解能力,屬基礎(chǔ)題.19、(1);(2)【解析】(1)根據(jù)條件求出即可;(2),然后利用等差數(shù)列的求和公式求出答案即可.【詳解】(1)且,,(2)20、(1)(2)【解析】(1)由題意可得兩兩垂直,所以以為原點(diǎn),以所在的直線分別為軸,建立空間直角坐標(biāo)系,利用空間向量求解,(2)設(shè),表示出點(diǎn)的坐標(biāo),然后根據(jù)求出的值,從而可得點(diǎn)的坐標(biāo),然后利用空間向量求二面角【小問1詳解】因?yàn)榈酌鍭BCD,平面,所以因?yàn)?,所以兩兩垂直,所以以為原點(diǎn),以所在的直線分別為軸,建立空間直角坐標(biāo)系,如圖所示,因?yàn)?,,點(diǎn)E為棱PC的動點(diǎn),所以,所以,,設(shè)平面的法向量為,則,令,則設(shè)直線BE與平面PBD所成角為,則,所以直線BE與平面PBD所成角的正弦值為,【小問2詳解】,因?yàn)镋為棱PC上任一點(diǎn),所以設(shè),所以,因?yàn)?,所以,解得,所以,設(shè)平面的法向量為,則,令,則,取平面的一個法向量為,設(shè)二面角P-AB-E的平面角為,由圖可知為銳角,則,所以二面角P-AB-E余弦值為21、(1)(2)直線的方程為或或【解析】(1)由弦的中垂線與直線的交點(diǎn)為圓心即可求解;(2)由,可得或,進(jìn)而有或,顯然直線斜率存在,設(shè)直線,由點(diǎn)到直線的距離公式求出的值即可得答案.【小問1詳解】解:設(shè)弦的中點(diǎn)為,則有,因?yàn)?,所以直線,所以直線的中垂線為,則圓心在直線上,且在

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論