江西省臨川實(shí)驗(yàn)學(xué)校2023-2024學(xué)年數(shù)學(xué)高二上期末調(diào)研試題含解析_第1頁
江西省臨川實(shí)驗(yàn)學(xué)校2023-2024學(xué)年數(shù)學(xué)高二上期末調(diào)研試題含解析_第2頁
江西省臨川實(shí)驗(yàn)學(xué)校2023-2024學(xué)年數(shù)學(xué)高二上期末調(diào)研試題含解析_第3頁
江西省臨川實(shí)驗(yàn)學(xué)校2023-2024學(xué)年數(shù)學(xué)高二上期末調(diào)研試題含解析_第4頁
江西省臨川實(shí)驗(yàn)學(xué)校2023-2024學(xué)年數(shù)學(xué)高二上期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

江西省臨川實(shí)驗(yàn)學(xué)校2023-2024學(xué)年數(shù)學(xué)高二上期末調(diào)研試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.空氣質(zhì)量指數(shù)大小分為五級(jí)指數(shù)越大說明污染的情況越嚴(yán)重,對(duì)人體危害越大,指數(shù)范圍在:,,,,分別對(duì)應(yīng)“優(yōu)”、“良”、“輕中度污染”、“中度重污染”、“重污染”五個(gè)等級(jí),如圖是某市連續(xù)14天的空氣質(zhì)量指數(shù)趨勢圖,下面說法錯(cuò)誤的是().A.這14天中有4天空氣質(zhì)量指數(shù)為“良”B.從2日到5日空氣質(zhì)量越來越差C.這14天中空氣質(zhì)量的中位數(shù)是103D.連續(xù)三天中空氣質(zhì)量指數(shù)方差最小是9日到11日2.?dāng)?shù)列中,,,若,則()A.2 B.3C.4 D.53.已知橢圓與雙曲線有相同的焦點(diǎn),則的值為A. B.C. D.4.已知等差數(shù)列滿足,則等于()A. B.C. D.5.袋子中有四個(gè)小球,分別寫有“文、明、中、國”四個(gè)字,有放回地從中任取一個(gè)小球,直到“中”“國”兩個(gè)字都取到就停止,用隨機(jī)模擬的方法估計(jì)恰好在第三次停止的概率.利用電腦隨機(jī)產(chǎn)生0到3之間取整數(shù)值的隨機(jī)數(shù),分別用0,1,2,3代表“文、明、中、國”這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示取球三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):由此可以估計(jì),恰好第三次就停止的概率為()A. B.C. D.6.已知點(diǎn)O為坐標(biāo)原點(diǎn),拋物線C:的焦點(diǎn)為F,點(diǎn)T在拋物線C的準(zhǔn)線上,線段FT與拋物線C的交點(diǎn)為W,,則()A.1 B.C. D.7.若,則下列不等式①;②;③;④中,正確的不等式有()A.0個(gè) B.1個(gè)C.2個(gè) D.3個(gè)8.已知數(shù)列的前n項(xiàng)和為,,,則()A. B.C. D.9.已知函數(shù)與,則它們的圖象交點(diǎn)個(gè)數(shù)為()A.0 B.1C.2 D.不確定10.“”是“圓與軸相切”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件11.4位同學(xué)報(bào)名參加四個(gè)課外活動(dòng)小組,每位同學(xué)限報(bào)其中的一個(gè)小組,則不同的報(bào)名方法共有()A.24種 B.81種C.64種 D.256種12.已知球O的半徑為2,球心到平面的距離為1,則球O被平面截得的截面面積為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.?dāng)?shù)列滿足,則__________.14.橢圓的長軸長為______15.已知數(shù)列滿足,記,則______;數(shù)列的通項(xiàng)公式為______.16.已知雙曲線:,斜率為的直線與E的左右兩支分別交于A,B兩點(diǎn),點(diǎn)P的坐標(biāo)為,直線AP交E于另一點(diǎn)C,直線BP交E于另一點(diǎn)D.若直線CD的斜率為,則E的離心率為___________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知正項(xiàng)等差數(shù)列滿足:,且,,成等比數(shù)列(1)求的通項(xiàng)公式;(2)設(shè)的前n項(xiàng)和為,且,求的前n項(xiàng)和18.(12分)已知圓的方程為(1)求圓的圓心及半徑;(2)是否存在直線滿足:經(jīng)過點(diǎn),且_________________?如果存在,求出直線的方程;如果不存在,請(qǐng)說明理由從下列三個(gè)條件中任選一個(gè)補(bǔ)充在上面問題中并作答:條件①:被圓所截得的弦長最長;條件②:被圓所截得的弦長最短;條件③:被圓所截得的弦長為注:如果選擇多個(gè)條件分別作答,按第一個(gè)解答計(jì)分19.(12分)已知橢圓:過點(diǎn),其左、右頂點(diǎn)分別為,,上頂點(diǎn)為,直線與直線的斜率之積為.(1)求橢圓的方程;(2)如圖,直線:分別與線段(不含端點(diǎn))和線段的延長線交于,兩點(diǎn),直線與橢圓的另一交點(diǎn)為,求證:,,三點(diǎn)共線.20.(12分)某初中學(xué)校響應(yīng)“雙減政策”,積極探索減負(fù)增質(zhì)舉措,優(yōu)化作業(yè)布置,減少家庭作業(yè)時(shí)間.現(xiàn)為調(diào)查學(xué)生的家庭作業(yè)時(shí)間,隨機(jī)抽取了名學(xué)生,記錄他們每天完成家庭作業(yè)的時(shí)間(單位:分鐘),將其分為,,,,,六組,其頻率分布直方圖如下圖:(1)求的值,并估計(jì)這名學(xué)生完成家庭作業(yè)時(shí)間的中位數(shù)(中位數(shù)結(jié)果保留一位小數(shù));(2)現(xiàn)用分層抽樣的方法從第三組和第五組中隨機(jī)抽取名學(xué)生進(jìn)行“雙減政策”情況訪談,再從訪談的學(xué)生中選取名學(xué)生進(jìn)行成績跟蹤,求被選作成績跟蹤的名學(xué)生中,第三組和第五組各有名的概率21.(12分)為增強(qiáng)市民的環(huán)境保護(hù)意識(shí),某市面向全市征召若干名宣傳志愿者,成立環(huán)境保護(hù)宣傳小組,現(xiàn)把該小組的成員按年齡分成、、、、這組,得到的頻率分布直方圖如圖所示,已知年齡在內(nèi)的人數(shù)為.(1)若用分層抽樣的方法從年齡在、、內(nèi)的志愿者中抽取名參加某社區(qū)的宣傳活動(dòng),再從這名志愿者中隨機(jī)抽取名志愿者做環(huán)境保護(hù)知識(shí)宣講,求這名環(huán)境保護(hù)知識(shí)宣講志愿者中至少有名年齡在內(nèi)的概率;(2)在(1)的條件下,記抽取的名志愿者分別為甲、乙,該社區(qū)為了感謝甲、乙作為環(huán)境保護(hù)知識(shí)宣講的志愿者,給甲、乙各隨機(jī)派發(fā)價(jià)值元、元、元的紀(jì)念品一件,求甲的紀(jì)念品不比乙的紀(jì)念品價(jià)值高的概率.22.(10分)在數(shù)列中,,且,(1)求的通項(xiàng)公式;(2)求的前n項(xiàng)和的最大值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)題圖分析數(shù)據(jù),對(duì)選項(xiàng)逐一判斷【詳解】對(duì)于A,14天中有1,3,12,13共4日空氣質(zhì)量指數(shù)為“良”,故A正確對(duì)于B,從2日到5日空氣質(zhì)量指數(shù)越來越高,故空氣質(zhì)量越來越差,故B正確對(duì)于C,14個(gè)數(shù)據(jù)中位數(shù)為:,故C錯(cuò)誤對(duì)于D,觀察折線圖可知D正確故選:C2、C【解析】由已知得數(shù)列是以2為首項(xiàng),以2為公比的等比數(shù)列,求出,再利用等比數(shù)列求和可得答案.【詳解】∵,∴,所以,數(shù)列是以2為首項(xiàng),以2為公比的等比數(shù)列,則,∴,∴,則,解得.故選:C.3、C【解析】根據(jù)題意可知,結(jié)合的條件,可知,故選C考點(diǎn):橢圓和雙曲線性質(zhì)4、A【解析】利用等差中項(xiàng)求出的值,進(jìn)而可求得的值.【詳解】因?yàn)榈?,因此?故選:A.5、A【解析】利用古典概型的概率公式求解.【詳解】因?yàn)殡S機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):,其中恰好第三次就停止包含的基本事件有:023,123,132共3個(gè),所以由此可以估計(jì),恰好第三次就停止的概率為,故選:A6、B【解析】根據(jù)平面向量共線的性質(zhì),結(jié)合拋物線的定義進(jìn)行求解即可.【詳解】由已知得:,該拋物線的準(zhǔn)線方程為:,所以設(shè),因?yàn)?,所以,由拋物線的定義可知:,故選:B7、C【解析】由條件,可得,利用不等式的性質(zhì)和基本不等式可判斷①、②、③、④中不等式的正誤,得出答案.【詳解】因?yàn)椋?因此,且,且②、③不正確.所以,所以①正確,由得、均為正數(shù),所以,(由條件,所以等號(hào)不成立),所以④正確.故選:C.8、D【解析】根據(jù)給定遞推公式求出即可計(jì)算作答.【詳解】因數(shù)列的前n項(xiàng)和為,,,則,,,所以.故選:D9、B【解析】令,判斷的單調(diào)性并計(jì)算的極值,根據(jù)極值與0的大小關(guān)系判斷的零點(diǎn)個(gè)數(shù),得出答案.【詳解】令,則,由,得,∴當(dāng)時(shí),,當(dāng)時(shí),.∴當(dāng)時(shí),取得最小值,∴只有一個(gè)零點(diǎn),即與的圖象只有1個(gè)交點(diǎn).故選:B.10、A【解析】根據(jù)充分不必要條件的定義和圓心到軸的距離求出可得答案.【詳解】時(shí),圓的圓心坐標(biāo)為,半徑為2,此時(shí)圓與軸相切;當(dāng)圓與軸相切時(shí),因?yàn)閳A的半徑為2,所以圓心到軸的距離為,所以,“”是“圓與軸相切”的充分不必要條件故選:A11、D【解析】利用分步乘法計(jì)數(shù)原理進(jìn)行計(jì)算.【詳解】每位同學(xué)均有四種選擇,故不同的報(bào)名方法有種.故選:D12、B【解析】根據(jù)球的性質(zhì)可求出截面圓的半徑即可求解.【詳解】由球的性質(zhì)可知,截面圓的半徑為,所以截面的面積.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】對(duì)遞推關(guān)系多遞推一次,再相減,可得,再驗(yàn)證是否滿足;【詳解】∵①時(shí),②①-②得,時(shí),滿足上式,.故答案為:.【點(diǎn)睛】數(shù)列中碰到遞推關(guān)系問題,經(jīng)常利用多遞推一次再相減的思想方法求解.14、4【解析】把橢圓方程化成標(biāo)準(zhǔn)形式直接計(jì)算作答.【詳解】橢圓方程化為:,令橢圓長半軸長為a,則,解得,所以橢圓的長軸長為4.故答案為:415、①.②..【解析】結(jié)合遞推公式計(jì)算出,即可求出的值;證得數(shù)列是以3為首項(xiàng),2為公比的等比數(shù)列,即可求出結(jié)果.【詳解】因?yàn)?,所以,,,因此,由于,又,即,所以,因此?shù)列是以3為首項(xiàng),2為公比的等比數(shù)列,則,即,故答案為:;.16、【解析】分別設(shè)線段的中點(diǎn),線段的中點(diǎn),再利用點(diǎn)差法可表示出,由平行關(guān)系易知三點(diǎn)共線,從而利用斜率相等的關(guān)系構(gòu)造方程,代入整理可得到關(guān)系,利用雙曲線得到關(guān)于的齊次方程,進(jìn)而求得離心率.【詳解】設(shè),,線段的中點(diǎn),兩式相減得:…①設(shè),,線段的中點(diǎn)同理可得:…②,易知三點(diǎn)共線,將①②代入得:,所以,即,由題意可得,故.∴,即故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)利用等差數(shù)列的通項(xiàng)公式結(jié)合條件即求;(2)利用條件可得,然后利用錯(cuò)位相減法即求.【小問1詳解】設(shè)等差數(shù)列公差為d,由得,即,化簡得,又,,成等比數(shù)列,則,即,將代入上式得,化簡得,解得或-2(舍去),則,所以【小問2詳解】∵,當(dāng)時(shí),,當(dāng)時(shí),,符合上式,則,所以,令,則,,∴,化簡得綜上,的前n項(xiàng)和18、(1)圓心為,半徑為;(2)答案見解析.【解析】(1)寫出圓標(biāo)準(zhǔn)方程即得解;(2)選擇條件①:直線應(yīng)過圓心即直線過點(diǎn)和,即得解;選擇條件②:直線應(yīng)與垂直,求出直線的方程即得解;選擇條件③:不存在滿足條件的直線.【小問1詳解】解:由圓的方程整理可得,所以圓心為,半徑為.小問2詳解】選擇條件①:若直線被圓所截得的弦長最長,則直線應(yīng)過圓心即直線過點(diǎn)和,所以直線的斜率為,則直線的方程為.選擇條件②:若直線過點(diǎn)被圓所截得的弦長最短,則直線應(yīng)與垂直.又,所以.故直線方程為.選擇條件③:經(jīng)過點(diǎn)的直線被圓所截得的最短弦長,由于,所以不存在滿足條件的直線.19、(1);(2)證明見解析.【解析】(1)由和,聯(lián)立求解;(2)由(1)易得直線:,直線:,,分別與x=t聯(lián)立,求得M,N坐標(biāo),設(shè),利用,得到,然后兩邊乘以,結(jié)合點(diǎn)P在橢圓上化簡得到即可,【詳解】(1)在橢圓中,,,,則,,由題意得:,又,解得,,所以橢圓的方程為.(2)由(1)可知,,,,則直線:,直線:,由題意,,聯(lián)立,同理聯(lián)立,設(shè),則①,且點(diǎn)滿足:,即,兩邊乘以,可得:,代入①得:,而,則,所以,,三點(diǎn)共線.20、(1);這名學(xué)生完成家庭作業(yè)時(shí)間的中位數(shù)約為分鐘(2)【解析】(1)由頻率分布直方圖頻率之和為,建立方程求解即可;設(shè)中位數(shù)為,利用頻率分布直方圖中位數(shù)定義列出方程即可求解;(2)頻率分布直方圖頻率得到第三組和第五組的人數(shù),從而列出所有樣本點(diǎn),再根據(jù)題意利用古典概率模型求解即可.【小問1詳解】根據(jù)頻率分布直方圖可得:,解得.設(shè)中位數(shù)為,由題意得,解得所以這名學(xué)生完成家庭作業(yè)時(shí)間的中位數(shù)約為分鐘【小問2詳解】由頻率分布直方圖知,第三組和第五組的人數(shù)之比為,所以分層抽樣抽出的人中,第三組和第五組的人數(shù)分別為人和人,第三組的名學(xué)生記為,,,,第五組的名學(xué)生記為,,所以從名學(xué)生中抽取名的樣本空間,共15個(gè)樣本點(diǎn),記事件“名中學(xué)生,第三組和第五組各名”則,共有個(gè)樣本點(diǎn),所以這名學(xué)生中,兩組各有名的概率21、(1);(2).【解析】(1)將名志愿者進(jìn)行編號(hào),列舉出所有的基本事件,并確定所求事件所包含的基本事件數(shù),利用古典概型的概率公式可求得所求事件的概率;(2)列舉出甲、乙獲得紀(jì)念品價(jià)值的所有情況,并確定所求事件所包含的情況,利用古典概型的概率公式可求得所求事件的概率.【小問1詳解】解:因?yàn)橹驹刚吣挲g在、、內(nèi)的頻率分別為、、,所以用分層抽樣的方法抽取的名志愿者年齡在、、內(nèi)的人數(shù)分別為、、.記年齡在內(nèi)的名志愿者分別記為、、,年齡在的名志愿者分別記為、,年齡在內(nèi)的名志愿者記為,則從中抽取名志愿者的情況有、、、、、、、、、、、、、、,共種可能;而至少有名志愿者的年齡在內(nèi)的情況有、、、、、、、、,共種可能.所以至少有名志愿者的年齡在內(nèi)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論