




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
中考數(shù)學(xué)幾何綜合壓軸題模擬匯編經(jīng)典和答案解析1一、中考幾何壓軸題1.綜合與實(shí)踐動(dòng)手實(shí)踐:一次數(shù)學(xué)興趣活動(dòng),張老師將等腰的直角頂點(diǎn)與正方形的頂點(diǎn)重合(),按如圖(1)所示重疊在一起,使點(diǎn)在邊上,連接.則可證:______,______三點(diǎn)共線;發(fā)現(xiàn)問題:(1)如圖(2),已知正方形,為邊上一動(dòng)點(diǎn),,交的延長(zhǎng)線于,連結(jié)交于點(diǎn).若,則______,______;嘗試探究:(2)如圖(3),在(1)的條件下若,求證:;拓展延伸:(3)如圖(4),在(1)的條件下,當(dāng)______時(shí),為的6倍(直接寫結(jié)果,不要求證明).2.(問題發(fā)現(xiàn))(1)如圖1,在Rt△ABC中,AB=AC,D為BC邊上一點(diǎn)(不與點(diǎn)B、C重合)將線段AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到AE,連結(jié)EC,則線段BD與CE的數(shù)量關(guān)系是,位置關(guān)系是;(探究證明)(2)如圖2,在Rt△ABC和Rt△ADE中,AB=AC,AD=AE,將△ADE繞點(diǎn)A旋轉(zhuǎn),當(dāng)點(diǎn)C,D,E在同一直線時(shí),BD與CE具有怎樣的位置關(guān)系,并說明理由;(拓展延伸)(3)如圖3,在Rt△BCD中,∠BCD=90°,BC=2CD=4,將△ACD繞順時(shí)針旋轉(zhuǎn),點(diǎn)C對(duì)應(yīng)點(diǎn)E,設(shè)旋轉(zhuǎn)角∠CAE為α(0°<α<360°),當(dāng)點(diǎn)C,D,E在同一直線時(shí),畫出圖形,并求出線段BE的長(zhǎng)度.3.在中,,點(diǎn)D?E分別是的中點(diǎn),將繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)一定的角度,連接.觀察猜想(1)如圖①,當(dāng)時(shí),填空:①______________;②直線所夾銳角為____________;類比探究(2)如圖②,當(dāng)時(shí),試判斷的值及直線所夾銳角的度數(shù),并說明理由;拓展應(yīng)用(3)在(2)的條件下,若,將繞著點(diǎn)C在平面內(nèi)旋轉(zhuǎn),當(dāng)點(diǎn)D落在射線AC上時(shí),請(qǐng)直接寫出的值.4.某數(shù)學(xué)課外活動(dòng)小組在學(xué)習(xí)了勾股定理之后,針對(duì)圖1中所示的“由直角三角形三邊向外側(cè)作多邊形,它們的面積之間的關(guān)系問題”進(jìn)行了以下探究:類比探究:(1)如圖2,在中,為斜邊,分別以為直徑,向外側(cè)作半圓,則面積之間的關(guān)系式為_____________;推廣驗(yàn)證:(2)如圖3,在中,為斜邊,分別以為邊向外側(cè)作,,滿足,則(1)中所得關(guān)系式是否仍然成立?若成立,請(qǐng)證明你的結(jié)論;若不成立,請(qǐng)說明理由;拓展應(yīng)用:(3)如圖4,在五邊形中,,點(diǎn)在上,,求五邊形的面積.5.《函數(shù)的圖象與性質(zhì)》拓展學(xué)習(xí)展示:(問題)如圖①,在平面直角坐標(biāo)系中,拋物線:與軸相交于,兩點(diǎn),與軸交于點(diǎn),則______,______.(操作)將圖①中拋物線沿方向平移長(zhǎng)度的距離得到拋物線,在軸左側(cè)的部分與在軸右側(cè)的部分組成的新圖象記為,如圖②.請(qǐng)直接寫出圖象對(duì)應(yīng)的函數(shù)解析式.(探究)在圖②中,過點(diǎn)作直線平行于軸,與圖象交于,兩點(diǎn),如圖③.求出圖象在直線上方的部分對(duì)應(yīng)的函數(shù)隨的增大而增大時(shí)的取值范圍.(應(yīng)用)是拋物線對(duì)稱軸上一個(gè)動(dòng)點(diǎn),當(dāng)是直角三角形時(shí),直接寫出點(diǎn)的坐標(biāo).6.(1)問題發(fā)現(xiàn)如圖1,△ABC與△ADE都是等腰直角三角形,且∠BAC=∠DAE=90°,直線BD,CE交于點(diǎn)F,直線BD,AC交于點(diǎn)G.則線段BD和CE的數(shù)量關(guān)系是,位置關(guān)系是;(2)類比探究如圖2,在△ABC和△ADE中,∠ABC=∠ADE=α,∠ACB=∠AED=β,直線BD,CE交于點(diǎn)F,AC與BD相交于點(diǎn)G.若AB=kAC,試判斷線段BD和CE的數(shù)量關(guān)系以及直線BD和CE相交所成的較小角的度數(shù),并說明理由;(3)拓展延伸如圖3,在平面直角坐標(biāo)系中,點(diǎn)M的坐標(biāo)為(3.0),點(diǎn)N為y軸上一動(dòng)點(diǎn),連接MN.將線段MN繞點(diǎn)M逆時(shí)針旋轉(zhuǎn)90得到線段MP,連接NP,OP.請(qǐng)直接寫出線段OP長(zhǎng)度的最小值及此時(shí)點(diǎn)N的坐標(biāo).7.問題探究:(1)如圖①,已知在△ABC中,BC=4,∠BAC=45°,則AB的最大值是.(2)如圖②,已知在Rt△ABC中,∠ABC=90°,AB=BC,D為△ABC內(nèi)一點(diǎn),且AD=2,BD=2.,CD=6,請(qǐng)求出∠ADB的度數(shù).問題解決:(3)如圖③,某戶外拓展基地計(jì)劃在一處空地上修建一個(gè)新的拓展游戲區(qū)△ABC,且AB=AC.∠BAC=120°,點(diǎn)A、B、C分別是三個(gè)任務(wù)點(diǎn),點(diǎn)P是△ABC內(nèi)一個(gè)打卡點(diǎn).按照設(shè)計(jì)要求,CP=30米,打卡點(diǎn)P對(duì)任務(wù)點(diǎn)A、B的張角為120°,即∠APB=120°.為保證游戲效果,需要A、P的距離與B、P的距離和盡可能大,試求出AP+BP的最大值.8.(1)問題探究:如圖1,在正方形中,點(diǎn)、、分別是、、上的點(diǎn),且,求證:;(2)類比應(yīng)用:如圖2,在矩形中,,,將矩形沿折疊使點(diǎn)落在點(diǎn)處,得到矩形.①若點(diǎn)為的中點(diǎn),試探究與的數(shù)量關(guān)系;②拓展延伸:連,當(dāng)時(shí),,,求的長(zhǎng).9.(1)(問題發(fā)現(xiàn))如圖①,正方形的兩邊分別在正方形的邊和上,連接.填空:①線段與的數(shù)量關(guān)系為______;②直線與所夾銳角的度數(shù)為_______.(2)(拓展探究)如圖②,將正方形繞點(diǎn)逆時(shí)針旋轉(zhuǎn),在旋轉(zhuǎn)的過程中,(1)中的結(jié)論是否仍然成立,請(qǐng)利用圖②進(jìn)行說明.(3)(解決問題)如圖③,在正方形中,,點(diǎn)M為直線上異于B,C的一點(diǎn),以為邊作正方形,點(diǎn)N為正方形的中心,連接,若,直接寫出的長(zhǎng).10.(問題探究)(1)如圖1,△ABC和△DEC均為等腰直角三角形,∠ACB=∠DCE=90°,點(diǎn)B,D,E在同一直線上,連接AD,BD.①請(qǐng)?zhí)骄緼D與BD之間的位置關(guān)系?并加以證明.②若AC=BC=,DC=CE=,求線段AD的長(zhǎng).(拓展延伸)(2)如圖2,△ABC和△DEC均為直角三角形,∠ACB=∠DCE=90°,AC=,BC=,CD=,CE=1.將△DCE繞點(diǎn)C在平面內(nèi)順時(shí)針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角∠BCD為α(0°≤α<360°),作直線BD,連接AD,當(dāng)點(diǎn)B,D,E在同一直線上時(shí),畫出圖形,并求線段AD的長(zhǎng).11.[探索發(fā)現(xiàn)](1)如圖①,△ABC與△ADE為等腰三角形,且兩頂角∠ABC=∠ADE,連接BD與CE,則△ABD與△ACE的關(guān)系是;[操作探究](2)在△ABC中,AB=AC=3,∠BAC=100°,D是BC的中點(diǎn),在線段AD上任取一點(diǎn)P,連接PB,將線段PB繞點(diǎn)P按逆時(shí)針方向旋轉(zhuǎn)80°,點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)E,連接BE,得到△BPE,隨著點(diǎn)P在線段AD上位置的變化,點(diǎn)E的位置也在變化,點(diǎn)E可能在直線AD的左側(cè),也可能在直線AD上,還可能在直線AD的右側(cè).請(qǐng)你探究,當(dāng)點(diǎn)E在直線AD上時(shí),如圖②所示,連接CE,判斷直線CE與直線AB的位置關(guān)系,并說明理由.[拓展應(yīng)用](3)在(2)的應(yīng)用下,請(qǐng)?jiān)趫D③中畫出△BPE,使得點(diǎn)E在直線AD的右側(cè),連接CE,試求出點(diǎn)P在線段AD上運(yùn)動(dòng)時(shí),AE的最小值.12.綜合與實(shí)踐操作探究(1)如圖1,將矩形折疊,使點(diǎn)與點(diǎn)重合,折痕為,與交于點(diǎn).請(qǐng)回答下列問題:①與全等的三角形為______,與相似的三角形為______.并證明你的結(jié)論:(相似比不為1,只填一個(gè)即可):②若連接、,請(qǐng)判斷四邊形的形狀:______.并證明你的結(jié)論;拓展延伸(2)如圖2,矩形中,,,點(diǎn)、分別在、邊上,且,將矩形折疊,使點(diǎn)與點(diǎn)重合,折痕為,與交于點(diǎn),連接.①設(shè),,則與的數(shù)量關(guān)系為______;②設(shè),,請(qǐng)用含的式子表示:______;③的最小值為______.13.已知:,過平面內(nèi)一點(diǎn)分別向、、畫垂線,垂足分別為、、.(問題引入)如圖①,當(dāng)點(diǎn)在射線上時(shí),求證:.(類比探究)(1)如圖②,當(dāng)點(diǎn)在內(nèi)部,點(diǎn)在射線上時(shí),求證:.(2)當(dāng)點(diǎn)在內(nèi)部,點(diǎn)在射線的反向延長(zhǎng)線上時(shí),在圖③中畫出示意圖,并直接寫出線段、、之間的數(shù)量關(guān)系.(知識(shí)拓展)如圖④,、、是的三條弦,都經(jīng)過圓內(nèi)一點(diǎn),且.判斷與的數(shù)量關(guān)系,并證明你的結(jié)論.14.探究:如圖1和圖2,四邊形ABCD中,已知AB=AD,∠BAD=90°,點(diǎn)E、F分別在BC、CD上,∠EAF=45°.(1)①如圖1,若∠B、∠ADC都是直角,把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,使AB與AD重合,直接寫出線段BE、DF和EF之間的數(shù)量關(guān)系;②如圖2,若∠B、∠D都不是直角,但滿足∠B+∠D=180°,線段BE、DF和EF之間的結(jié)論是否仍然成立,若成立,請(qǐng)寫出證明過程;若不成立,請(qǐng)說明理由.(2)拓展:如圖3,在△ABC中,∠BAC=90°,AB=AC=2.點(diǎn)D、E均在邊BC邊上,且∠DAE=45°,若BD=1,求DE的長(zhǎng).15.(1)問題探究:如圖1所示,有公共頂點(diǎn)A的兩個(gè)正方形ABCD和正方形AEFG.AE<AB,連接BE與DG,請(qǐng)判斷線段BE與線段DG之間有怎樣的數(shù)量關(guān)系和位置關(guān)系.并請(qǐng)說明理由.(2)理解應(yīng)用:如圖2所示,有公共頂點(diǎn)A的兩個(gè)正方形ABCD和正方形AEFG,AE<AB,AB=10,將正方形AEFG繞點(diǎn)A在平面內(nèi)任意旋轉(zhuǎn),當(dāng)∠ABE=15°,且點(diǎn)D、E、G三點(diǎn)在同一條直線上時(shí),請(qǐng)直接寫出AE的長(zhǎng);(3)拓展應(yīng)用:如圖3所示,有公共頂點(diǎn)A的兩個(gè)矩形ABCD和矩形AEFG,AD=4,AB=4,AG=4,AE=4,將矩形AEFG繞點(diǎn)A在平面內(nèi)任意旋轉(zhuǎn),連接BD,DE,點(diǎn)M,N分別是BD,DE的中點(diǎn),連接MN,當(dāng)點(diǎn)D、E、G三點(diǎn)在同一條直線上時(shí),請(qǐng)直接寫出MN的長(zhǎng)16.如圖(1),已知點(diǎn)在正方形的對(duì)角線上,垂足為點(diǎn),垂足為點(diǎn).(1)證明與推斷:求證:四邊形是正方形;推斷:的值為__;(2)探究與證明:將正方形繞點(diǎn)順時(shí)針方向旋轉(zhuǎn)角,如圖(2)所示,試探究線段與之間的數(shù)量關(guān)系,并說明理由;(3)拓展與運(yùn)用:若,正方形在繞點(diǎn)旋轉(zhuǎn)過程中,當(dāng)三點(diǎn)在一條直線上時(shí),則.17.如圖1,已知,,點(diǎn)D在上,連接并延長(zhǎng)交于點(diǎn)F,(1)猜想:線段與的數(shù)量關(guān)系為_____;(2)探究:若將圖1的繞點(diǎn)B順時(shí)針方向旋轉(zhuǎn),當(dāng)小于時(shí),得到圖2,連接并延長(zhǎng)交于點(diǎn)F,則(1)中的結(jié)論是否還成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由;(3)拓展:圖1中,過點(diǎn)E作,垂足為點(diǎn)G.當(dāng)?shù)拇笮“l(fā)生變化,其它條件不變時(shí),若,,直接寫出的長(zhǎng).18.如圖(1),在矩形中,,點(diǎn)分別是邊的中點(diǎn),四邊形為矩形,連接.(1)問題發(fā)現(xiàn)在圖(1)中,_________;(2)拓展探究將圖(1)中的矩形繞點(diǎn)旋轉(zhuǎn)一周,在旋轉(zhuǎn)過程中,的大小有無變化?請(qǐng)僅就圖(2)的情形給出證明;(3)問題解決當(dāng)矩形旋轉(zhuǎn)至三點(diǎn)共線時(shí),請(qǐng)直接寫出線段的長(zhǎng).19.如圖1,在Rt△ABC中,∠A=90°,AB=AC,點(diǎn)D,E分別在邊AB,AC上,AD=AE,連接DC,點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn).(1)觀察猜想:圖1中,線段PM與PN的數(shù)量關(guān)系是,位置關(guān)系是;(2)探究證明:把△ADE繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說明理由;(3)拓展延伸:把△ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請(qǐng)直接寫出△PMN面積的最大值.20.綜合與實(shí)踐背景閱讀:“旋轉(zhuǎn)”即物體繞一個(gè)點(diǎn)或一個(gè)軸做圓周運(yùn)動(dòng).在中國(guó)古典專著《百喻經(jīng)·口誦乘船法而不解用喻》中記載:“船盤回旋轉(zhuǎn),不能前進(jìn).”而圖形旋轉(zhuǎn)即:在平面內(nèi),將一個(gè)圖形繞一點(diǎn)按某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的運(yùn)動(dòng)叫做圖形的旋轉(zhuǎn),這個(gè)定點(diǎn)叫做旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角叫做旋轉(zhuǎn)角.綜合實(shí)踐課上,“睿智”小組專門探究了正方形的旋轉(zhuǎn),情況如下:在正方形中,點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn),將正方形繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到正方形(點(diǎn),,,分別是點(diǎn),,,的對(duì)應(yīng)點(diǎn)).設(shè)旋轉(zhuǎn)角為().操作猜想:(1)如圖1,若點(diǎn)是中點(diǎn),在正方形繞點(diǎn)旋轉(zhuǎn)過程中,連接,,,則線段與的數(shù)量關(guān)系是_______;線段與的數(shù)量關(guān)系是________.探究驗(yàn)證:(2)如圖2,在(1)的條件下,在正方形繞點(diǎn)旋轉(zhuǎn)過程中,順次連接點(diǎn),,,,.判斷四邊形的形狀,并說明理由.拓展延伸:(3)如圖3,若,在正方形繞點(diǎn)順時(shí)針旋轉(zhuǎn)的過程中,設(shè)直線交線段于點(diǎn).連接,并過點(diǎn)作于點(diǎn).請(qǐng)你補(bǔ)全圖形,并直接寫出的值.【參考答案】***試卷處理標(biāo)記,請(qǐng)不要?jiǎng)h除一、中考幾何壓軸題1.動(dòng)手實(shí)踐:,、、;(1)5,10;(2)見解析;(3)【分析】動(dòng)手實(shí)踐:由等腰Rt△AEF與正方形ABCD可得AF=AE,AB=AD,∠ABC=∠BAD=90°,可得出∠BAF=∠DAE,即可得解析:動(dòng)手實(shí)踐:,、、;(1)5,10;(2)見解析;(3)【分析】動(dòng)手實(shí)踐:由等腰Rt△AEF與正方形ABCD可得AF=AE,AB=AD,∠ABC=∠BAD=90°,可得出∠BAF=∠DAE,即可得△ADE≌△ABF,根據(jù)全等三角形的性質(zhì)可得∠ABF=∠D=90°,則∠ABF+∠ABC=180°,即F、B、C三點(diǎn)共線;(1)若n=2,則DC=2DE,即點(diǎn)E是CD的中點(diǎn),可證出△ADE≌△ABF,根據(jù)全等三角形的性質(zhì)可得FB=DE=CD=AB,再證出△FBG∽△FCE,可得,可得BG=CE=AB,即可得出,根據(jù)三角形的面積公式分別表示S△AGE和S△BGF,即可得出S△AGE和S△BGF的比值;(2)若n=3,則DC=3DE,由(1)得△ADE≌△ABF,根據(jù)全等三角形的性質(zhì)可得FB=DE=CD=AB,再證出△FBG∽△FCE,可得,可得4BG=CE=AB,可得出BG==AB,即可得出結(jié)論;(3)根據(jù)AG為GB的6倍得AG=6GB,則AG=AB=CD,BG=CD,由(1)得△FBG∽△FCE,則,可得出BG?FC=EC?FB,即CD(BF+BC)=(DC-DE)BF,設(shè)CD=x,DE=a,由DE=BF,BC=CD可得x2-6ax+7a2=0,解得:x=(3+)a,或x=(3-)a,即CD=(3+)DE,或CD=(3-)DE,n=3+或3-.【詳解】解:動(dòng)手實(shí)踐:∵等腰Rt△AEF與正方形ABCD,∴AF=AE,AB=AD,∠ABC=∠BAD=90°,∴∠BAF=∠DAE,∴△ADE≌△ABF,∴∠ABF=∠D=90°,∴∠ABF+∠ABC=180°,即F、B、C三點(diǎn)共線,故答案為:ABF,F(xiàn)、B、C;(1)若n=2,則DC=2DE,即點(diǎn)E是CD的中點(diǎn),:∵等腰Rt△AEF與正方形ABCD,∴AF=AE,AB=AD,∠ABC=∠BAD=90°,∴∠BAF=∠DAE,∴△ADE≌△ABF,∴FB=DE=CD=AB,∵四邊形ABCD是正方形,∴AB∥CD,∴△FBG∽△FCE,∴,∴BG=CE=AB,∴AG=AB-BG=AB,∴,∵S△AGE=AG?BC=×AB×AB=AB2,S△BGF=BG?BF=×AB×AB=AB2,∴,故答案為:5,10;(2)證明:若n=3,則DC=3DE,由(1)得△ADE≌△ABF,∴FB=DE=CD=AB,由(1)得△FBG∽△FCE,∴,∴4BG=CE=AB,∴BG=AB,∴AG=AB-BG=AB,∴AG=5GB;(3)∵AG為GB的6倍,∴AG=6GB,∴AG=AB=CD,BG=CD,由(1)得△FBG∽△FCE,∴,∴BG?FC=EC?FB,即CD(BF+BC)=(DC-DE)BF,設(shè)CD=x,DE=a,∵DE=BF,BC=CD,∴x(a+x)=(x-a)a,整理得:x2-6ax+7a2=0,解得:x=(3+)a,或x=(3-)a,即CD=(3+)DE,或CD=(3-)DE,∴n=3+或3-.故答案為:3+或3-.【點(diǎn)睛】本題主要考查了等腰直角三角形的性質(zhì),正方形的性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是正確尋找全等三角形或相似三角形解決問題.2.(1)BD=CE,BD⊥CE;(2)BD⊥CE,理由見解析;(3)畫出圖形見解析,線段BE的長(zhǎng)度為.【分析】(1)由題意易得AD=AE,∠CAE=∠BAD,從而可證△ABD≌△ACE,然后根據(jù)三解析:(1)BD=CE,BD⊥CE;(2)BD⊥CE,理由見解析;(3)畫出圖形見解析,線段BE的長(zhǎng)度為.【分析】(1)由題意易得AD=AE,∠CAE=∠BAD,從而可證△ABD≌△ACE,然后根據(jù)三角形全等的性質(zhì)可求解;(2)連接BD,由題意易得∠BAD=∠CAE,進(jìn)而可證△BAD≌△CAE,最后根據(jù)三角形全等的性質(zhì)及角的等量關(guān)系可求證;(3)如圖,過A作AF⊥EC,由題意可知Rt△ABC∽R(shí)t△AED,∠BAC=∠EAD=90°,然后根據(jù)相似三角形的性質(zhì)及題意易證△BAE∽△CAD,最后根據(jù)勾股定理及等積法進(jìn)行求解即可.【詳解】解:(1)在Rt△ABC中,AB=AC,∴∠B=∠ACB=45°,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,∠B=∠ACE=45°,∵∠ACB=45°,∴∠BCE=45°+45°=90°,故答案為:BD=CE,BD⊥CE;(2)BD⊥CE,理由:如圖2,連接BD,∵在Rt△ABC和Rt△ADE中,AB=AC,AD=AE,∠AEC=45°,∵∠CAB=∠DAE=90°,∴∠BAD=∠CAE,∵AC=AB,AE=AD,∴△CEA≌△BDA(SAS),∴∠BDA=∠AEC=45°,∴∠BDE=∠ADB+∠ADE=90°,∴BD⊥CE;(3)如圖3,過A作AF⊥EC,由題意可知Rt△ABC∽R(shí)t△AED,∠BAC=∠EAD=90°,∴,即,∵∠BAC=∠EAD=90°,∴∠BAE=∠CAD,∴△BAE∽△CAD,∴∠ABE=∠ACD,∵∠BEC=180°﹣(∠CBE+∠BCE)=180°﹣(∠CBA+∠ABE+∠BCE)=180°﹣(∠CBA+∠ACD+∠BCE)=90°,∴BE⊥CE,在Rt△BCD中,BC=2CD=4,∴BD=,∵AC⊥BD,∴S△BCD=AC?BD=BC?AC,∴AC=AE=,AD=,∴AF=,CE=2CF=2×,∴BE=.【點(diǎn)睛】本題主要考查全等三角形的性質(zhì)與判定及相似三角形的性質(zhì)與判定,關(guān)鍵是根據(jù)題意得到三角形的全等,然后利用全等三角形的性質(zhì)得到相似三角形,進(jìn)而求解.3.(1)①1,②;(2)直線所夾銳角為,見解析;(3)滿足條件的的值為【分析】(1)①②延長(zhǎng)BD交AE的延長(zhǎng)線于T,BT交AC于O.證明即可解決問題.(2)如圖②中,設(shè)AC交BD于O,AE交BD解析:(1)①1,②;(2)直線所夾銳角為,見解析;(3)滿足條件的的值為【分析】(1)①②延長(zhǎng)BD交AE的延長(zhǎng)線于T,BT交AC于O.證明即可解決問題.(2)如圖②中,設(shè)AC交BD于O,AE交BD于T.證明,推出,可得結(jié)論.(3)分兩種情形:①如圖③-1中,當(dāng)點(diǎn)D落在線段AC上時(shí),作于H.②如圖③-2中,當(dāng)點(diǎn)D在AC的延長(zhǎng)線上時(shí),分別利用勾股定理求解即可.【詳解】解:(1)如圖①中,延長(zhǎng)BD交AE的延長(zhǎng)線于T,BT交AC于O.,是等邊三角形,,,,,,,,,∴直線所夾銳角為,故答案為1,.(2)如圖②中,設(shè)AC交于O,AE交于T.,是等腰直角三角形,,,,,,,,,∴直線所夾銳角為.(3)①如圖③-1中,當(dāng)點(diǎn)D落在線段AC上時(shí),作于H.由題意,,,,,在中,②如圖③-2中,當(dāng)點(diǎn)D在AC的延長(zhǎng)線上時(shí),同法可得,綜上所述,滿足條件的的值為.【點(diǎn)睛】本題考查幾何變換綜合題,考查了全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),解直角三角形等知識(shí),解題的關(guān)鍵是正確尋找全等三角形或相似三角形解決問題,學(xué)會(huì)用分類討論的思想思考問題,屬于中考?jí)狠S題.4.(1)S1+S2=S3,(2)成立,證明見解析,(3)【分析】(1)分別寫出三個(gè)半圓的面積,再利用勾股定理轉(zhuǎn)化即可.(2)先證明三個(gè)三角形相似,再計(jì)算出三個(gè)三角形的面積,即可得出結(jié)論.(3)解析:(1)S1+S2=S3,(2)成立,證明見解析,(3)【分析】(1)分別寫出三個(gè)半圓的面積,再利用勾股定理轉(zhuǎn)化即可.(2)先證明三個(gè)三角形相似,再計(jì)算出三個(gè)三角形的面積,即可得出結(jié)論.(3)先添加輔助線,在第二問的思路下,先證明三個(gè)三角形相似,得出三個(gè)三角形的面積關(guān)系,再利用30°、45°的直角三角形計(jì)算出相應(yīng)的邊,計(jì)算出五邊形的面積即可.【詳解】解:(1)設(shè)AB=b,AC=a,BC=c.則有:所以在Rt△ABC中,有a2+b2=c2,且故答案為:S1+S2=S3(2)∵∴設(shè)AB、AC、BC邊上的高分別為h1,h2,h3∴,設(shè)AB=b,AC=a,BC=c則∴又在Rt△ABC中,有a2+b2=c2∴故依然成立(3)連接PD、BD,作AF⊥BP,EM⊥PD∵∠ABP=30°,∠BAP=105°∴∠APB=45°在Rt△ABF中,AF=AB=,BF=3,在Rt△AFP中,AF=PF=,則AP=,∵∠A=∠E,∴△ABP∽△EDP∴∠EPD=45°∠EDP=30°∴∠BPD=90°又PE=∴PM=EM=1,MD=則PD=1+∴=所以五邊形的面積為:【點(diǎn)睛】本題考查勾股定理、與勾股定理有關(guān)的圖形問題、相似三角形.是中考的??贾R(shí).5.【問題】,1;【操作】當(dāng)時(shí),,當(dāng)時(shí),;【探究】或;【應(yīng)用】點(diǎn)的坐標(biāo)為:或【分析】問題:即可求解;操作:拋物線G1沿BC方向平移BC長(zhǎng)度的距離得到拋物線G2,相當(dāng)于拋物線向左平移3個(gè)單位,向上平解析:【問題】,1;【操作】當(dāng)時(shí),,當(dāng)時(shí),;【探究】或;【應(yīng)用】點(diǎn)的坐標(biāo)為:或【分析】問題:即可求解;操作:拋物線G1沿BC方向平移BC長(zhǎng)度的距離得到拋物線G2,相當(dāng)于拋物線向左平移3個(gè)單位,向上平移個(gè)單位,即可求解;探究:將點(diǎn)C的坐標(biāo)代入兩個(gè)函數(shù)表達(dá)式,求出G1、G2的頂點(diǎn)坐標(biāo),即可求解;應(yīng)用:證明∠EPN=∠MDP,利用tan∠EPN=tan∠MDP,即可求解.【詳解】解:?jiǎn)栴}:,解得:,,故答案為:,1;操作:拋物線沿方向平移長(zhǎng)度的距離得到拋物線,相當(dāng)于拋物線向左平移3個(gè)單位,向上平移個(gè)單位,:,:,當(dāng)時(shí),,當(dāng)時(shí),;探究:點(diǎn)的坐標(biāo)為.當(dāng)時(shí),,解得:,,∴,當(dāng)時(shí),,解得:,,∴,∵,,∴拋物線的頂點(diǎn)為,拋物線的頂點(diǎn)為,∴或時(shí),函數(shù)隨的增大而增大;應(yīng)用:如圖,過點(diǎn)作軸的平行線交過點(diǎn)與軸的垂線于點(diǎn),交過點(diǎn)與軸的垂直的直線于點(diǎn),設(shè)點(diǎn),則,,,,∵,,∴,∴,即,即,解得:,故點(diǎn)的坐標(biāo)為:或.【點(diǎn)睛】本題考查的是二次函數(shù)綜合運(yùn)用,涉及解直角三角形、圖形的平移等,具有一定的綜合性,關(guān)鍵在于根據(jù)題意作出圖形進(jìn)行解答.6.(1)BD=CE,BD⊥CE,理由見詳解;(2)AB=kAC,180°-α-β;(3)N(0,3),OP的最小值為3【分析】(1)先證明△ABD≌△ACE,從而得BD=CE,∠ABD=∠ACE解析:(1)BD=CE,BD⊥CE,理由見詳解;(2)AB=kAC,180°-α-β;(3)N(0,3),OP的最小值為3【分析】(1)先證明△ABD≌△ACE,從而得BD=CE,∠ABD=∠ACE,結(jié)合∠AGB=∠FGC,即可得到結(jié)論;(2)先證明ABCADE,從而得,結(jié)合∠BAD=∠CAE,可得BADCAE,進(jìn)而即可得到結(jié)論;(3)把OPM繞點(diǎn)M順時(shí)針旋轉(zhuǎn)90°得到(與N重合),則,,(3,3),,進(jìn)而即可求解.【詳解】解:(1)BD=CE,BD⊥CE,∵△ABC和△ADE都是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°,∵∠BAD=∠BAC?∠DAC,∠CAE=∠DAE?∠DAC∴∠BAD=∠CAE,在△ABD和△ACE中,∵,∴△ABD≌△ACE,∴BD=CE,∠ABD=∠ACE,∵∠AGB=∠FGC,∴∠CFG=∠BAG=90°,即BD⊥CE,故答案是:BD=CE,BD⊥CE;(2)∵∠ABC=∠ADE=α,∠ACB=∠AED=β,∴ABCADE,∴,∵∠ABC=∠ADE=α,∠ACB=∠AED=β,∴∠BAC=∠DAE,∴∠BAD=∠CAE,∴BADCAE,∴∠ABD=∠ACE,又∵∠AGB=∠FGC,∴∠BFC=∠BAC=180°-∠ABC-∠ACB=180°-α-β,∴AB=kAC,直線BD和CE相交所成的較小角的度數(shù)為:180°-α-β;(3)由題意得:MN=MP,∠NMP=90°,把OPM繞點(diǎn)M順時(shí)針旋轉(zhuǎn)90°得到(與N重合),則,,∵點(diǎn)M的坐標(biāo)為(3,0),∴(3,3)∵OPM,∴,即線段OP長(zhǎng)度最小時(shí),的長(zhǎng)度最小,∴當(dāng)⊥y軸時(shí),的長(zhǎng)度最小,此時(shí)(0,3),∴N(0,3),OP的最小值為3.【點(diǎn)睛】本題主要考查全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),旋轉(zhuǎn)的性質(zhì),通過旋轉(zhuǎn)變換,構(gòu)造相似三角形或全等三角形,是解題的關(guān)鍵.7.(1)4(2)135°(3)PA+PB的最大值為米【分析】(1)作△ABC的外接圓,連接OA,OB,OC,求出OA=OB=OC=2,可得結(jié)論;(2)將△ABD繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到△CBT解析:(1)4(2)135°(3)PA+PB的最大值為米【分析】(1)作△ABC的外接圓,連接OA,OB,OC,求出OA=OB=OC=2,可得結(jié)論;(2)將△ABD繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到△CBT,連接DT,利用勾股定理的逆定理證明∠CTD=90°,可得結(jié)論;(3)將△ABP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)120°得到△ACK,延長(zhǎng)CK交PA延長(zhǎng)線于J,作△PJC的外接圓,連接OP,OC,OJ,證明PA+PB=JC,再求出JC的最大值即可求解.【詳解】(1)如圖①,作△ABC的外接圓,連接OA,OB,OC,∵∠BOC=2∠BAC=90°,OB=OC∴△OBC是等腰直角三角形∵BC=4∴OB=OC=2=OA∵AB≤OA+OB∴AB≤4∴AB的最大值為4故答案為:4;(2)如圖②,將△ABD繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到△CBT,連接DT由題意可得DT=BD=2,CT=AD=2∵CD=6∴∴∠CTD=90°,∵△BDT是等腰直角三角形∴∠DTB=45°∴∠CTB=45°+90°=135°∴∠ADB=∠CTB=135°(3)如圖③,將△ABP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)120°得到△ACK,延長(zhǎng)CK交PA延長(zhǎng)線于J,作△PJC的外接圓,連接OP,OC,OJ∵∠PAK=120°,∠AKC=∠APB=120°∴∠JAK=∠JKA=60°∴∠AJK=60°∴△JAK是等邊三角形∴AK=KJ∴∠COP=2∠AJK=120°∵PC=30∴OP=OC=OJ=∵CJ≤OJ+OC∴CJ≤∵PA+PB=AK+CK+KJ+KC=JC∴PA+PB的最大值為米.【點(diǎn)睛】此題主要考查旋轉(zhuǎn)的綜合運(yùn)用,解題的關(guān)鍵是熟知三角形外接圓的性質(zhì)、三角函數(shù)的應(yīng)用、旋轉(zhuǎn)的性質(zhì)、等邊三角形的性質(zhì)、勾股定理的應(yīng)用及三角形的三邊關(guān)系的應(yīng)用.8.(1)見解析;(2)①;②【分析】(1)過點(diǎn)作于,證,即可證得;(2)①設(shè),則,利用勾股定理求得,再利用勾股定理表示出,再證明,可得,由此可得,進(jìn)而可求得答案;②過點(diǎn)P作于點(diǎn),先由①得,再證解析:(1)見解析;(2)①;②【分析】(1)過點(diǎn)作于,證,即可證得;(2)①設(shè),則,利用勾股定理求得,再利用勾股定理表示出,再證明,可得,由此可得,進(jìn)而可求得答案;②過點(diǎn)P作于點(diǎn),先由①得,再證明∠BFE=∠CGP,可得,進(jìn)而利用勾股定理可求得,,,最后根據(jù),可得,計(jì)算即可.【詳解】(1)證明:如圖,過點(diǎn)作于,則∠AHG=∠FHG=90°,∵在正方形中,∴∠HAD=∠D=∠B=90°,AD=AB,∴四邊形AHGD為矩形,∴AD=HG,∴AB=HG,∵,∴∠FQA=90°,∴∠AFQ+∠BAE=90°,∵∠FHG=90°,∴∠AFQ+∠FGH=90°,∴∠BAE=∠FGH,∴在與中∴(ASA),∴;①∵點(diǎn)為的中點(diǎn),∴,∵折疊,∴設(shè),∴,在RtBFE中,BF2+BE2=EF2,∴,解得:,又∵,∴,如圖,過點(diǎn)作于,則∠AHG=∠FHG=90°,∵在矩形中,∴∠HAD=∠BCD=∠B=90°,∴四邊形AHGD為矩形,∴BC=HG,∵∠FHG=90°,∴∠AFQ+∠FGH=90°,∵,∴∠FQA=90°,∴∠AFQ+∠BAE=90°,∴∠BAE=∠FGH,又∵∠FHG=∠D=90°,∴,,,,,,又∵,,∴,∴;②如圖,過點(diǎn)P作于點(diǎn),∵,,∴由①得,∵∠EPG=∠GCE=90°,∠EOC=∠GOP,∴∠CGP=∠OEC,∵∠FEP=∠B=90°,∴∠OEC+∠BEF=90°,∠BFE+∠BEF=90°,∴∠BFE=∠OEC,∴∠BFE=∠CGP,又∵,∴,∴設(shè),,則,,,解得:,,,,,,,,,,,,,,.【點(diǎn)睛】本題考查了正方形和矩形的性質(zhì),全等三角形和相似三角形的判定及性質(zhì),折疊的性質(zhì),勾股定理,題目綜合性較強(qiáng),有一定的難度,熟練掌握并靈活運(yùn)用相關(guān)知識(shí)是解決本題的關(guān)鍵.9.(1)①;②;(2)仍然成立,證明見解析;(3)或【分析】(1)【問題發(fā)現(xiàn)】連接.易證,,三點(diǎn)共線.易知.,推出,從而得出與所夾銳角的度數(shù);(2)【拓展探究】連接,,延長(zhǎng)交的延長(zhǎng)線于點(diǎn),交于點(diǎn)解析:(1)①;②;(2)仍然成立,證明見解析;(3)或【分析】(1)【問題發(fā)現(xiàn)】連接.易證,,三點(diǎn)共線.易知.,推出,從而得出與所夾銳角的度數(shù);(2)【拓展探究】連接,,延長(zhǎng)交的延長(zhǎng)線于點(diǎn),交于點(diǎn),根據(jù)四邊形的性質(zhì)得到,根據(jù)得到,根據(jù)相似三角形的性質(zhì)即可解決問題;(3)【解決問題】需分兩種情況討論:①當(dāng)點(diǎn)M在線段BC上時(shí),連接AB,AN,根據(jù)正方形的性質(zhì)得到∠ABC=∠BAC=45°,∠MAN=45°,可得∠BAM=∠CAN,根據(jù),可得△ABM∽△CAN,從而得到CN=BM,根據(jù),可得到BM=AC-CM=2,從而可求出CN的值;②當(dāng)點(diǎn)M在線段BC的延長(zhǎng)線上時(shí),連接AB,AN,根據(jù)正方形的性質(zhì)得到∠ABC=∠BAC=45°,∠MAN=45°,可得∠BAM=∠CAN,根據(jù),可得△ABM∽△CAN,從而得到CN=BM,根據(jù),可得到BM=AC+CM=6,從而可求出CN的值.【詳解】解:(1)【問題發(fā)現(xiàn)】如圖①中,①線段與的數(shù)量關(guān)系為;②直線與所夾銳角的度數(shù)為.理由:如圖①中,連接.易證,,三點(diǎn)共線.∵.,∴.故答案為,.(2)【拓展探究】結(jié)論不變.理由:連接,,延長(zhǎng)交的延長(zhǎng)線于點(diǎn),交于點(diǎn).∵,∴,∵,∴,∴,∴,∴,∵,∴.(3)【解決問題】①當(dāng)點(diǎn)M在線段BC上時(shí),如圖,連接AB,AN,∵四邊形ADBC,四邊形AMEF為正方形,∴∠ABC=∠BAC=45°,∠MAN=45°,∴∠BAC-∠MAC=∠MAN-∠MAC,即∠BAM=∠CAN,∵,∴△ABM∽△CAN,∴,∴CN=BM,∵,∴BM=AC-CM=2,∴CN=BM=;②當(dāng)點(diǎn)M在線段BC的延長(zhǎng)線上時(shí),如圖,連接AB,AN,∵四邊形ADBC,四邊形AMEF為正方形,∴∠ABC=∠BAC=45°,∠MAN=45°,∴∠BAC+∠MAC=∠MAN+∠MAC,即∠BAM=∠CAN,∵,∴△ABM∽△CAN,∴,∴CN=BM,∵,∴BM=AC+CM=2=6,∴CN=BM=.【點(diǎn)睛】本題考查了正方形的性質(zhì),相似三角形的判定與性質(zhì).解題的關(guān)鍵是正確尋找相似三角形解決問題.10.(1)①,證明見解析;②4;(2)畫圖見解析,或【分析】(1)①由“”可證,可得,可得;②過點(diǎn)作于點(diǎn),由勾股定理可求,,的長(zhǎng),即可求的長(zhǎng);(2)分點(diǎn)在左側(cè)和右側(cè)兩種情況討論,根據(jù)勾股定理和相似解析:(1)①,證明見解析;②4;(2)畫圖見解析,或【分析】(1)①由“”可證,可得,可得;②過點(diǎn)作于點(diǎn),由勾股定理可求,,的長(zhǎng),即可求的長(zhǎng);(2)分點(diǎn)在左側(cè)和右側(cè)兩種情況討論,根據(jù)勾股定理和相似三角形的性質(zhì)可求解.【詳解】解:(1)和均為等腰直角三角形,,,,,,且,,,,,,故答案為:;②如圖,過點(diǎn)作于點(diǎn),,,,,,,故答案為:4;(2)若點(diǎn)在右側(cè),如圖,過點(diǎn)作于點(diǎn),,,,,.,,,,,,,,,,,即,,,,,若點(diǎn)在左側(cè),,,,,.,,,,,,,,,,,,即,,,,.【點(diǎn)睛】本題是幾何變換綜合題,考查了全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),勾股定理,等腰三角形的性質(zhì)等知識(shí)點(diǎn),關(guān)鍵是添加恰當(dāng)輔助線.11.(1)相似;(2)AB∥EC,理由見解析;(3)3.【分析】(1)結(jié)論:相似.先判斷出△BAC∽△DAE,即可得出結(jié)論.(2)利用等腰三角形的性質(zhì)證明∠ABC=40°,∠ECB=40°,推出∠解析:(1)相似;(2)AB∥EC,理由見解析;(3)3.【分析】(1)結(jié)論:相似.先判斷出△BAC∽△DAE,即可得出結(jié)論.(2)利用等腰三角形的性質(zhì)證明∠ABC=40°,∠ECB=40°,推出∠ABC=∠ECB即可.(3)如圖3中,以P為圓心,PB為半徑作⊙P.利用圓周角定理證明∠BCE=∠BPE=40°,推出AB∥CE,因?yàn)辄c(diǎn)E在射線CE上運(yùn)動(dòng),點(diǎn)P在線段AD上運(yùn)動(dòng),所以當(dāng)點(diǎn)P運(yùn)動(dòng)到與點(diǎn)A重合時(shí),AE的值最小,此時(shí)AE的最小值=AB=3.【詳解】解:(1)如圖①中,∵△ABC與△ACE為等腰三角形,且兩頂角∠ABC=∠ADE,∴BA=BC,DA=DE,∴∠BAC=∠DAE,∴△BAC∽△DAE,∴=,∴=,∵∠BAC=∠DAE,∴∠BAD=∠CAE,∴△BAD∽△CAE.故答案為:相似.(2)如圖2中,結(jié)論:AB∥EC.理由:∵∠BPE=80°,PB=PE,∴∠PEB=∠PBE=50°,∵AB=AC,BD=DC,∴AD⊥BC,∴∠BDE=90°,∴∠EBD=90°﹣50°=40°,∵AE垂直平分線段BC,∴EB=EC,∴∠ECB=∠EBC=40°,∵AB=AC,∠BAC=100°,∴∠ABC=∠ACB=40°,∴∠ABC=∠ECB,∴AB∥EC.故答案為50,AB∥EC.(2)如圖3中,以P為圓心,PB為半徑作⊙P.∵AD垂直平分線段BC,∴PB=PC,∴∠BCE=∠BPE=40°,∵∠ABC=40°,∴AB∥EC.如圖4中,作AH⊥CE于H,∵點(diǎn)E在射線CE上運(yùn)動(dòng),點(diǎn)P在線段AD上運(yùn)動(dòng),∴當(dāng)點(diǎn)P運(yùn)動(dòng)到與點(diǎn)A重合時(shí),AE的值最小,此時(shí)AE的最小值=AB=3.【點(diǎn)睛】本題主要考查等腰三角形的性質(zhì)、相似三角形的性質(zhì)與判定及圓的基本性質(zhì),關(guān)鍵是根據(jù)題意得到三角形的相似,然后結(jié)合等腰三角形的性質(zhì)得到問題答案,關(guān)鍵是要利用圓的基本性質(zhì)求解最值問題.12.(1)①;或;證明見解析;②菱形,證明見解析;(2)①;②;③【分析】(1)①利用矩形的性質(zhì)與軸對(duì)稱的性質(zhì)證明如圖1,連接證明即可得到答案;②如圖1,由①得:再證明四邊形為平行四邊形解析:(1)①;或;證明見解析;②菱形,證明見解析;(2)①;②;③【分析】(1)①利用矩形的性質(zhì)與軸對(duì)稱的性質(zhì)證明如圖1,連接證明即可得到答案;②如圖1,由①得:再證明四邊形為平行四邊形與可得結(jié)論;(2)①如圖2,連接由折疊可得:再利用勾股定理可得答案;②如圖3,連接交于證明四邊形是菱形,可得從而可得答案;③由②得:可得,再利用二次函數(shù)的性質(zhì)可得答案.【詳解】解:(1)①矩形由折疊可得:如圖1,連接由折疊可得:同理:故答案為:,或②如圖1,由①得:矩形四邊形為平行四邊形,四邊形為菱形,(2)①如圖2,連接由折疊可得:矩形,,故答案為:②如圖3,連接交于矩形重合,同理可得:由對(duì)折可得:四邊形是菱形,,,故答案為:③由②得:當(dāng)時(shí),最小,最小值為的最小值為:故答案為:【點(diǎn)睛】本題考查的是全等三角形的判定與性質(zhì),平行四邊形的判定,矩形的性質(zhì),菱形的判定與性質(zhì),勾股定理的應(yīng)用,二次函數(shù)的性質(zhì),熟練掌握以上知識(shí)是解題的關(guān)鍵.13.【問題引入】見解析;【類比探究】(1)見解析;(2)圖見解析,;【知識(shí)拓展】,證明見解析【分析】[問題引入]利用AAS證明△POE≌△POD,即可得出結(jié)論;[類比探究](1)過點(diǎn)F作FN解析:【問題引入】見解析;【類比探究】(1)見解析;(2)圖見解析,;【知識(shí)拓展】,證明見解析【分析】[問題引入]利用AAS證明△POE≌△POD,即可得出結(jié)論;[類比探究](1)過點(diǎn)F作FN⊥OB,F(xiàn)M⊥OA,垂足分別為N、M,F(xiàn)M與PE交于點(diǎn)Q,先證明△PFQ為等邊三角形,得出FG=PH,再運(yùn)用矩形性質(zhì)得出OM=OF,ON=OF,即可證得結(jié)論;(2)作FN⊥OB于點(diǎn)N,F(xiàn)M⊥OA于點(diǎn)M,射線FM交PE于點(diǎn)Q,作PH⊥FQ于點(diǎn)H,F(xiàn)G⊥PQ于點(diǎn)G,同(1)可證:NE=FG=PH=MD,ON=OM=OF,即可得出結(jié)論;[知識(shí)拓展]過點(diǎn)O作OM⊥AB,ON⊥EF,OQ⊥CD,垂足分別為M、N、Q,利用垂徑定理可得出PB-PA=2PM,PF-PE=2PN,PD-PC=2PQ,再運(yùn)用[類比探究]得:PM+PN=PQ,從而證得結(jié)論.【詳解】[問題引入]證明:∵,,,∴.∵,∴.∴.[類比探究](1)過點(diǎn)作,,垂足分別為、,與交于點(diǎn).∵,,,則為等邊三角形,、邊上的高相等,即.在矩形、矩形中,有,,∴.∴.∵,,∴,同理,,∴,∴.(2)結(jié)論:.作于點(diǎn),于點(diǎn),射線與的交點(diǎn)為,作于點(diǎn),于點(diǎn),同(1)可證,,∴.[知識(shí)拓展]數(shù)量關(guān)系:.理由如下:過點(diǎn)作,,,垂足分別為、、.由垂徑定理可得.∴.同理,,由[類比探究]得,∴,∴.∴.【點(diǎn)睛】本題是圓的綜合題,考查了全等三角形判定和性質(zhì),等邊三角形判定和性質(zhì),角平分線性質(zhì),矩形性質(zhì),垂徑定理等,熟練掌握全等三角形判定和性質(zhì)及垂徑定理等相關(guān)知識(shí)是解題關(guān)鍵.14.(1)①EF=BE+DF;②成立,理由詳見解析;(2)DE=.【分析】(1)①根據(jù)旋轉(zhuǎn)的性質(zhì)得出AE=AG,∠BAE=∠DAG,BE=DG,求出∠EAF=∠GAF=45°,根據(jù)SAS推出△EAF解析:(1)①EF=BE+DF;②成立,理由詳見解析;(2)DE=.【分析】(1)①根據(jù)旋轉(zhuǎn)的性質(zhì)得出AE=AG,∠BAE=∠DAG,BE=DG,求出∠EAF=∠GAF=45°,根據(jù)SAS推出△EAF≌△GAF,根據(jù)全等三角形的性質(zhì)得出EF=GF,即可求出答案;②根據(jù)旋轉(zhuǎn)的性質(zhì)作輔助線,得出AE=AG,∠B=∠ADG,∠BAE=∠DAG,求出C、D、G在一條直線上,根據(jù)SAS推出△EAF≌△GAF,根據(jù)全等三角形的性質(zhì)得出EF=GF,即可求出答案;(2)如圖3,同理作旋轉(zhuǎn)三角形,根據(jù)等腰直角三角形性質(zhì)和勾股定理求出∠ABC=∠C=45°,BC=4,根據(jù)旋轉(zhuǎn)的性質(zhì)得出AF=AE,∠FBA=∠C=45°,∠BAF=∠CAE,求出∠FAD=∠DAE=45°,證△FAD≌△EAD,根據(jù)全等得出DF=DE,設(shè)DE=x,則DF=x,BF=CE=3﹣x,根據(jù)勾股定理得出方程,求出x即可.【詳解】解:(1)∵把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,使AB與AD重合,∴AE=AG,∠BAE=∠DAG,BE=DG,∠B=∠ADG=90°,∵∠ADC=90°,∴∠ADC+∠ADG=90°∴F、D、G共線,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠EAF=∠GAF=45°,在△EAF和△GAF中,∵,∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=DF+DG=BE+DF,故答案為:EF=BE+DF;②成立,理由:如圖2,把△ABE繞A點(diǎn)旋轉(zhuǎn)到△ADG,使AB和AD重合,則AE=AG,∠B=∠ADG,∠BAE=∠DAG,∵∠B+∠ADC=180°,∴∠ADC+∠ADG=180°,∴C、D、G在一條直線上,與①同理得,∠EAF=∠GAF=45°,在△EAF和△GAF中,∵,∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=BE+DF;(2)解:∵△ABC中,AB=AC=2,∠BAC=90°,∴∠ABC=∠C=45°,由勾股定理得:BC==4,如圖3,把△AEC繞A點(diǎn)旋轉(zhuǎn)到△AFB,使AB和AC重合,連接DF,則AF=AE,∠FBA=∠C=45°,∠BAF=∠CAE,∵∠DAE=45°,∴∠FAD=∠FAB+∠BAD=∠CAE+∠BAD=∠BAC﹣∠DAE=90°﹣45°=45°,∴∠FAD=∠DAE=45°,在△FAD和△EAD中,∴△FAD≌△EAD(SAS),∴DF=DE,設(shè)DE=x,則DF=x,∵BC=4,∴BF=CE=4﹣1﹣x=3﹣x,∵∠FBA=45°,∠ABC=45°,∴∠FBD=90°,由勾股定理得:DF2=BF2+BD2,x2=(3﹣x)2+12,解得:x=,即DE=.【點(diǎn)睛】本題考查了四邊形的綜合題,旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)和判定,勾股定理的應(yīng)用,此題是開放性試題,運(yùn)用類比的思想;首先在特殊圖形中找到規(guī)律,然后再推廣到一般圖形中,對(duì)學(xué)生的分析問題,解決問題的能力要求比較高.15.(1)BE=DG,BE⊥DG,見解析;(2)5﹣5;(3)6或8【分析】(1)由“SAS”可證△GAD≌△EAB,可得BE=DG,∠ADG=∠ABE,由直角三角形的性質(zhì)可得BE⊥DG;(2)由解析:(1)BE=DG,BE⊥DG,見解析;(2)5﹣5;(3)6或8【分析】(1)由“SAS”可證△GAD≌△EAB,可得BE=DG,∠ADG=∠ABE,由直角三角形的性質(zhì)可得BE⊥DG;(2)由“SAS”可證△GAD≌△EAB,可得BE=DG,∠ADG=∠ABE=15°,可得∠DEB=90°,由直角三角形的性質(zhì)可求解;(3)分兩種情況討論,通過證明△AGD∽△AEB,可得,∠DGA=∠AEB,由勾股定理和三角形中位線定理可求解.【詳解】解:(1)BE=DG,BE⊥DG,理由如下:如圖1:延長(zhǎng)BE交AD于N,交DG于H,∵四邊形ABCD是正方形,四邊形AEFG是正方形,∴AG=AE,AB=AD,∠GAE=∠DAB=90°,∴∠GAD=∠EAB,∴△GAD≌△EAB(SAS),∴BE=DG,∠ADG=∠ABE,∵∠ABE+∠ANB=90°,∴∠ADG+∠DNH=90°,∴∠DHN=90°,∴BE⊥DG;(2)如圖,當(dāng)點(diǎn)G在線段DE上時(shí),連接BD,∵四邊形ABCD是正方形,四邊形AEFG是正方形,∴AG=AE,AB=AD=10,∠GAE=∠DAB=90°,∠ADB=45°=∠ABD,BD=AB=10,GE=AE,∴∠GAD=∠EAB,∴△GAD≌△EAB(SAS),∴BE=DG,∠ADG=∠ABE=15°,∴∠BDE=45°﹣15°=30°,∠DBE=45°+15°=60°,∴∠DEB=90°,∴BE=BD=5=DG,DE=BE=5,∴GE=5﹣5,∴AE==5﹣5,當(dāng)點(diǎn)E在線段DG上時(shí),同理可求AE=5﹣5,故答案為:5﹣5;(3)如圖,若點(diǎn)G在線段DE上時(shí),∵AD=4,AB=4,AG=4,AE=4,∴DB===8,GE===8,∠DAB=∠GAE=90°,∴∠DAG=∠BAE,又∵,∴△AGD∽△AEB,∴,∠DGA=∠AEB,∴BE=DG,∵∠DGA=∠GAE+∠DEA,∠AEB=∠DEB+∠AED,∴∠GAE=∠DEB=90°,∵DB2=DE2+BE2,∴64×13=(DG+8)2+3DG2,∴DG=12或DG=﹣16(舍去),∴BE=12,∵點(diǎn)M,N分別是BD,DE的中點(diǎn),∴MN=BE=6;如圖,當(dāng)點(diǎn)E在線段DG上時(shí),同理可求:BE=16,∵點(diǎn)M,N分別是BD,DE的中點(diǎn),∴MN=BE=8,綜上所述:MN為6或8,故答案為:6或8.【點(diǎn)睛】本題是四邊形綜合題,考查了全等三角形的判定和性質(zhì),正方形的性質(zhì),矩形的性質(zhì),勾股定理的應(yīng)用,相似三角形的判定和性質(zhì),利用分類討論思想解決問題是本題的關(guān)鍵.16.(1)證明見解析;;(2)線段與之間的數(shù)量關(guān)系為;(3)或【分析】(1)①由、結(jié)合可得四邊形CEGF是矩形,再由即可得證;②由正方形性質(zhì)知、,據(jù)此可得、,利用平行線分線段成比例定理可得;(2解析:(1)證明見解析;;(2)線段與之間的數(shù)量關(guān)系為;(3)或【分析】(1)①由、結(jié)合可得四邊形CEGF是矩形,再由即可得證;②由正方形性質(zhì)知、,據(jù)此可得、,利用平行線分線段成比例定理可得;(2)連接CG,只需證即可得;(3)由(2)證出就可得到,再根據(jù)三點(diǎn)在同一直線上分在CD左邊和右邊兩種不同的情況求出AG的長(zhǎng)度,即可求出BE的長(zhǎng)度.【詳解】(1)證明:四邊形是正方形,四邊形是矩形,四邊形是正方形;解:由①知四邊形CEGF是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴,GE∥AB,∴故答案為:.(2)如下圖所示連接由旋轉(zhuǎn)性質(zhì)知在和中,,線段與之間的數(shù)量關(guān)系為;(3)解:當(dāng)正方形在繞點(diǎn)旋轉(zhuǎn)到如下圖所示時(shí):當(dāng)三點(diǎn)在一條直線上時(shí),由(2)可知,,∠CEG=∠CEA=∠ABC=90°,,當(dāng)正方形在繞點(diǎn)旋轉(zhuǎn)到如下圖所示時(shí):當(dāng)三點(diǎn)在一條直線上時(shí),由(2)可知,,∠CEA=∠ABC=90°,,故答案為:或.【點(diǎn)睛】本題考查了正方形的性質(zhì)與判定,相似三角形的判定與性質(zhì)等,綜合性較強(qiáng),有一定的難度,正確添加輔助線,熟練掌握正方形的判定與性質(zhì)、相似三角形的判定與性質(zhì)是解題的關(guān)鍵.17.(1)AF=EF;(2)成立,理由見解析;(3)12【分析】(1)延長(zhǎng)DF到G點(diǎn),并使FG=DC,連接GE,證明△ACF△EDG,進(jìn)而得到△GEF為等腰三角形,即可證明AF=GE=EF;(2解析:(1)AF=EF;(2)成立,理由見解析;(3)12【分析】(1)延長(zhǎng)DF到G點(diǎn),并使FG=DC,連接GE,證明△ACF△EDG,進(jìn)而得到△GEF為等腰三角形,即可證明AF=GE=EF;(2)證明原理同(1),延長(zhǎng)DF到G點(diǎn),并使FG=DC,連接GE,證明△ACF△EDG,進(jìn)而得到△GEF為等腰三角形,即可證明AF=GE=EF;(3)補(bǔ)充完整圖后證明四邊形AEGC為矩形,進(jìn)而得到∠ABC=∠ABE=∠EBG=60°即可求解.【詳解】解:(1)延長(zhǎng)DF到G點(diǎn),并使FG=DC,連接GE,如下圖所示∵,∴DE=AC,BD=BC,∴∠CDB=∠DCB,且∠CDB=∠ADF,∴∠ADF=∠DCB,∵∠ACB=90°,∴∠ACD+∠DCB=90°,∵∠EDB=90°,∴∠ADF+∠FDE=90°,∴∠ACD=∠FDE,又延長(zhǎng)DF使得FG=DC,∴FG+DF=DC+DF,∴DG=CF,在△ACF和△EDG中,,∴△ACF△EDG(SAS),∴GE=AF,∠G=∠AFC,又∠AFC=∠GFE,∴∠G=∠GFE∴GE=EF∴AF=EF,故AF與EF的數(shù)量關(guān)系為:AF=EF.故答案為:AF=EF;(2)仍舊成立,理由如下:延長(zhǎng)DF到G點(diǎn),并使FG=DC,連接GE,如下圖所示設(shè)BD延長(zhǎng)線DM交AE于M點(diǎn),∵,∴DE=AC,BD=BC,∴∠CDB=∠DCB,且∠CDB=∠MDF,∴∠MDF=∠DCB,∵∠ACB=90°,∴∠ACD+∠DCB=90°,∵∠EDB=90°,∴∠MDF+∠FDE=90°,∴∠ACD=∠FDE,又延長(zhǎng)DF使得FG=DC,∴FG+DF=DC+DF,∴DG=CF,在△ACF和△EDG中,,∴△ACF△EDG(SAS),∴GE=AF,∠G=∠AFC,又∠AFC=∠GFE,∴∠G=∠GFE∴GE=EF,∴AF=EF,故AF與EF的數(shù)量關(guān)系為:AF=EF.故答案為:AF=EF;(3)如下圖所示:∵BA=BE,∴∠BAE=∠BEA,∵∠BAE=∠EBG,∴∠BEA=∠EBG,∴AECG,∴∠AEG+∠G=180°,∴∠AEG=90°,∴∠ACG=∠G=∠AEG=90°,∴四邊形AEGC為矩形,∴AC=EG,且AB=BE,∴Rt△ACBRt△EGB(HL),∴BG=BC=6,∠ABC=∠EBG,又∵ED=AC=EG,且EB=EB,∴Rt△EDBRt△EGB(HL),∴DB=GB=6,∠EBG=∠ABE,∴∠ABC=∠ABE=∠EBG=60°,∴∠BAC=30°,∴在Rt△ABC中由30°所對(duì)的直角邊等于斜邊的一半可知:.故答案為:.【點(diǎn)睛】本題屬于四邊形的綜合題,考查了三角形全等的性質(zhì)和判定,矩形的性質(zhì)和判定,本題的關(guān)鍵是延長(zhǎng)DF到G點(diǎn)并使FG=DC,進(jìn)而構(gòu)造全等,本題難度稍大,需要作出合適的輔助線.18.(1);(2)的大小無變化,證明見解析;(3)或【分析】(1延長(zhǎng)FG交BC于點(diǎn)H,可根據(jù)題意分別求出,的長(zhǎng),即可求的值;(2)連接,先由勾股定理計(jì)算的值,再計(jì)算,最后根據(jù)相似三角形
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 怎樣做行業(yè)第一
- 醫(yī)院物品有效期管理
- 導(dǎo)游業(yè)務(wù)中的貨幣保險(xiǎn)知識(shí)
- 數(shù)據(jù)分析師工作協(xié)議
- 教科版(2017)科學(xué)五年下冊(cè)《熱在水中的傳遞》說課(附反思、板書)課件
- 文化活動(dòng)場(chǎng)所造價(jià)咨詢合同
- 招投標(biāo)服務(wù)外包協(xié)議
- 基礎(chǔ)工程施工合同書
- 醫(yī)務(wù)人員崗前院感知識(shí)培訓(xùn)
- 急診創(chuàng)傷病人護(hù)理安全管理
- 孤島交直流混合微電網(wǎng)群分布式低碳控制策略
- 2025年浙江省建設(shè)工程檢測(cè)技術(shù)人員(道路工程)認(rèn)證參考試題庫(含答案)
- 人教版美術(shù)八年級(jí)下冊(cè)全冊(cè)教案
- 消化科藥物知識(shí)培訓(xùn)課件
- 預(yù)制板粘貼碳纖維加固計(jì)算表格
- 新形勢(shì)下照相館行業(yè)快速做大市場(chǎng)規(guī)模戰(zhàn)略制定與實(shí)施研究報(bào)告
- ChatGPT過去現(xiàn)在與未來
- 用友軟件銷售合同(2025年)
- 婦產(chǎn)科子癇搶救演練
- 互聯(lián)網(wǎng)醫(yī)院建設(shè)與運(yùn)營(yíng)模式
- 客戶檔案管理制度和流程
評(píng)論
0/150
提交評(píng)論