浙江省慈溪市三山高級中學、奉化高級中學等六校2023年數學高二上期末綜合測試試題含解析_第1頁
浙江省慈溪市三山高級中學、奉化高級中學等六校2023年數學高二上期末綜合測試試題含解析_第2頁
浙江省慈溪市三山高級中學、奉化高級中學等六校2023年數學高二上期末綜合測試試題含解析_第3頁
浙江省慈溪市三山高級中學、奉化高級中學等六校2023年數學高二上期末綜合測試試題含解析_第4頁
浙江省慈溪市三山高級中學、奉化高級中學等六校2023年數學高二上期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

浙江省慈溪市三山高級中學、奉化高級中學等六校2023年數學高二上期末綜合測試試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是數列的前項和,,則數列是()A.公比為3的等比數列 B.公差為3的等差數列C.公比為的等比數列 D.既非等差數列,也非等比數列2.已知橢圓:,左、右焦點分別為,過的直線交橢圓于兩點,若的最大值為5,則的值是A.1 B.C. D.3.下列命題中,一定正確的是()A.若且,則a>0,b<0B.若a>b,b≠0,則>1C.若a>b且a+c>b+d,則c>dD.若a>b且ac>bd,則c>d4.現有60瓶飲料,編號從1到60,若用系統抽樣的方法從中抽取6瓶進行檢驗,則所抽取的編號可能為()A.3,13,23,33,43,53 B.2,14,26,38,40,52C.5,8,31,36,48,54 D.5,10,15,20,25,305.設為可導函數,且滿足,則曲線在點處的切線的斜率是A. B.C. D.6.已知雙曲線,過原點作一條傾斜角為的直線分別交雙曲線左、右兩支于、兩點,以線段為直徑的圓過右焦點,則雙曲線的離心率為().A. B.C. D.7.已知實數滿足方程,則的最大值為()A.3 B.2C. D.8.已知二次函數交軸于,兩點,交軸于點.若圓過,,三點,則圓的方程是()A. B.C. D.9.設,是雙曲線()的左、右焦點,是坐標原點.過作的一條漸近線的垂線,垂足為.若,則的離心率為A. B.C. D.10.今天是星期四,經過天后是星期()A.三 B.四C.五 D.六11.在等差數列中,,表示數列的前項和,則()A.43 B.44C.45 D.4612.橢圓C:的焦點在x軸上,其離心率為則橢圓C的長軸長為()A.2 B.C.4 D.8二、填空題:本題共4小題,每小題5分,共20分。13.設過點K(-1,0)的直線l與拋物線C:y2=4x交于A、B兩點,為拋物線的焦點,若|BF|=2|AF|,則cos∠AFB=_______14.已知橢圓的右頂點為A,上頂點為B,且直線l與橢圓交于C,D兩點,若直線l直線AB,設直線AC,BD的斜率分別為,,則的值為___________.15.如圖,在直棱柱中,,則異面直線與所成角的余弦值為___________.16.圍棋是一種策略性兩人棋類游戲.已知某圍棋盒子中有若干粒黑子和白子,從盒子中取出2粒棋子,2粒都是黑子的概率為,2粒恰好是同一色的概率比不同色的概率大,則2粒恰好都是白子的概率是______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列滿足,.(1)求證:數列是等比數列;(2)求數列的通項公式及前項的和.18.(12分)設數列的前n項和為,且滿足.(1)證明為等比數列,并求數列通項公式;(2)在(1)的條件下,設,求數列的前項和.19.(12分)已如橢圓C:=1(a>b>0)的有頂點為M(2,0),且離心率e=,點A,B是橢圓C上異于點M的不同的兩點(Ⅰ)求橢圓C的方程;(Ⅱ)設直線MA與直線MB的斜率分別為k1,k2,若k1?k2=,證明:直線AB一定過定點20.(12分)設P是拋物線上一個動點,F為拋物線的焦點.(1)若點P到直線距離為,求的最小值;(2)若,求的最小值.21.(12分)已知圓C的圓心在直線上,且過點,(1)求圓C的方程;(2)過點作圓C的切線,求切線的方程22.(10分)在等差數列中,已知公差,前項和(其中)(1)求;(2)求和:

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由得,然后利用與的關系即可求出【詳解】因為,所以所以當時,時,所以故數列既非等差數列,也非等比數列故選:D【點睛】要注意由求要分兩步:1.時,2.時.2、D【解析】由題意可知橢圓是焦點在x軸上的橢圓,利用橢圓定義得到|BF2|+|AF2|=8﹣|AB|,再由過橢圓焦點的弦中通徑的長最短,可知當AB垂直于x軸時|AB|最小,把|AB|的最小值b2代入|BF2|+|AF2|=8﹣|AB|,由|BF2|+|AF2|的最大值等于5列式求b的值即可【詳解】由0<b<2可知,焦點在x軸上,∵過F1的直線l交橢圓于A,B兩點,則|BF2|+|AF2|+|BF1|+|AF1|=2a+2a=4a=8∴|BF2|+|AF2|=8﹣|AB|當AB垂直x軸時|AB|最小,|BF2|+|AF2|值最大,此時|AB|=b2,則5=8﹣b2,解得b,故選D【點睛】本題考查直線與圓錐曲線的關系,考查了橢圓的定義,考查橢圓的通徑公式,考查計算能力,屬于中檔題3、A【解析】結合不等式的性質確定正確答案.【詳解】A選項,若且,則,所以A選項正確.B選項,若,則,所以B選項錯誤.C選項,如,但,所以C選項錯誤.D選項,如,但,所以D選項錯誤.故選:A4、A【解析】求得組距,由此確定正確選項.【詳解】,即組距為,A選項符合,其它選項不符合.故選:A5、D【解析】由題,為可導函數,,即曲線在點處的切線的斜率是,選D【點睛】本題考查導數的定義,切線的斜率,以及極限的運算,本題解題的關鍵是對所給的極限式進行整理,得到符合導數定義的形式6、A【解析】設雙曲線的左焦點為,連接、,求得、,利用雙曲線的定義可得出關于、的等式,即可求得雙曲線的離心率.【詳解】設雙曲線的左焦點為,連接、,如下圖所示:由題意可知,點為的中點,也為的中點,且,則四邊形為矩形,故,由已知可知,由直角三角形的性質可得,故為等邊三角形,故,所以,,由雙曲線的定義可得,所以,.故選:A.7、D【解析】將方程化為,由圓的幾何性質可得答案.【詳解】將方程變形為,則圓心坐標為,半徑,則圓上的點的橫坐標的范圍為:則x的最大值是故選:D.8、C【解析】由已知求得點A、B、C的坐標,則有AB的垂直平分線必過圓心,所以設圓的圓心為,由,可求得圓M的半徑和圓心,由此求得圓的方程.【詳解】解:由解得或,所以,又令,得,所以,因為圓過,,三點,所以AB的垂直平分線必過圓心,所以設圓的圓心為,所以,即,解得,所以圓心,半徑,所以圓的方程是,即,故選:C9、B【解析】分析:由雙曲線性質得到,然后在和在中利用余弦定理可得詳解:由題可知在中,在中,故選B.點睛:本題主要考查雙曲線的相關知識,考查了雙曲線的離心率和余弦定理的應用,屬于中檔題10、C【解析】求出二項式定理的通項公式,得到除以7余數是1,然后利用周期性進行計算即可【詳解】解:一個星期的周期是7,則,即除以7余數是1,即今天是星期四,經過天后是星期五,故選:11、C【解析】根據等差數列的性質,求得,結合等差數列的求和公式,即可求解.【詳解】由等差數列中,滿足,根據等差數列的性質,可得,所以,則.故選:C.12、C【解析】根據橢圓的離心率,即可求出,進而求出長軸長.【詳解】由橢圓的性質可知,橢圓的離心率為,則,即所以橢圓C的長軸長為故選:C.【點睛】本題主要考查了橢圓的幾何性質,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據已知設直線方程為與C聯立,結合|BF|=2|AF|,利用韋達定理計算可得點A,B的坐標,進而求出向量的坐標,進而利用求向量夾角余弦值的方法,即可得到答案.【詳解】令直線的方程為將直線方程代入批物線C:的方程,得令且,所以由拋物線的定義知,由|BF|=2|AF|可知,,則,解得:,,則A,B兩點坐標分別為,則則.故答案為:14、##0.25【解析】求出點A,B坐標,設出直線l的方程,聯立直線l與橢圓方程,借助韋達定理即可計算作答.【詳解】依題意,點,直線AB斜率為,因直線l直線AB,則設直線l方程為:,,由消去y并整理得:,,解得,于是有或,設,則,有,因此,,所以的值為.故答案:15、【解析】建立空間直角坐標系后求相關的向量后再用夾角公式運算即可.【詳解】如圖,以C為坐標原點,所在直線為x,y,z軸,建立空間直角坐標系,則,所以,所以,故異面直線與所成角的余弦值為,故答案為:.16、【解析】根據互斥事件與對立事件概率公式求解即可【詳解】設“2粒都是黑子”為事件,“2粒都是白子”為事件,“2粒恰好是同一色”為事件,“2粒不同色”為事件,則事件與事件是對立事件,所以因為2粒恰好是同一色的概率比不同色的概率大,所以,所以,又,且事件與互斥,所以,所以故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2),.【解析】(1)證明出,即可證得結論成立;(2)由(1)的結論并確定數列的首項和公比,可求得數列的通項公式,再利用分組求和法可求得.【小問1詳解】證明:因為數列滿足,,則,且,則,,,以此類推可知,對任意的,,所以,,故數列為等比數列.【小問2詳解】解:由(1)可知,數列是首項為,公比為的等比數列,則,所以,,因此,.18、(1)證明見解析,;(2).【解析】(1)利用與的關系求數列的遞推關系,即得證明結論,并根據等比數列求通項公式;(2)根據(1)的結果求出,再分和,求.【詳解】(1)當時,,,當時,,與已知式作差得,即,又,∴,∴,故數列是以為首項,2為公比的等比數列,所以(2)由(1)知,∴,若,,若,,∴.【點睛】關鍵點點睛:本題的關鍵是第二問弄清楚數列與的前項和的關系,在分段求數列的前項和.19、(I);(II)證明見解析.【解析】(I)根據頂點坐標求得,根據離心率求得,由此求得,進而求得橢圓方程.(II)設出直線的方程,聯立直線的方程和橢圓方程,寫出根與系數關系,根據,求得的關系式,由此判斷直線過定點.【詳解】(I)由于是橢圓的頂點,所以,由于,所以,所以,所以橢圓方程為.(II)由于是橢圓上異于點的不同的兩點,所以可設直線的方程為,設,由消去并化簡得,所以,即.,,,,解得,所以直線的方程為,過定點.【點睛】本小題主要考查橢圓方程的求法,考查直線和橢圓的位置關系,考查橢圓中的定值問題.20、(1);(2)4.【解析】(1)利用拋物線的定義可知,將問題問題轉化為求的最小值,即求.(2)判斷點B在拋物線的內部,過B作垂直準線于點Q,交拋物線于點,利用拋物線的定義求解即可.【詳解】解析(1)依題意,拋物線的焦點為,準線方程為.由已知及拋物線的定義,可知,于是問題轉化為求的最小值.由平面幾何知識知,當F,P,A三點共線時,取得最小值,最小值為,即的最小值為.(2)把點B的橫坐標代入中,得,因為,所以點B在拋物線的內部.過B作垂直準線于點Q,交拋物線于點(如圖所示).由拋物線的定義,可知,則,所以的最小值為4.【點睛】本題考查了拋物線的定義,理解定義是解題的關鍵,屬于基礎題.21、(1)(2)或【解析】(1)由圓心在直線上,設,由點在圓上,列方程求,由此求出圓心坐標及半徑,確定圓的方程;(2)當切線的斜率存在時,設其方程為,由切線的性質列方程求,再檢驗直線是否為切線,由此確定答案.小問1詳解】因為圓C的圓心在直線上,設圓心的坐標為,圓C過點,,所以,即,解得,則圓心,半徑,所以圓的方程為;【小問2詳解】當切線的斜率存在時,設直線的方程為,即,因為直線和圓相切,得,解得,所以直線方程為,當切線的斜率不存在時,易知

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論