版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
云南省邵通市水富縣云天化中學(xué)2023年數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若,則()A B.C. D.2.在數(shù)列中,,,則()A.985 B.1035C.2020 D.20703.已知,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分也不必要條件4.已知直線與圓相交于,兩點,則的取值范圍為()A. B.C. D.5.雙曲線的漸近線的斜率是()A.1 B.C. D.6.甲、乙、丙、丁四位同學(xué)一起去找老師詢問成語競賽的成績.老師說:你們四人中有位優(yōu)秀,位良好,我現(xiàn)在給甲看乙、丙的成績,給乙看丙的成績,給丁看甲的成績.看后甲對大家說:我還是不知道我的成績.根據(jù)以上信息,則()A.乙、丁可以知道自己的成績 B.乙、丁可以知道對方的成績C.乙可以知道四人的成績 D.丁可以知道四人的成績7.已知,則點關(guān)于平面的對稱點的坐標(biāo)是()A. B.C. D.8.等差數(shù)列中,若,則()A.42 B.45C.48 D.519.復(fù)數(shù)的共軛復(fù)數(shù)的虛部為()A. B.C. D.10.已知雙曲線E的漸近線為,則其離心率為()A. B.C. D.或11.已知p、q是兩個命題,若“(¬p)∨q”是假命題,則()A.p、q都是假命題 B.p、q都是真命題C.p是假命題q是真命題 D.p是真命題q是假命題12.?dāng)?shù)學(xué)美的表現(xiàn)形式不同于自然美或藝術(shù)美那樣直觀,它蘊藏于特有的抽象概念,公式符號,推理論證,思維方法等之中,揭示了規(guī)律性,是一種科學(xué)的真實美.平面直角坐標(biāo)系中,曲線:就是一條形狀優(yōu)美的曲線,對于此曲線,給出如下結(jié)論:①曲線圍成的圖形的面積是;②曲線上的任意兩點間的距離不超過;③若是曲線上任意一點,則的最小值是其中正確結(jié)論的個數(shù)為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知、是橢圓的兩個焦點,點在橢圓上,且,,則橢圓離心率是___________14.已知拋物線與直線交于D,E兩點,若(點O為坐標(biāo)原點)的面積為16,則拋物線的方程為______;過焦點F的直線l與拋物線交于A,B兩點,則______15.命題的否定是____________________.16.在等比數(shù)列中,,則______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù),且存在兩個極值點、,其中.(1)求實數(shù)的取值范圍;(2)若恒成立,求最小值.18.(12分)已知點和直線.(1)求以為圓心,且與直線相切的圓的方程;(2)過直線上一點作圓的切線,其中為切點,求四邊形PAMB的面積的最小值.19.(12分)已知拋物線的焦點為,直線與拋物線的準(zhǔn)線交于點,為坐標(biāo)原點,(1)求拋物線的方程;(2)直線與拋物線交于,兩點,求的面積20.(12分)已知,對于有限集,令表示集合中元素的個數(shù).例如:當(dāng)時,,(1)當(dāng)時,請直接寫出集合的子集的個數(shù);(2)當(dāng)時,,都是集合的子集(,可以相同),并且.求滿足條件的有序集合對的個數(shù);(3)假設(shè)存在集合、具有以下性質(zhì):將1,1,2,2,··,,.這個整數(shù)按某種次序排成一列,使得在這個序列中,對于任意,與之間恰好排列個整數(shù).證明:是4的倍數(shù)21.(12分)已知橢圓的下焦點為、上焦點為,其離心率.過焦點且與x軸不垂直的直線l交橢圓于A、B兩點(1)求實數(shù)m的值;(2)求△ABO(O為原點)面積的最大值22.(10分)已知函數(shù).(1)討論的單調(diào)性;(2)任意,恒成立,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】直接利用向量的坐標(biāo)運算求解即可【詳解】因為,所以,故選:D2、A【解析】根據(jù)累加法得,,進而得.【詳解】解:因為所以,當(dāng)時,,,……,,所以,將以上式子相加得,所以,,.當(dāng)時,,滿足;所以,.所以.故選:A3、C【解析】根據(jù)充要條件的定義進行判斷【詳解】解:因為函數(shù)為增函數(shù),由,所以,故“”是“”的充分條件,由,所以,故“”是“”的必要條件,故“”是“”的充要條件故選:C4、C【解析】求得直線恒過的定點,找出弦長取得最值的狀態(tài),利用弦長公式求解即可.【詳解】因直線方程為:,整理得,故該直線恒過定點,又,故點在圓內(nèi),又圓的圓心為則,此時直線過圓心;當(dāng)直線與直線垂直時,取得最小值,此時.故的取值范圍為.故選:.5、B【解析】由雙曲線的漸近線方程為:,化簡即可得到答案.【詳解】雙曲線的漸近線方程為:,即,漸近線的斜率是.故選:B6、A【解析】分析可知乙、丙的成績中必有位優(yōu)秀、位良好,結(jié)合題意進行推導(dǎo),可得出結(jié)論.【詳解】由于個人中的成績中有位優(yōu)秀,位良好,甲知道乙、丙的成績,還是不知道自己的成績,則乙、丙的成績必有位優(yōu)秀、位良好,甲、丁的成績中必有位優(yōu)秀、位良好,因為給乙看丙的成績,則乙必然知道自己的成績,丁知道甲的成績后,必然知道自己的成績.故選:A.7、C【解析】根據(jù)對稱性求得坐標(biāo)即可.【詳解】點關(guān)于平面的對稱點的坐標(biāo)是,故選:C8、C【解析】結(jié)合等差數(shù)列的性質(zhì)求得正確答案.【詳解】依題意是等差數(shù)列,,.故選:C9、B【解析】先根據(jù)復(fù)數(shù)除法與加法運算求解得,再求共軛復(fù)數(shù)及其虛部.【詳解】解:,所以其共軛復(fù)數(shù)為,其虛部為故選:B10、D【解析】根據(jù)雙曲線標(biāo)準(zhǔn)方程與漸近線的關(guān)系即可求解.【詳解】當(dāng)雙曲線焦點在x軸上時,漸近線為,故離心率為;當(dāng)雙曲線焦點在y軸上時,漸近線為,故離心率為;故選:D.11、D【解析】由已知可得¬p,q都是假命題,從而可分析判斷各選項【詳解】∵“(¬p)∨q”是假命題,∴¬p,q都是假命題,∴p真,q假,故選:D.12、C【解析】結(jié)合已知條件寫出曲線的解析式,進而作出圖像,對于①,通過圖像可知,所求面積為四個半圓和一個正方形面積之和,結(jié)合數(shù)據(jù)求解即可;對于②,根據(jù)圖像求出曲線上的任意兩點間的距離的最大值即可判斷;對于③,將問題轉(zhuǎn)化為點到直線的距離,然后利用圓上一點到直線的距離的最小值為圓心到直線的距離減去半徑即可求解.【詳解】當(dāng)且時,曲線的方程可化為:;當(dāng)且時,曲線的方程可化為:;當(dāng)且時,曲線的方程可化為:;當(dāng)且時,曲線的方程可化為:,曲線的圖像如下圖所示:由上圖可知,曲線所圍成的面積為四個半圓的面積與邊長為的正方形的面積之和,從而曲線所圍成的面積,故①正確;由曲線的圖像可知,曲線上的任意兩點間的距離的最大值為兩個半徑與正方形的邊長之和,即,故②錯誤;因為到直線的距離為,所以,當(dāng)最小時,易知在曲線的第一象限內(nèi)的圖像上,因為曲線的第一象限內(nèi)的圖像是圓心為,半徑為的半圓,所以圓心到的距離,從而,即,故③正確,故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先由,根據(jù)橢圓的定義,求出,,再由余弦定理,根據(jù),即可列式求出離心率.【詳解】因為點在橢圓上,所以,又,所以,因,在中,由,根據(jù)余弦定理可得,解得(負(fù)值舍去)故答案為:.【點睛】本題主要考查求橢圓的離心率,屬于??碱}型.14、①.②.1【解析】利用的面積列方程,化簡求得的值,從而求得拋物線方程.將的斜率分成存在和不存在兩種情況進行分類討論,結(jié)合根與系數(shù)關(guān)系求得.【詳解】依題意可知,,所以,解得.所以拋物線方程為.焦點,當(dāng)直線的斜率不存在時,直線的方程為,,即,此時.當(dāng)直線的斜率存在且不為時,設(shè)直線的方程為,由消去并化簡得,,設(shè),則,結(jié)合拋物線的定義可知.故答案為:;15、##【解析】根據(jù)全稱量詞命題的否定的知識寫出正確答案.【詳解】全稱量詞命題的否定是存在量詞命題,要注意否定結(jié)論,所以命題否定是:故答案為:16、【解析】利用等比數(shù)列性質(zhì)和通項公式可求得,根據(jù)可求得結(jié)果.【詳解】,又,,.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)存在兩個極值點,等價于其導(dǎo)函數(shù)有兩個相異零點;(2)適當(dāng)構(gòu)造函數(shù),并注意與關(guān)系,轉(zhuǎn)化為函數(shù)求最大值問題,即可求得的范圍.【小問1詳解】(),,函數(shù)存在兩個極值點、,且,關(guān)于的方程,即在內(nèi)有兩個不等實根,令,,即,,實數(shù)的取值范圍是.【小問2詳解】函數(shù)在上有兩個極值點,由(1)可得,由,得,則,,,,,,,,令,則且,令,,,再設(shè),則,,,即在上是減函數(shù),(1),,在上是增函數(shù),(1),,恒成立,恒成立,,的最小值為.【點睛】關(guān)鍵點點睛:本題考查導(dǎo)函數(shù),函數(shù)的單調(diào)性,最值,不等式證明,考查學(xué)生分析解決問題的能力,解題的關(guān)鍵是將恒成立,轉(zhuǎn)化為恒成立,化簡,令,則化為,然后構(gòu)造函數(shù),利用導(dǎo)數(shù)求出其最大值即可,屬于較難題18、(1)(2)【解析】(1)利用到直線的距離求得半徑,由此求得圓的方程.(2)結(jié)合到直線的距離來求得四邊形面積的最小值.【小問1詳解】圓的半徑,圓的方程為.【小問2詳解】由四邊形的面積知,當(dāng)時,面積最小.此時...19、(1)(2)【解析】(1)根據(jù)題意建立關(guān)于的方程,解得的值即可.(2)聯(lián)列方程組并消元,韋達(dá)定理整體思想求的長,再求點到直線的距離,進而求面積.【小問1詳解】由題意可得,,則,因為,所以,解得,故拋物線的方程為【小問2詳解】由(1)可知,則點到直線的距離聯(lián)立,整理得設(shè),,則,從而因為直線過拋物線的焦點,所以故的面積為20、(1)8(2)454(3)證明見詳解【解析】(1)n元集合的直接個數(shù)為可得;(2)由已知結(jié)合可得,或,然后可得集合的包含關(guān)系可解;(3)根據(jù)每兩個相同整數(shù)之間的整數(shù)個數(shù)之和與總的數(shù)字個數(shù)之間的關(guān)系可證.【小問1詳解】當(dāng)時,集合的子集個數(shù)為【小問2詳解】易知,又,所以,即,得,或,所以或1)若,則滿足條件的集合對共有,2)若,同理,滿足條件集合對共有2433)當(dāng)A=B時,滿足條件的集合對共有所以,滿足條件集合對共243+243-32=454個.【小問3詳解】記,則1,1,2,2,··,,共2n個正整數(shù),將這2n個正整數(shù)按照要求排列時,需在1和1中間放入1個數(shù),在2和2中間放入2個數(shù),…,在n和n中間放入n個數(shù),共放入了個數(shù),由于排列完成后共有2n個數(shù),且1,1,2,2,··,,剛好放完,所以放入數(shù)字個數(shù)必為偶數(shù),即Z,所以,Z,所以是4的倍數(shù)21、(1)2;(2)﹒【解析】(1)根據(jù)已知條件得,,結(jié)合離心率,即可解得答案(2)設(shè)直線的方程,與橢圓方程聯(lián)立,利用弦長公式以及三角形的面積公式,基本不等式即可得出答案【小問1詳解】由題意可得,,,∵離心率,∴,∵,∴,解得【小問2詳解】由(1)知,橢圓,上焦點,設(shè),,,,直線的方程為:,聯(lián)立,得,∴,,∴,∴,∴,當(dāng)且僅當(dāng),即時
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東理工學(xué)院《能源與動力測試技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東理工職業(yè)學(xué)院《測量學(xué)實驗》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東江門幼兒師范高等專科學(xué)?!队耙暰巹 ?023-2024學(xué)年第一學(xué)期期末試卷
- 廣東工貿(mào)職業(yè)技術(shù)學(xué)院《遙感地學(xué)分析與應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東工程職業(yè)技術(shù)學(xué)院《機器人學(xué)及其應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東財貿(mào)職業(yè)學(xué)院《反應(yīng)工程概論》2023-2024學(xué)年第一學(xué)期期末試卷
- 新聞拍照培訓(xùn)課件
- 《風(fēng)險統(tǒng)計分析》課件
- 廣安職業(yè)技術(shù)學(xué)院《跨屏傳播與營銷》2023-2024學(xué)年第一學(xué)期期末試卷
- 贛州職業(yè)技術(shù)學(xué)院《計算智能技術(shù)的實現(xiàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 小學(xué)六年級英語教學(xué)小助手的培養(yǎng)研究
- 裝飾材料與施工工藝智慧樹知到答案2024年泉州華光職業(yè)學(xué)院
- 2024年人教版初二物理上冊期末考試卷(附答案)
- 山東省臨沂市河?xùn)|區(qū)2023-2024學(xué)年五年級下學(xué)期期末綜合(道德與法治+科學(xué))檢測試題
- 廣安市岳池縣2022-2023學(xué)年七年級上學(xué)期期末道德與法治試題
- 產(chǎn)品進入醫(yī)院的程序及方法
- 司機勞務(wù)合同
- 搭乘私家車免責(zé)協(xié)議書
- 行測言語理解與表達(dá)真題及完整答案1套
- 肥尾效應(yīng)(前漸進論、認(rèn)識論和應(yīng)用)
- 某冶金機械修造廠全廠總壓降變電所及配電系統(tǒng)設(shè)計
評論
0/150
提交評論