版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
浙江省杭州市示范名校2023-2024學(xué)年高二上數(shù)學(xué)期末檢測(cè)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在平面直角坐標(biāo)系中,線段的兩端點(diǎn),分別在軸正半軸和軸正半軸上滑動(dòng),若圓上存在點(diǎn)是線段的中點(diǎn),則線段長度的最小值為()A.4 B.6C.8 D.102.已知點(diǎn),點(diǎn)關(guān)于原點(diǎn)對(duì)稱點(diǎn)為,則()A. B.C. D.3.若函數(shù)有零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B.C. D.4.已知等比數(shù)列{an}的前n項(xiàng)和為S,若,且,則S3等于()A.28 B.26C.28或-12 D.26或-105.若等比數(shù)列滿足,,則數(shù)列的公比為()A. B.C. D.6.在直三棱柱中,,,則直線與所成角的大小為()A.30° B.60°C.120° D.150°7.雙曲線C:的漸近線方程為()A. B.C. D.8.已知數(shù)列的通項(xiàng)公式為,其前項(xiàng)和為,則滿足的的最小值為()A.30 B.31C.32 D.339.過拋物線的焦點(diǎn)引斜率為1的直線,交拋物線于,兩點(diǎn),則()A.4 B.6C.8 D.1010.某工廠對(duì)一批產(chǎn)品進(jìn)行了抽樣檢測(cè).右圖是根據(jù)抽樣檢測(cè)后的產(chǎn)品凈重(單位:克)數(shù)據(jù)繪制的頻率分布直方圖,其中產(chǎn)品凈重的范圍是[96,106],樣本數(shù)據(jù)分組為[96,98),[98,100),[100,102),[102,104),[104,106],已知樣本中產(chǎn)品凈重小于100克的個(gè)數(shù)是36,則樣本中凈重大于或等于98克并且小于104克的產(chǎn)品的個(gè)數(shù)是.A.90 B.75C.60 D.4511.設(shè)x∈R,則x<3是0<x<3的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件12.已知拋物線y2=4x的焦點(diǎn)為F,定點(diǎn),M為拋物線上一點(diǎn),則|MA|+|MF|的最小值為()A.3 B.4C.5 D.6二、填空題:本題共4小題,每小題5分,共20分。13.直線被圓截得的弦長為_______14.設(shè),,,則動(dòng)點(diǎn)P的軌跡方程為______,P到坐標(biāo)原點(diǎn)的距離的最小值為______15.如圖:雙曲線的左右焦點(diǎn)分別為,,過原點(diǎn)O的直線與雙曲線C相交于P,Q兩點(diǎn),其中P在右支上,且,則的面積為___________.16.雙曲線的實(shí)軸長為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,P(5,a)為拋物線C上一點(diǎn),且|PF|=8(1)求拋物線C的方程;(2)過點(diǎn)F的直線l與拋物線C交于A,B兩點(diǎn),以線段AB為直徑的圓過Q(0,﹣3),求直線l的方程18.(12分)已知?jiǎng)狱c(diǎn)在橢圓:()上,,為橢圓左、右焦點(diǎn).過點(diǎn)作軸的垂線,垂足為,點(diǎn)滿足,且點(diǎn)的軌跡是過點(diǎn)的圓(1)求橢圓方程;(2)過點(diǎn),分別作平行直線和,設(shè)交橢圓于點(diǎn),,交橢圓于點(diǎn),,求四邊形的面積的最大值19.(12分)已知集合,設(shè)(1)若p是q的充分不必要條件,求實(shí)數(shù)a的取值范圍;(2)若?q是?p的必要不充分條件,求實(shí)數(shù)a的取值范圍20.(12分)已知函數(shù)(…是自然對(duì)數(shù)的底數(shù)).(1)求的單調(diào)區(qū)間;(2)求函數(shù)的零點(diǎn)的個(gè)數(shù).21.(12分)如圖,已知正方體的棱長為,,分別是棱與的中點(diǎn).(1)求以,,,為頂點(diǎn)的四面體的體積;(2)求異面直線和所成角的大小.22.(10分)已知公差不為0的等差數(shù)列滿足:且成等比數(shù)列(1)求數(shù)列的通項(xiàng)公式;(2)記為數(shù)列的前n項(xiàng)和,求證是等差數(shù)列
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】首先求點(diǎn)的軌跡,將問題轉(zhuǎn)化為兩圓有交點(diǎn),即根據(jù)兩圓的位置關(guān)系,求參數(shù)的取值范圍.【詳解】設(shè),,的中點(diǎn)為,則,故點(diǎn)的軌跡是以原點(diǎn)為圓心,為半徑的圓,問題轉(zhuǎn)化為圓與圓有交點(diǎn),所以,,即,解得:,所以線段長度的最小值為.故選:C2、C【解析】根據(jù)空間兩點(diǎn)間距離公式,結(jié)合對(duì)稱性進(jìn)行求解即可.【詳解】因?yàn)辄c(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,所以,因此,故選:C3、A【解析】設(shè),則函數(shù)有零點(diǎn)轉(zhuǎn)化為函數(shù)的圖象與直線有交點(diǎn),利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,即可求出【詳解】設(shè),定義域?yàn)椋瑒t,易知為單調(diào)遞增函數(shù),且所以當(dāng)時(shí),,遞減;當(dāng)時(shí),,遞增,所以所以,即故選:A【點(diǎn)睛】本題主要考查根據(jù)函數(shù)有零點(diǎn)求參數(shù)的取值范圍,意在考查學(xué)生的轉(zhuǎn)化能力,屬于基礎(chǔ)題4、C【解析】根據(jù)等比數(shù)列的通項(xiàng)公式列出方程求解,直接計(jì)算S3即可.【詳解】由可得,即,所以,又,解得,所以,即,當(dāng)時(shí),,所以,當(dāng)時(shí),,所以,故選:C5、D【解析】設(shè)等比數(shù)列的公比為,然后由已知條件列方程組求解即可【詳解】設(shè)等比數(shù)列的公比為,因?yàn)椋?,所以,所以,解得,故選:D6、B【解析】根據(jù)三棱柱的特征補(bǔ)全為正方體,則,為直線與所成角,連接,則為等邊三角形即可得解.【詳解】根據(jù)直三棱柱的特征,補(bǔ)全可得如圖所示的正方體,易知,為直線與所成角,連接,則為等邊三角形,所以,所以直線與所成角的大小為.故選:B7、D【解析】根據(jù)給定的雙曲線方程直接求出其漸近線方程作答.【詳解】雙曲線C:的實(shí)半軸長,虛半軸長,即有,而雙曲線C的焦點(diǎn)在y軸上,所以雙曲線C的漸近線的方程為,即.故選:D8、C【解析】由條件可得得出,再由解出的范圍,得出答案.【詳解】由,則由,即,即,所以所以滿足的的最小值為為32故選:C9、C【解析】由題意可得,的方程為,設(shè)、,聯(lián)立直線與拋物線方程可求,利用拋物線的定義計(jì)算即可求解.【詳解】由上可得:焦點(diǎn),直線的方程為,設(shè),,由,可得,則有,由拋物線的定義可得:,故選:C.10、A【解析】樣本中產(chǎn)品凈重小于100克的頻率為(0.050+0.100)×2=0.3,頻數(shù)為36,∴樣本總數(shù)為.∵樣本中凈重大于或等于98克并且小于104克的產(chǎn)品的頻率為(0.100+0.150+0.125)×2=0.75,∴樣本中凈重大于或等于98克并且小于104克的產(chǎn)品的個(gè)數(shù)為120×0.75=90.考點(diǎn):頻率分布直方圖.11、B【解析】利用充分條件、必要條件的定義可得出結(jié)論.【詳解】,因此,“”是“”必要不充分條件.故選:B.12、B【解析】作出圖象,過點(diǎn)M作準(zhǔn)線的垂線,垂足為H,結(jié)合圖形可得當(dāng)且僅當(dāng)三點(diǎn)M,A,H共線時(shí)|MA|+|MH|最小,求解即可【詳解】過點(diǎn)M作準(zhǔn)線的垂線,垂足為H,由拋物線的定義可知|MF|=|MH|,則問題轉(zhuǎn)化為|MA|+|MH|的最小值,結(jié)合圖形可得當(dāng)且僅當(dāng)三點(diǎn)M,A,H共線時(shí)|MA|+|MH|最小,其最小值為.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出圓心到直線的距離,結(jié)合半徑,利用勾股定理可得答案.【詳解】的圓心坐標(biāo)為,,圓心到直線的距離,則直線被圓截得的弦長為:故答案為:14、①.②.l【解析】根據(jù)雙曲線的定義得到動(dòng)點(diǎn)的軌跡方程,從而求出到坐標(biāo)原點(diǎn)的距離的最小值;【詳解】解:因?yàn)?,所以?dòng)點(diǎn)P的軌跡為以A,B為焦點(diǎn),實(shí)軸長為2的雙曲線的下支.因?yàn)?,,所以,,,所以?dòng)點(diǎn)P的軌跡方程為故P到坐標(biāo)原點(diǎn)的距離的最小值為故答案為:;;15、24【解析】利用雙曲線定義結(jié)合已知求出,,再利用雙曲線的對(duì)稱性計(jì)算作答.【詳解】依題意,,,又,解得,,則有,即,連接,如圖,因過原點(diǎn)O的直線與雙曲線C相交于P,Q兩點(diǎn),由雙曲線的對(duì)稱性知,P,Q關(guān)于原點(diǎn)O對(duì)稱,因此,四邊形是平行四邊形,,所以的面積為24.故答案為:2416、4【解析】根據(jù)雙曲線標(biāo)準(zhǔn)方程的特征即可求解.【詳解】由題可知.故答案為:4.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)2x﹣y﹣6=0﹒【解析】(1)根據(jù)拋物線焦半徑公式構(gòu)造方程求得,從而得到結(jié)果(2)設(shè)直線,代入拋物線方程可得韋達(dá)定理的形式,根據(jù)可構(gòu)造方程求得,從而得到直線方程【小問1詳解】由拋物線定義可知:,解得:,拋物線的方程為:【小問2詳解】由拋物線方程知:,設(shè)直線,,,,,聯(lián)立方程,得:,,,以線段為直徑的圓過點(diǎn),,,解得:,直線的方程為:,即18、(1);(2)【解析】(1)設(shè)點(diǎn)和,由題意可得點(diǎn)的軌跡方程,將點(diǎn)Q的坐標(biāo)代入T的方程計(jì)算出即可;(2)設(shè)的方程,和,聯(lián)立橢圓方程并消元得到關(guān)于y的一元二次方程,根據(jù)韋達(dá)定理得到,進(jìn)而求出和,根據(jù)平行線間的距離公式可得與的距離,得出所求四邊形面積的表達(dá)式,結(jié)合換元法和基本不等式化簡(jiǎn)求值即可.【詳解】解:(1)設(shè)點(diǎn),,則點(diǎn),,,∵,∴,∴,∵點(diǎn)在橢圓上,∴,即為點(diǎn)的軌跡方程又∵點(diǎn)的軌跡是過的圓,∴,解得,所以橢圓的方程為(2)由題意,可設(shè)的方程為,聯(lián)立方程,得設(shè),,則,且,所以,同理,又與的距離為,所以,四邊形的面積為,令,則,且,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立所以,四邊形的面積最大值為19、(1)(2)【解析】(1)先解出集合A、B,然后根據(jù)p是q的充分不必要條件列出不等式組求解.(2)?q是?p的必要不充分條件可知q是p的充分不必要條件,然后求解.【小問1詳解】解:由題意得:,p是q的充分不必要條件,所以集合A是集合B的真子集∴,即,所以實(shí)數(shù)a的取值范圍.【小問2詳解】?q是?p的必要不充分條件p是q的必要不充分條件,即q是p的充分不必要條件集合B是集合A的真子集∴,故實(shí)數(shù)a的取值范圍為20、(1)當(dāng)時(shí),的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;當(dāng)時(shí),的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2)時(shí)函數(shù)沒有零點(diǎn);或時(shí)函數(shù)有且只有一個(gè)零點(diǎn);時(shí),函數(shù)有兩個(gè)零點(diǎn).【解析】(1)先對(duì)函數(shù)求導(dǎo),然后分和兩種情況判斷導(dǎo)函數(shù)正負(fù),求其單調(diào)區(qū)間;(2)由,得,構(gòu)造函數(shù),然后利用導(dǎo)數(shù)求出其單調(diào)區(qū)間和極值,畫出此函數(shù)的圖像,再判斷圖像與直線的交點(diǎn)情況,從而可得答案【詳解】(1)因?yàn)?,所以,?dāng)時(shí),恒成立,所以的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;當(dāng)時(shí),令,得;令,得,所以的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.(2)顯然0不是函數(shù)的零點(diǎn),由,得.令,則.或時(shí),,時(shí),,所以在和上都是減函數(shù),在上是增函數(shù),時(shí)取極小值,又當(dāng)時(shí),.所以時(shí),關(guān)于的方程無解,或時(shí)關(guān)于的方程只有一個(gè)解,時(shí),關(guān)于的方程有兩個(gè)不同解.因此,時(shí)函數(shù)沒有零點(diǎn),或時(shí)函數(shù)有且只有一個(gè)零點(diǎn),時(shí),函數(shù)有兩個(gè)零點(diǎn).【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:此題考查導(dǎo)數(shù)的應(yīng)用,考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,考查利用導(dǎo)數(shù)判斷函數(shù)的零點(diǎn),解題的關(guān)鍵是由,得,構(gòu)造函數(shù),然后利用導(dǎo)數(shù)求出其單調(diào)區(qū)間和極值,畫出此函數(shù)的圖像,再判斷圖像與直線的交點(diǎn)情況,考查數(shù)形結(jié)合的思想,屬于中檔題21、(1)(2)【解析】(1)由題意可知該四面體為以為底面,以為高的四面體,可得四面體體積;(2)連接,,可得即為異面直線和所成的角的平面角,根據(jù)余弦定理可得角的大小.【小問1詳解】解:連接,,,以,,,為頂點(diǎn)的四面體即為三棱錐,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 一年級(jí)數(shù)學(xué)(上)計(jì)算題專項(xiàng)練習(xí)匯編
- 規(guī)范校外培訓(xùn)合同(2篇)
- 小丑電影課件教學(xué)課件
- 老師課件制作教學(xué)
- 南京工業(yè)大學(xué)浦江學(xué)院《土力學(xué)與地基基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 南京航空航天大學(xué)《法律文書》2022-2023學(xué)年期末試卷
- soc芯片課件教學(xué)課件
- 石林縣風(fēng)貌改造施工組織設(shè)計(jì)書(二標(biāo)段)
- 南京工業(yè)大學(xué)浦江學(xué)院《企業(yè)家精神創(chuàng)新精神與商業(yè)規(guī)劃》2022-2023學(xué)年第一學(xué)期期末試卷
- 《詠柳》的說課稿
- 建構(gòu)主義視角下幼兒園中班閱讀區(qū)創(chuàng)設(shè)與指導(dǎo)研究
- 托管安全責(zé)任承諾書范文(19篇)
- -常規(guī)化驗(yàn)單解讀
- BYK-潤濕分散劑介紹
- 家長進(jìn)課堂小學(xué)生建筑知識(shí)課件
- 2023年口腔醫(yī)學(xué)期末復(fù)習(xí)-牙周病學(xué)(口腔醫(yī)學(xué))考試歷年真題集錦帶答案
- 函數(shù)的概念 省賽獲獎(jiǎng)
- 網(wǎng)絡(luò)安全培訓(xùn)-
- 地下車位轉(zhuǎn)讓協(xié)議
- 2018年蜀都杯《辛亥革命》終稿z
- 斷絕關(guān)系的協(xié)議書兄妹
評(píng)論
0/150
提交評(píng)論