云南省師范大學附屬中學2024屆高二數(shù)學第一學期期末調(diào)研試題含解析_第1頁
云南省師范大學附屬中學2024屆高二數(shù)學第一學期期末調(diào)研試題含解析_第2頁
云南省師范大學附屬中學2024屆高二數(shù)學第一學期期末調(diào)研試題含解析_第3頁
云南省師范大學附屬中學2024屆高二數(shù)學第一學期期末調(diào)研試題含解析_第4頁
云南省師范大學附屬中學2024屆高二數(shù)學第一學期期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

云南省師范大學附屬中學2024屆高二數(shù)學第一學期期末調(diào)研試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在正方體ABCD-EFGH中,P在棱BC上,BP=x,平行于BD的直線l在正方形EFGH內(nèi),點E到直線l的距離記為d,記二面角為A-l-P為θ,已知初始狀態(tài)下x=0,d=0,則()A.當x增大時,θ先增大后減小 B.當x增大時,θ先減小后增大C.當d增大時,θ先增大后減小 D.當d增大時,θ先減小后增大2.已知拋物線的焦點為,為拋物線上一點,為坐標原點,且,則()A.4 B.2C. D.3.已知橢圓的左、右焦點分別為、,點在橢圓上,若,則的面積為()A. B.C. D.4.將5名北京冬奧會志愿者分配到花樣滑冰、短道速滑、冰球和冰壺4個項目進行培訓,每名志愿者只分配到1個項目,每個項目至少分配1名志愿者,則不同的分配方案共有()A.60種 B.120種C.240種 D.480種5.直線的傾斜角的大小為()A. B.C. D.6.已知圓,圓相交于P,Q兩點,其中,分別為圓和圓的圓心.則四邊形的面積為()A.3 B.4C.6 D.7.礦山爆破時,在爆破點處炸開的礦石的運動軌跡可看作是不同的拋物線,根據(jù)地質、炸藥等因素可以算出這些拋物線的范圍,這個范圍的邊界可以看作一條拋物線,叫“安全拋物線”,如圖所示.已知某次礦山爆破時的安全拋物線的焦點為,則這次爆破時,礦石落點的最遠處到點的距離為()A. B.2C. D.8.已知直線l與圓交于A,B兩點,點滿足,若AB的中點為M,則的最大值為()A. B.C. D.9.2021年6月17日9時22分,搭載神舟十二號載人飛船的長征二號F遙十二運載火箭,在酒泉衛(wèi)星發(fā)射中心點火發(fā)射.此后,神舟十二號載人飛船與火箭成功分離,進入預定軌道,并快速完成與“天和”核心艙的對接,聶海勝、劉伯明、湯洪波3名宇航員成為核心艙首批“入住人員”,并在軌駐留3個月,開展艙外維修維護,設備更換,科學應用載荷等一系列操作.已知神舟十二號飛船的運行軌道是以地心為焦點的橢圓,設地球半徑為R,其近地點與地面的距離大約是,遠地點與地面的距離大約是,則該運行軌道(橢圓)的離心率大約是()A. B.C. D.10.已知橢圓方程為,則該橢圓的焦距為()A.1 B.2C. D.11.直線與直線,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.若,都為正實數(shù),,則的最大值是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.與直線和直線的距離相等的直線方程為______14.已知斜率為1的直線經(jīng)過橢圓的左焦點,且與橢圓交于,兩點,若橢圓上存在點,使得的重心恰好是坐標原點,則橢圓的離心率______.15.已知正三角形邊長為a,則該三角形內(nèi)任一點到三邊的距離之和為定值.類比上述結論,在棱長為a的正四面體內(nèi),任一點到其四個面的距離之和為定值_____.16.已知直線和直線垂直,則實數(shù)___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中內(nèi)角A、B、C所對的邊分別為a、b、c,且(1)求角A(2)若,,求的面積18.(12分)命題:函數(shù)有意義;命題:實數(shù)滿足.(1)當且為真時,求實數(shù)的取值范圍;(2)若是的充分不必要條件,求實數(shù)的取值范圍.19.(12分)從橢圓上一點P向x軸作垂線,垂足恰為左焦點,A是橢圓C與x軸正半軸的交點,直線AP的斜率為,若橢圓長軸長為8(1)求橢圓C的方程;(2)點Q為橢圓上任意一點,求面積的最大值20.(12分)(1)敘述正弦定理;(2)在△中,應用正弦定理判斷“”是“”成立的什么條件,并加以證明.21.(12分)在二項式展開式中,第3項和第4項的二項式系數(shù)比為.(1)求n的值及展開式中的常數(shù)項;(2)求展開式中系數(shù)最大的項是第幾項.22.(10分)等差數(shù)列前n項和為,且(1)求通項公式;(2)記,求數(shù)列的前n項和

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】以F為坐標原點,F(xiàn)B,F(xiàn)G,F(xiàn)E所在直線為x軸,y軸,z軸建立空間直角坐標系,設正方體的棱長為2,則P(2,x,0),A(2,0,2),設直線l與EF,EH交于點M、N,,求得平面AMN的法向量為,平面PMN的法向量,由空間向量的夾角公式表示出,對于A,B選項,令d=0,則,由函數(shù)的單調(diào)性可判斷;對于C,D,當x=0時,則,令,利用導函數(shù)研究函數(shù)的單調(diào)性可判斷.【詳解】解:由題意,以F為坐標原點,F(xiàn)B,F(xiàn)G,F(xiàn)E所在直線為x軸,y軸,z軸建立空間直角坐標系如圖所示,設正方體的棱長為2,則P(2,x,0),A(2,0,2),設直線l與EF,EH交于點M、N,則,所以,,設平面AMN的法向量為,則,即,令,則,設平面PMN的法向量為,則,即,令,則,,對于A,B選項,令d=0,則,顯示函數(shù)在是為減函數(shù),即減小,則增大,故選項A,B錯誤;對于C,D,對于給定的,如圖,過作,垂足為,過作,垂足為,過作,垂足為,當在下方時,,設,則對于給定的,為定值,此時設二面角為,二面角為,則二面角為,且,故,而,故即,當時,為減函數(shù),故為增函數(shù),當時,為增函數(shù),故為減函數(shù),故先增后減,故D錯誤.當在上方時,,則對于給定的,為定值,則有二面角為,且,因,故為增函數(shù),故為減函數(shù),綜上,對于給定的,隨的增大而減少,故選:C.2、B【解析】依題意可得,設,根據(jù)可得,,根據(jù)為拋物線上一點,可得.【詳解】依題意可得,設,由得,所以,,所以,,因為為拋物線上一點,所以,解得.故選:B.【點睛】本題考查了平面向量加法的坐標運算,考查了求拋物線方程,屬于基礎題.3、B【解析】求出,可知為等腰三角形,取的中點,可得出,利用勾股定理求得,利用三角形的面積公式可求得結果.【詳解】在橢圓中,,,則,所以,,由橢圓的定義可得,取的中點,因為,則,由勾股定理可得,所以,.故選:B.4、C【解析】先確定有一個項目中分配2名志愿者,其余各項目中分配1名志愿者,然后利用組合,排列,乘法原理求得.【詳解】根據(jù)題意,有一個項目中分配2名志愿者,其余各項目中分配1名志愿者,可以先從5名志愿者中任選2人,組成一個小組,有種選法;然后連同其余三人,看成四個元素,四個項目看成四個不同的位置,四個不同的元素在四個不同的位置的排列方法數(shù)有4!種,根據(jù)乘法原理,完成這件事,共有種不同的分配方案,故選:C.【點睛】本題考查排列組合的應用問題,屬基礎題,關鍵是首先確定人數(shù)的分配情況,然后利用先選后排思想求解.5、B【解析】由直線方程,可知直線的斜率,設直線的傾斜角為,則,又,所以,故選6、A【解析】求得,由此求得四邊形的面積.【詳解】圓的圓心為,半徑;圓的圓心為,所以,由、兩式相減并化簡得,即直線的方程為,到直線的距離為,所以,所以四邊形的面積為.故選:A7、D【解析】根據(jù)給定條件求出拋物線的頂點,結合拋物線的性質求出p值即可計算作答.【詳解】依題意,拋物線的頂點坐標為,則拋物線的頂點到焦點的距離為,p>0,解得,于是得拋物線的方程為,由得,,即拋物線與軸的交點坐標為,因此,,所以礦石落點的最遠處到點的距離為.故選:D8、A【解析】設,,則、,由點在圓上可得,再由向量垂直的坐標表示可得,進而可得M的軌跡為圓,即可求的最大值.【詳解】設,中點,則,,又,,則,所以,又,則,而,,所以,即,綜上,,整理得,即為M的軌跡方程,所以在圓心為,半徑為的圓上,則.故選:A.【點睛】關鍵點點睛:由點圓位置、中點坐標公式及向量垂直的坐標表示得到關于的軌跡方程.9、A【解析】以運行軌道長軸所在直線為x軸,地心F為右焦點建立平面直角坐標系,設橢圓方程為,根據(jù)題意列出方程組,解方程組即可.【詳解】以運行軌道長軸所在直線為x軸,地心F為右焦點建立平面直角坐標系,設橢圓方程為,其中,根據(jù)題意有,,所以,,所以橢圓的離心率故選:A10、B【解析】根據(jù)橢圓中之間的關系,結合橢圓焦距的定義進行求解即可.【詳解】由橢圓的標準方程可知:,則焦距為,故選:B.11、A【解析】根據(jù)直線與直線的垂直,列方程,求出,再判斷充分性和必要性即可.【詳解】解:若,則,解得或,即或,所以”是“充分不必要條件.故選:A.【點睛】本題考查直線一般式中直線與直線垂直的系數(shù)關系,考查充分性和必要性的判斷,是基礎題.12、B【解析】由基本不等式,結合題中條件,直接求解,即可得出結果.【詳解】因為,都為正實數(shù),,所以,當且僅當,即時,取最大值.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設直線方程為,根據(jù)兩平行直線之間距離公式即可求解.【詳解】設該直線為:,則由兩平行直線之間距離公式得:,故該直線為:;故答案為:.14、【解析】設點,,坐標分別為,則根據(jù)題意有,分別將點,,的坐標代入橢圓方程得,然后聯(lián)立直線與橢圓方程,利用韋達定理得到和的值,代入得到關于的齊次式,然后解出離心率.【詳解】設,,坐標分別為,因為的重心恰好是坐標原點,則,則,代入橢圓方程可得,其中,所以……①因為直線的斜率為,且過左焦點,則的方程為:,聯(lián)立方程消去可得:,所以,……②所以……③,將②③代入①得,從而.故答案為:【點睛】本題考查橢圓的離心率求解問題,難度較大.解答時,注意,,三點坐標之間的關系,注意韋達定理在解題中的運用.15、【解析】利用正四面體內(nèi)任一點可將正四面體分成四個小四面體,令它們的高分別為,由體積相等即可求得;【詳解】正三角形邊長為a,則該三角形內(nèi)任一點到三邊的距離分別為,即有:,解得同理,棱長為a的正四面體內(nèi),任一點到其四個面的距離分別為,即有:,解得故答案為:【點睛】本題考查了利用空間幾何體的等體積法求高的和為定值,屬于簡單題;16、【解析】根據(jù)兩條直線相互垂直的條件列方程,解方程求得m的值.【詳解】由于兩條直線垂直,故,解得.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)正弦定理,結合三角形內(nèi)角和定理、兩角和的正弦公式進行求解即可;(2)根據(jù)余弦定理,結合三角形面積公式進行求解即可.【小問1詳解】,由正弦定理知,,即又,且.所以,由于.所以;【小問2詳解】由余弦定理得:,又,所以所以.18、(1);(2)【解析】(1)首先將命題,化簡,然后由為真可得,均為真,取交集即可求出實數(shù)的取值范圍;(2)將是的充分不必要條件轉化為是的必要不充分條件,進而將問題轉化為,從而求出實數(shù)的取值范圍【詳解】(1)若命題為真,則,解得,當時,命題,若命題為真,則,解得,所以,因為為真,所以,均為真,所以,所以,所以實數(shù)的取值范圍為(2)因為是的充分不必要條件,所以是的必要不充分條件,所以,所以或,所以,所以實數(shù)的取值范圍是【點睛】本題主要考查根據(jù)真值表判斷復合命題中的單個命題的真假,根據(jù)充分不必要條件求參數(shù)的取值范圍,同時考查一元二次不等式的解法,分式不等式的解法.第(2)問關鍵是將問題等價轉化為兩個集合間的真包含關系19、(1)(2)18【解析】(1)易得,,進而有,再結合已知即可求解;(2)由(1)易得直線AP的方程為,,設與直線AP平行的直線方程為,由題意,當該直線與橢圓相切時,記與AP距離比較遠的直線與橢圓的切點為Q,此時的面積取得最大值,將代入橢圓方程,聯(lián)立即可得與AP距離比較遠的切線方程,從而即可求解.【小問1詳解】解:由題意,將代入橢圓方程,得,又∵,∴,化簡得,解得,又,,所以,∴,∴橢圓的方程為;【小問2詳解】解:由(1)知,直線AP的方程為,即,設與直線AP平行的直線方程為,由題意,當該直線與橢圓相切時,記與AP距離比較遠的直線與橢圓的切點為Q,此時的面積取得最大值,將代入橢圓方程,化簡可得,由,即,解得,所以與AP距離比較遠的切線方程,因為與之間的距離,又,所以的面積的最大值為20、(1)正弦定理見解析;(2)充要條件,證明見解析【解析】(1)用語言描述正弦定理,并用公式表達正弦定理(2)利用“大角對大邊”的性質,并根據(jù)正弦定理進行邊角互化即可【詳解】(1)正弦定理:在任意一個三角形中,各邊和它所對角的正弦值之比相等且等于這個三角形外接圓的直徑,即.(2)是充要條件.證明如下:充分性:又故有:必要性:又綜上,是的充要條件21、(1),常數(shù)項為(2)5【解析】(1)求出二項式的通項公式,求出第3項和第4項的二項式系數(shù),再利用已知條件列

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論