版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
云南省楚雄州大姚縣第一中學2023年數(shù)學高二上期末達標檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.小明騎車上學,開始時勻速行駛,途中因交通堵塞停留了一段時間,后為了趕時間加快速度行駛.與以上事件吻合得最好的圖象是()A. B.C. D.2.如圖所示的程序框圖,閱讀下面的程序框圖,則輸出的S=()A.14 B.20C.30 D.553.如圖,在三棱錐中,是線段的中點,則()A. B.C. D.4.設是兩個不同的平面,是一條直線,以下命題正確的是A.若,則 B.若,則C.若,則 D.若,則5.已知拋物線的焦點為F,過點F分別作兩條直線,直線與拋物線C交于A、B兩點,直線與拋物線C交于D、E兩點,若與的斜率的平方和為2,則的最小值為()A.24 B.20C.16 D.126.直線的傾斜角為()A.60° B.30°C.120° D.150°7.已知數(shù)列為等比數(shù)列,則“為常數(shù)列”是“成等差數(shù)列”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件8.方程表示的曲線是A.兩條直線 B.兩條射線C.兩條線段 D.一條直線和一條射線9.在等比數(shù)列中,若是函數(shù)的極值點,則的值是()A. B.C. D.10.已知拋物線內(nèi)一點,過點的直線交拋物線于,兩點,且點為弦的中點,則直線的方程為()A. B.C D.11.已知斜三棱柱所有棱長均為2,,點、滿足,,則()A. B.C.2 D.12.已知等比數(shù)列的前3項和為3,,則()A. B.4C. D.1二、填空題:本題共4小題,每小題5分,共20分。13.命題“,”是真命題,則的取值范圍是________14.已知數(shù)列滿足,,若為等差數(shù)列,則___________,若,則數(shù)列的前項和為___________.15.已知空間向量,,且,則值為______16.已知橢圓,分別是橢圓的上、下頂點,是左頂點,為左焦點,直線與相交于點,則________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某市對排污水進行綜合治理,征收污水處理費,系統(tǒng)對各廠一個月內(nèi)排出污水量x噸收取的污水處理費y元,運行程序如圖所示:INPUTxIFTHENELSEIFTHENELSEENDIFENDIFPRINTyEND(1)請寫出y與x的函數(shù)關系式;(2)求排放污水150噸的污水處理費用.18.(12分)已知橢圓的左、右焦點分別為,離心率為,圓:過橢圓的三個頂點,過點的直線(斜率存在且不為0)與橢圓交于兩點(1)求橢圓的標準方程(2)證明:在軸上存在定點,使得為定值,并求出定點的坐標19.(12分)已知直線l的斜率為-2,且與兩坐標軸的正半軸圍成三角形的面積等于1.圓C的圓心在第四象限,直線l經(jīng)過圓心,圓C被x軸截得的弦長為4.若直線x-2y-1=0與圓C相切,求圓C的方程20.(12分)在△中,角A,B,C的對邊分別為a,b,c,已知,,.(1)求的大小及△的面積;(2)求的值.21.(12分)已知拋物線的焦點為F,點在拋物線上.(1)求拋物線的標準方程;(2)過點的直線交拋物錢C于A,B兩點,O為坐標原點,記直線OA,OB的斜率分別,,求證:為定值.22.(10分)在直三棱柱中,、、、分別為中點,.(1)求證:平面(2)求二面角的余弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】先研究四個選項中圖象的特征,再對照小明上學路上的運動特征,兩者對應即可選出正確選項.【詳解】考查四個選項,橫坐標表示時間,縱坐標表示的是離開學校的距離,由此知,此函數(shù)圖象一定是下降的,由此排除A;再由小明騎車上學,開始時勻速行駛可得出圖象開始一段是直線下降型,又途中因交通堵塞停留了一段時間,故此時有一段函數(shù)圖象與x軸平行,由此排除D,之后為了趕時間加快速度行駛,此一段時間段內(nèi)函數(shù)圖象下降的比較快,由此可確定C正確,B不正確故選C【點睛】本題考查函數(shù)的表示方法,關鍵是理解坐標系的度量與小明上學的運動特征,屬于基礎題.2、C【解析】經(jīng)分析為直到型循環(huán)結構,按照循環(huán)結構進行執(zhí)行,當滿足跳出的條件時即可輸出值【詳解】解:第一次循環(huán)S=1,i=2;第二次循環(huán)S=1+22=5,i=3;第三次循環(huán)S=5+32=14,i=4;第四次循環(huán)S=14+42=30,i=5;此時5>4,跳出循環(huán),故輸出的值為30故選:C.3、A【解析】根據(jù)給定幾何體利用空間向量基底結合向量運算計算作答.【詳解】在三棱錐中,是線段的中點,所以:.故選:A4、C【解析】對于A、B、D均可能出現(xiàn),而對于C是正確的5、C【解析】設兩條直線方程,與拋物線聯(lián)立,求出弦長的表達式,根據(jù)基本不等式求出最小值【詳解】拋物線的焦點坐標為,設直線:,直線:,聯(lián)立得:,所以,所以焦點弦,同理得:,所以,因為,所以,故選:C6、C【解析】求出斜率,根據(jù)斜率與傾斜角的關系,即可求解.【詳解】解:,即,直線的斜率為,即直線的傾斜角為120°.故選:C.7、C【解析】先考慮充分性,再考慮必要性即得解.【詳解】解:如果為常數(shù)列,則成等差數(shù)列,所以“為常數(shù)列”是“成等差數(shù)列”的充分條件;等差數(shù)列,所以,所以數(shù)列為,所以數(shù)列是常數(shù)列,所以“為常數(shù)列”是“成等差數(shù)列”的必要條件.所以“為常數(shù)列”是“成等差數(shù)列”的充要條件.故選:C8、D【解析】由,得2x+3y?1=0或.即2x+3y?1=0(x?3)為一條射線,或x=4為一條直線.∴方程表示的曲線是一條直線和一條射線.故選D.點睛:在直角坐標系中,如果某曲線C(看作點的集合或適合某種條件的點的軌跡)上的點與一個二元方程f(x,y)=0的實數(shù)解建立了如下的關系:(1)曲線上點的坐標都是這個方程的解;(2)以這個方程的解為坐標的點都是曲線上的點那么,這個方程叫做曲線的方程,這條曲線叫做方程的曲線在求解方程時要注意變量范圍.9、B【解析】根據(jù)導數(shù)的性質求出函數(shù)的極值點,再根據(jù)等比數(shù)列的性質進行求解即可.【詳解】,當時,單調遞增,當時,單調遞減,當時,單調遞增,所以是函數(shù)的極值點,因為,且所以,故選:B10、B【解析】利用點差法求出直線斜率,即可得出直線方程.【詳解】設,則,兩式相減得,即,則直線方程為,即.故選:B.11、D【解析】以向量為基底向量,則,根據(jù)條件由向量的數(shù)量積的運算性質,兩邊平方可得答案.【詳解】以向量為基底向量,所以所以故選:D12、D【解析】設等比數(shù)列公比為,由已知結合等比數(shù)列的通項公式可求得,,代入即可求得結果.【詳解】設等比數(shù)列的公比為,由,得即,又,即又,,解得又等比數(shù)列的前3項和為3,故,即,解得故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】依題意可得,是真命題,參變分離得到在上有解,再利用構造函數(shù)利用函數(shù)的單調性計算可得.【詳解】,等價于在上有解設,,則在上單調遞減,在上單調遞增,又,,所以,即故答案為:14、①.##②.【解析】利用遞推關系式,結合等差數(shù)列通項公式可求得公差,進而得到;利用遞推關系式可知數(shù)列的奇數(shù)項和偶數(shù)項分別成等差數(shù)列,采用裂項相消的方法可求得前項和.【詳解】由得:,解得:;為等差數(shù)列,設其公差為,則,解得:,;由知:數(shù)列的奇數(shù)項是以為首項,為公差的等差數(shù)列;偶數(shù)項是以為首項,為公差的等差數(shù)列;,又,,數(shù)列的前項和,.故答案為:;.【點睛】關鍵點點睛:本題考查根據(jù)數(shù)列遞推關系求解數(shù)列中的項、裂項相消法求和的問題;解題關鍵是能夠根據(jù)遞推關系式得到數(shù)列的奇數(shù)項和偶數(shù)項分別成等差數(shù)列,由此可通過裂項相消的方法求得所求數(shù)列的和.15、【解析】利用向量的坐標運算及向量數(shù)量積的坐標表示即求.【詳解】由題意,空間向量,可得,所以,解得.故答案為:.16、##【解析】先求出頂點和焦點坐標,求出直線直線與的斜率,利用到角公式求出的正切值,進而求出正弦值.【詳解】由可得:,所以,,,,故,由到角公式得:,其中,所以.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)1400(元).【解析】(1)根據(jù)已知條件即可容易求得函數(shù)關系式;(2)根據(jù)(1)中所求函數(shù)關系式,令,求得函數(shù)值即可.【小問1詳解】根據(jù)題意,得:當時,;當時,;當時,.即.【小問2詳解】因為,故,故該廠應繳納污水處理費1400元.18、(1);(2)見解析,定點【解析】(1)先判斷圓經(jīng)過橢圓的上、下頂點和右頂點,令圓方程中的,得,即.再由求即可.(2)設在軸上存在定點,使得為定值,根據(jù)題意,設直線的方程為,聯(lián)立可得,再運算將韋達定理代入化簡有與k無關即可.【詳解】(1)由圓方程中的時,的兩根不為相反數(shù),故可設圓經(jīng)過橢圓的上、下頂點和右頂點,令圓方程中的,得,即有又,解得∴橢圓的標準方程為(2)證明:設在軸上存在定點,使得為定值,由(1)可得,設直線的方程為,聯(lián)立可得,設,則,,要使為定值,只需,解得∴在軸上存在定點,使得為定值,定點的坐標為【點睛】本題主要考查橢圓的幾何性質和直線與橢圓的位置關系,還考查了數(shù)形結合的思想和運算求解的能力,屬于中檔題.19、【解析】先根據(jù)題意設直線方程,由條件求出直線的方程,再根據(jù)條件列出等量關系,求出圓心和半徑,進而求得答案.【詳解】解:設直線l的方程為y=-2x+b(b>0),它與兩坐標軸的正半軸的交點依次為,,因為直線l與兩坐標軸的正半軸所圍成的三角形的面積等于1,所以,解得b=2,所以直線l的方程是,即由題意,可設圓C的圓心為,半徑為r,又因為圓C被x軸截得的弦長等于4,所以①,由于直線與圓相切,所以圓心C到直線的距離②,所以①②聯(lián)立得:,解得:或,又圓心在第四象限,所以,則圓心,,所以圓C方程是.20、(1),△的面積為;(2).【解析】(1)應用余弦定理求的大小,由三角形面積公式求△的面積;(2)由(1)及正弦定理的邊角關系可得,即可求目標式的值.【小問1詳解】在△中,由余弦定理得:,又,則.所以△的面積為.【小問2詳解】由(1)得:,由正弦定理得:,則,所以.21、(1)(2)證明見解析【解析】(1)將點代入拋物線方程即可求解;(2)當直線AB的斜率存在時,設直線AB的方程為,,將直線方程與拋物線方程聯(lián)立利用韋達定理即可求出的值;當直線AB的斜率不存在時,由過點即可求出點和點的坐標,即可求出的值.【小問1詳解】將點代入得,,∴拋物線的標準方程為.【小問2詳解】當直線AB斜率存在時,設直線AB的方程為,,將聯(lián)立得,,由韋達定理得:,,,當直線AB的斜率不存在時,由直線過點,則,,,,綜上所述可知,為定值為.22、(1)見解析;(2)【解析】(1)取中點,連接,根據(jù)直棱柱的特征,易知,再由、分別為的中點,根據(jù)中位線定理,可得,得到四邊形為平行四邊形,再利用線面平行的判定定理證明.(2)取的中點,連接,以為原點,、、分別為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年全球及中國中置電機自行車行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025年全球及中國PTZ電子體積校正器行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025年全球及中國軍用飛行器模擬器行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025年全球及中國工業(yè)木鋸機行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 期末測試卷01【考試范圍:6-10單元】(原卷版)
- 2025國際商業(yè)代理合同詳細版樣本
- 擔保合同范文集錦年
- 健身房私教合同范文
- 電力設備采購合同模板
- 2025XL數(shù)字地震儀器租賃合同
- 《造血干細胞移植護理》課件
- 課題申報參考:全齡友好視角下的社區(qū)語言景觀評估及空間優(yōu)化研究
- 中央2025年公安部部分直屬事業(yè)單位招聘84人筆試歷年參考題庫附帶答案詳解
- 五年級下冊語文四大名著??贾R點
- 2025年1月日歷表(含農(nóng)歷-周數(shù)-方便記事備忘)
- 2024年同等學力人員申請碩士學位英語試卷與參考答案
- 臨床用血管理培訓
- 工業(yè)自動化生產(chǎn)線操作手冊
- 《走進神奇》說課稿
- 2024年內(nèi)蒙古中考語文試卷五套合卷附答案
- 五年級下冊語文教案 學習雙重否定句 部編版
評論
0/150
提交評論