云南省楚雄彝族自治州2023年高二上數(shù)學期末復習檢測試題含解析_第1頁
云南省楚雄彝族自治州2023年高二上數(shù)學期末復習檢測試題含解析_第2頁
云南省楚雄彝族自治州2023年高二上數(shù)學期末復習檢測試題含解析_第3頁
云南省楚雄彝族自治州2023年高二上數(shù)學期末復習檢測試題含解析_第4頁
云南省楚雄彝族自治州2023年高二上數(shù)學期末復習檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

云南省楚雄彝族自治州2023年高二上數(shù)學期末復習檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.中國古代數(shù)學著作《算法統(tǒng)宗》中有這樣一個問題:“三百七十八里關(guān),初行健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見次日行里數(shù),請公仔細算相還.”其意思為:有一個人走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天后到達目的地,請問第二天走了()A.192

里 B.96

里C.48

里 D.24

里2.如圖,樣本和分別取自兩個不同的總體,它們的平均數(shù)分別為和,標準差分別為和,則()AB.C.D.3.數(shù)列,,,,…的一個通項公式為()A. B.C. D.4.傾斜角為45°,在y軸上的截距為2022的直線方程是()A. B.C. D.5.已知集合,則()A. B.C. D.6.(2017新課標全國Ⅲ理科)已知圓柱的高為1,它的兩個底面的圓周在直徑為2的同一個球的球面上,則該圓柱的體積為A. B.C. D.7.過點(-2,1)的直線中,被圓x2+y2-2x+4y=0截得的弦最長的直線的方程是()A.x+y+1=0 B.x+y-1=0C.x-y+1=0 D.x-y-1=08.已知是直線的方向向量,為平面的法向量,若,則的值為()A. B.C.4 D.9.執(zhí)行如圖所示的程序框圖,若輸入t的取值范圍為,則輸出s的取值范圍為()A. B.C. D.10.已知全集,集合,則()A. B.C. D.11.設(shè)數(shù)列、都是等差數(shù)列,若,則等于()A. B.C. D.12.已知點在平面內(nèi),是平面的一個法向量,則下列各點在平面內(nèi)的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.數(shù)學中有許多形狀優(yōu)美、寓意美好的曲線,曲線就是其中之一(如圖),給出下列三個結(jié)論:①曲線C恰好經(jīng)過6個整點(即橫、縱坐標均為整數(shù)的點);②曲線C上任意一點到原點的距離都不超過;③曲線C所圍成的“心形”區(qū)域的面積小于3;其中,所有正確結(jié)論的序號是________14.如圖所示,在直二面角D-AB-E中,四邊形ABCD是邊長為2的正方形,△AEB是等腰直角三角形,其中,則點D到平面ACE的距離為________15.將數(shù)列{n}按“第n組有n個數(shù)”的規(guī)則分組如下:(1),(2,3),(4,5,6),…,則第22組中的第一個數(shù)是_________16.如圖,已知與所在平面垂直,且,,,點P、Q分別在線段BD、CD上,沿直線PQ將向上翻折,使D與A重合.則直線AP與平面ACQ所成角的正弦值為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓C的中心在原點,焦點在x軸上,焦距為2,離心率為(1)求橢圓C的方程;(2)設(shè)直線l經(jīng)過點M(0,1),且與橢圓C交于A,B兩點,若,求直線l的方程18.(12分)設(shè):,:.(1)若命題“,是真命題”,求的取值范圍;(2)若是的充分不必要條件,求的取值范圍.19.(12分)設(shè)等差數(shù)列的前項和為,為各項均為正數(shù)的等比數(shù)列,且,,再從條件①:;②:;③:這三個條件中選擇一個作為已知,解答下列問題:(1)求和的通項公式;(2)設(shè),數(shù)列的前項和為,求證:20.(12分)各項都為正數(shù)的數(shù)列的前項和為,且滿足.(1)求數(shù)列的通項公式;(2)求;(3)設(shè),數(shù)列的前項和為,求使成立的的最小值.21.(12分)已知等比數(shù)列滿足,.(Ⅰ)求的通項公式;(Ⅱ)若,設(shè)(),記數(shù)列的前n項和為,求.22.(10分)雙曲線(,)的離心率,且過點.(1)求a,b的值;(2)求與雙曲線C有相同漸近線,且過點的雙曲線的標準方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由題可得此人每天走的步數(shù)等比數(shù)列,根據(jù)求和公式求出首項可得.【詳解】由題意可知此人每天走的步數(shù)構(gòu)成為公比的等比數(shù)列,由題意和等比數(shù)列的求和公式可得,解得,第此人第二天走里.故選:B2、B【解析】直接根據(jù)圖表得到答案.【詳解】根據(jù)圖表:樣本數(shù)據(jù)均小于等于10,樣本數(shù)據(jù)均大于等于10,故;樣本數(shù)據(jù)波動大于樣本數(shù)據(jù),故.故選:B.3、B【解析】根據(jù)給定數(shù)列,結(jié)合選項提供通項公式,將n代入驗證法判斷是否為通項公式.【詳解】A:時,排除;B:數(shù)列,,,,…滿足.C:時,排除;D:時,排除;故選:B4、A【解析】根據(jù)直線斜率與傾斜角的關(guān)系,結(jié)合直線斜截式方程進行求解即可.【詳解】因為直線的傾斜角為45°,所以該直線的斜率為,又因為該直線在y軸上的截距為2022,所以該直線的方程為:,故選:A5、B【解析】先求得集合A,再根據(jù)集合的交集運算可得選項.【詳解】解:因為,所以故選:B.6、B【解析】繪制圓柱的軸截面如圖所示,由題意可得:,結(jié)合勾股定理,底面半徑,由圓柱的體積公式,可得圓柱的體積是,故選B.【名師點睛】涉及球與棱柱、棱錐的切、接問題時,一般過球心及多面體中的特殊點(一般為接、切點)或線作截面,把空間問題轉(zhuǎn)化為平面問題,再利用平面幾何知識尋找?guī)缀误w中元素間的關(guān)系,或只畫內(nèi)切、外接的幾何體的直觀圖,確定球心的位置,弄清球的半徑(直徑)與該幾何體已知量的關(guān)系,列方程(組)求解.7、A【解析】當直線被圓截得的最弦長最大時,直線要經(jīng)過圓心,即圓心在直線上,然后根據(jù)兩點式方程可得所求【詳解】由題意得,圓的方程為,∴圓心坐標為∵直線被圓截得的弦長最大,∴直線過圓心,又直線過點(-2,1),所以所求直線的方程為,即故選:A8、A【解析】由,可得,再計算即可求解.【詳解】由題意可知,所以,即.故選:A9、A【解析】由程序圖可得,,再分段求解函數(shù)的值域,即可求解【詳解】由程序圖可得,當時,,,當時,,,綜上所述,的取值范圍為,故選:A10、B【解析】根據(jù)題意先求出,再利用交集定義即可求解.【詳解】全集,集合,則,故故選:B11、A【解析】設(shè)等差數(shù)列的公差為,根據(jù)數(shù)列是等差數(shù)列可求得,由此可得出,進而可求得所求代數(shù)式的值.【詳解】設(shè)等差數(shù)列的公差為,即,由于數(shù)列也為等差數(shù)列,則,可得,即,可得,即,解得,所以,數(shù)列為常數(shù)列,對任意的,,因此,.故選:A.【點睛】關(guān)鍵點點睛:本題考查等差數(shù)列基本量的求解,通過等差數(shù)列定義列等式求解公差是解題的關(guān)鍵,另外,在求解有關(guān)等差數(shù)列基本問題時,可充分利用等差數(shù)列的定義以及等差中項法來求解.12、B【解析】設(shè)平面內(nèi)的一點為,由可得,進而可得滿足的方程,將選項代入檢驗即可得正確選項.【詳解】設(shè)平面內(nèi)的一點為(不與點重合),則,因為是平面的一個法向量,所以,所以,即,對于A:,故選項A不正確;對于B:,故選項B正確;對于C:,故選項C不正確;對于D:,故選項D不正確,故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、①②【解析】先根據(jù)圖像的對稱性找出整點,再判斷是否還有其他的整點在曲線上;找出曲線上離原點距離最大的點的區(qū)域,再由基本不等式得到最大值不超過;在心形區(qū)域內(nèi)找到一個內(nèi)接多邊形,該多邊形的面積等于3,從而判斷出“心形”區(qū)域的面積大于3.【詳解】①:由于曲線,當時,;當時,;當時,;由于圖形的對稱性可知,沒有其他的整點在曲線上,故曲線恰好經(jīng)過6個整點:,,,,,,所以①正確;②:由圖知,到原點距離的最大值是在時,由基本不等式,當時,,所以即,所以②正確;③:由①知長方形CDFE的面積為2,三角形BCE的面積為1,所以曲線C所圍成的“心形”區(qū)域的面積大于3,故③錯誤;故答案為:①②.【點睛】找準圖形的關(guān)鍵信息,比如對稱性,整點,內(nèi)接多邊形是解決本題的關(guān)鍵.14、【解析】建立合適空間直角坐標系,分別表示出點的坐標,然后求解出平面的一個法向量,利用公式求解出點到平面的距離.【詳解】以AB的中點O為坐標原點,分別以O(shè)E,OB所在的直線為x軸、y軸,過垂直于平面的方向為軸,建立如下圖所示的空間直角坐標系,則,,設(shè)平面ACE的法向量,則,即,令,∴故點D到平面ACE的距離.故答案:.15、【解析】由已知,第組中最后一個數(shù)即為前組數(shù)的個數(shù)和,由此可求得第21組的最后一個數(shù),從而就可得第22組的第一個數(shù).【詳解】由條件可知,第21組的最后一個數(shù)為,所以第22組的第1個數(shù)為.故答案為:16、##【解析】取的中點,的中點,以所在直線為軸,以所在直線為軸,以所在直線為軸,建立空間直角坐標系,設(shè),根據(jù)求出,再由空間向量的數(shù)量積即可求解.【詳解】取的中點,的中點,如圖以所在直線為軸,以所在直線為軸,以所在直線為軸,建立空間直角坐標系,不妨設(shè),則,,,由,即,解得,所以,故,設(shè)為平面ACQ的一個法向量,因為,,由,即,所以,設(shè)直線AP與平面ACQ所成角為,則.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)或【解析】(1)根據(jù)橢圓的焦距為2,離心率為,求出,,即可求橢圓的方程;(2)設(shè)直線方程為,代入橢圓方程,由得,利用韋達定理,化簡可得,求出,即可求直線的方程.試題解析:(1)設(shè)橢圓方程為,因為,所以,所求橢圓方程為.(2)由題得直線l的斜率存在,設(shè)直線l方程為y=kx+1,則由得,且.設(shè),則由得,又,所以消去得,解得,,所以直線的方程為,即或.18、(1)(2)【解析】(1)解不等式得到解集,根據(jù)題意列出不等式組,求出的取值范圍;(2)先解不等式,再根據(jù)充分不必要條件得到是的真子集,進而求出的取值范圍.【小問1詳解】因為,由可得:,因為“,”為真命題,所以,即,解得:.即的取值范圍是.【小問2詳解】因為,由可得:,,因為是的充分不必要條件,所以是的真子集,所以(等號不同時?。?,解得:,即的取值范圍是.19、(1)an=n,bn=(2)證明見解析【解析】(1)設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q,q>0,由等差數(shù)列和等比數(shù)列的通項公式及前n項和公式,列出方程組求解即可得答案;(2)求出,利用裂項相消求和法求出前項和為,即可證明【小問1詳解】解:設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q,q>0,選①:,又,,可得1+5d=3q,1+4d=5d,解得d=1,q=2,則an=1+n﹣1=n,bn=;選②:,又a1=b1=1,a6=3b2,可得1+5d=3q,q4=4(q3﹣q2),解得d=1,q=2,則an=1+n﹣1=n,bn=;選③:,又a1=b1=1,a6=3b2,可得1+5d=3q,8+28d=6(3+3d),解得d=1,q=2,則an=1+n﹣1=n,bn=;小問2詳解】證明:由(1)知,,,所以20、(1)(2)(3)【解析】(1)直接利用數(shù)列的遞推關(guān)系式,結(jié)合等差數(shù)列的定義,即可求得數(shù)列的通項公式;(2)化簡,結(jié)合裂項相消法求出數(shù)列的和;(3)利用分組法求得,結(jié)合,即可求得的最小值.【小問1詳解】解:因為各項都為正數(shù)的數(shù)列的前項和為,且滿足,當時,解得;當時,;兩式相減可得,整理得(常數(shù)),故數(shù)列是以2為首項,2為公差的等差數(shù)列;所以.【小問2詳解】解:由,可得,所以,所以.【小問3詳解】解:由,可得,所以當為偶數(shù)時,,因為,且為偶數(shù),所以的最小值為48;當為奇數(shù)時,,不存在最小的值,故當為48時,滿足條件.21、(Ⅰ)或;(Ⅱ).【解析】(Ⅰ)設(shè)等比數(shù)列的公比為q,由已知建立方程組,求得數(shù)列的首項和公比,從而求得數(shù)列的通項;(Ⅱ)由(Ⅰ)及已知可得和(),運用錯位相減法可求得數(shù)列的和【詳解】解:(Ⅰ)設(shè)等比數(shù)列的公比為q,由,可得,記為①又因為,可得,即記為②,由①②可得或,故的通項公式為或(Ⅱ)由(Ⅰ)及可知,所以(),所以③④③-④得,所以【點睛】方法點睛:數(shù)列求和的常用方法:(1)公式法:即直接用等差、等比數(shù)列的求和公式求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論