版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
吳忠高級中學2023年數(shù)學高二上期末考試試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知兩圓相交于兩點,,兩圓圓心都在直線上,則值為()A. B.C. D.2.隨機抽取甲乙兩位同學連續(xù)9次成績(單位:分),得到如圖所示的成績莖葉圖,關于這9次成績,則下列說法正確的是()A.甲成績的中位數(shù)為33 B.乙成績的極差為40C.甲乙兩人成績的眾數(shù)相等 D.甲成績的平均數(shù)低于乙成績的平均數(shù)3.已知空間向量,則()A. B.C. D.4.加斯帕爾·蒙日(圖1)是18~19世紀法國著名的幾何學家,他在研究圓錐曲線時發(fā)現(xiàn):橢圓的任意兩條互相垂直的切線的交點都在同一個圓上,其圓心是橢圓的中心,這個圓被稱為“蒙日圓”(圖2).則橢圓的蒙日圓的半徑為()A.3 B.4C.5 D.65.在試驗“甲射擊三次,觀察中靶的情況”中,事件A表示隨機事件“至少中靶1次”,事件B表示隨機事件“正好中靶2次”,事件C表示隨機事件“至多中靶2次”,事件D表示隨機事件“全部脫靶”,則()A.A與C是互斥事件 B.B與C是互斥事件C.A與D是對立事件 D.B與D是對立事件6.已知點,則直線的傾斜角為()A. B.C. D.7.橢圓上一點到一個焦點的距離為,則到另一個焦點的距離是()A. B.C. D.8.已知圓與圓相交于A、B兩點,則圓上的動點P到直線AB距離的最大值為()A. B.C. D.9.在空間直角坐標系中,已知點M是點在坐標平面內(nèi)的射影,則的坐標是()A. B.C. D.10.甲乙兩名運動員在某項體能測試中的6次成績統(tǒng)計如表:甲9816151514乙7813151722分別表示甲乙兩名運動員這項測試成績的平均數(shù),分別表示甲乙兩名運動員這項測試成績的標準差,則有()A., B.,C., D.,11.在正三棱錐中,,且,M,N分別為BC,AD的中點,則直線AM和CN夾角的余弦值為()A. B.C. D.12.已知三棱錐O—ABC,點M,N分別為線段AB,OC的中點,且,,,用,,表示,則等于()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知球的半徑為3,則該球的體積為_________.14.函數(shù),若,則的值等于_______15.已知向量,,并且、共線且方向相同,則______.16.拋物線C:的焦點F,其準線過(-3,3),過焦點F傾斜角為的直線交拋物線于A,B兩點,則p=___________;弦AB的長為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)平面直角坐標系xOy中,點,,點M滿足.記M的軌跡為C.(1)說明C是什么曲線,并求C的方程;(2)已知經(jīng)過的直線l與C交于A,B兩點,若,求.18.(12分)設等比數(shù)列的前項和為,且()(1)求數(shù)列的通項公式;(2)在與之間插入個實數(shù),使這個數(shù)依次組成公差為的等差數(shù)列,設數(shù)列的前項和為,求證:19.(12分)已知空間中三點,,,設,(1)求向量與向量的夾角的余弦值;(2)若與互相垂直,求實數(shù)的值20.(12分)已知圓C經(jīng)過點,,且它的圓心C在直線上.(1)求圓C的方程;(2)過點作圓C的兩條切線,切點分別為M,N,求三角形PMN的面積.21.(12分)已知函數(shù)(為自然對數(shù)的底數(shù)).(1)求函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)有且僅有2個零點,求實數(shù)的值.22.(10分)如圖,在四棱錐中,底面ABCD,,,,(1)證明:;(2)當PB的長為何值時,直線AB與平面PCD所成角的正弦值為?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由相交弦的性質(zhì),可得與直線垂直,且的中點在這條直線上;由與直線垂直,可得,解可得的值,即可得的坐標,進而可得中點的坐標,代入直線方程可得;進而將、相加可得答案【詳解】根據(jù)題意,由相交弦的性質(zhì),相交兩圓的連心線垂直平分相交弦,可得與直線垂直,且的中點在這條直線上;由與直線垂直,可得,解可得,則,故中點為,且其在直線上,代入直線方程可得,1,可得;故;故選:A【點睛】方法點睛:解答圓和圓的位置關系時,要注意利用平面幾何圓的知識來分析解答.2、D【解析】按照莖葉圖所給的數(shù)據(jù)計算即可.【詳解】由莖葉圖可知,甲的成績?yōu)椋?1,22,23,24,32,32,33,41,52,其中位數(shù)為32,眾數(shù)為32,平均數(shù)為;乙的成績?yōu)椋?0,22,31,32,35,42,42,50,52,極差為52-10=42,眾數(shù)為42,平均數(shù)為;由以上數(shù)據(jù)可知,A錯誤,B錯誤,C錯誤,D正確;故選:D.3、C【解析】A利用向量模長的坐標表示判斷;B根據(jù)向量平行的判定,是否存在實數(shù)使即可判斷;C向量數(shù)量積的坐標表示求即可判斷;D利用向量坐標的線性運算及數(shù)量積的坐標表示求即可.【詳解】因為,所以A不正確:因為不存在實數(shù)使,所以B不正確;因為,故,所以C正確;因為,所以,所以D不正確故選:C4、A【解析】由蒙日圓的定義,確定出圓上的一點即可求出圓的半徑.【詳解】由蒙日圓的定義,可知橢圓的兩條切線的交點在圓上,所以,故選:A5、C【解析】根據(jù)互斥事件、對立事件的定義即可求解.【詳解】解:因為A與C,B與C可能同時發(fā)生,故選項A、B不正確;B與D不可能同時發(fā)生,但B與D不是事件的所有結(jié)果,故選項D不正確;A與D不可能同時發(fā)生,且A與D為事件的所有結(jié)果,故選項C正確故選:C.6、A【解析】由兩點坐標,求出直線的斜率,利用,結(jié)合傾斜角的范圍即可求解.【詳解】設直線AB的傾斜角為,因為,所以直線AB的斜率,即,因為,所以.故選:A7、B【解析】利用橢圓的定義可得結(jié)果.【詳解】在橢圓中,,由橢圓的定義可知,到另一個焦點的距離是.故選:B.8、A【解析】判斷圓與的位置并求出直線AB方程,再求圓心C到直線AB距離即可計算作答.【詳解】圓的圓心,半徑,圓的圓心,半徑,,,即圓與相交,直線AB方程為:,圓的圓心,半徑,點C到直線AB距離的距離,所以圓C上的動點P到直線AB距離的最大值為.故選:A9、C【解析】點在平面內(nèi)的射影是坐標不變,坐標為0的點.【詳解】點在坐標平面內(nèi)的射影為,故點M的坐標是故選:C10、B【解析】根據(jù)給定統(tǒng)計表計算、,再比較、大小判斷作答.【詳解】依題意,,,,,所以,.故選:B11、B【解析】由題意可得兩兩垂直,所以以為原點,所在的直線分別為軸,建立空間直角坐標系,利用空間向量求解【詳解】因為,所以兩兩垂直,所以以為原點,所在的直線分別為軸,建立空間直角坐標系,如圖所示,因為,所以,因為M,N分別為BC,AD的中點,所以,所以,設直線AM和CN所成的角為,則,所以直線AM和CN夾角的余弦值為,故選:B12、A【解析】利用空間向量基本定理進行計算.【詳解】.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)球的體積公式計算可得;【詳解】解:因為球的半徑,所以球的體積;故答案為:14、【解析】對函數(shù)進行求導,把代入導函數(shù)中,化簡即可求出的值.【詳解】函數(shù).故答案為:.15、4【解析】根據(jù)空間向量共線基本定理,可設.由坐標運算求得的值,進而求得.即可求得的值.【詳解】根據(jù)空間向量共線基本定理,可設由向量的坐標運算可得解方程可得所以.故答案為:【點睛】本題考查了空間向量共線基本定理的應用,根據(jù)向量的共線定理求參數(shù),屬于基礎題.16、①.6;②.48.【解析】先通過準線求出p,寫出拋物線方程和直線方程,聯(lián)立得出,進而求出弦AB的長.【詳解】由知準線方程為,又準線過(-3,3),可得,;焦點坐標為,故直線方程為,和拋物線方程聯(lián)立,,得,故,又.故答案為:6;48.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)C是以點,為左右焦點的橢圓,(2)【解析】(1)根據(jù)橢圓的定義即可得到答案.(2)當垂直于軸時,,舍去.當不垂直于軸時,可設,再根據(jù)題意結(jié)合韋達定理求解即可.【小問1詳解】因為,,所以C是以點,為左右焦點的橢圓.于是,,故,因此C的方程為.【小問2詳解】當垂直于軸時,,,舍去.當不垂直于軸時,可設,代入可得.因為,設,,則,.因為,所以.同理.因此.由可得,,于是.根據(jù)橢圓定義可知,于是.18、(1)(2)見解析【解析】(1)由兩式相減得,所以()因為等比,且,所以,所以故(2)由題設得,所以,所以,則,所以19、(1);(2)或.【解析】(1)坐標表示出、,利用向量夾角的坐標表示求夾角余弦值;(2)坐標表示出k+、k-2,利用向量垂直的坐標表示列方程求的值.【詳解】由題設,=(1,1,0),=(-1,0,2)(1)cosθ=,所以和的夾角余弦值為.(2)k+=k(1,1,0)+(-1,0,2)=(k-1,k,2),k-2=(k+2,k,-4),又(k+)⊥(k-2),則(k-1,k,2)·(k+2,k,-4)=(k-1)(k+2)+k2-8=2k2+k-10=0,解得k=-或2.20、(1);(2).【解析】(1)由題設知,設圓心,應用兩點距離公式列方程求參數(shù)a,進而確定圓心坐標、半徑,寫出圓C的方程;(2)利用兩點距離公式、切線的性質(zhì)可得、,再應用三角形面積公式求三角形PMN的面積.【小問1詳解】由已知,可設圓心,且,從而有,解得.所以圓心,半徑.所以,圓C的方程為.【小問2詳解】連接PC,CM,CN,MN,由(1)知:圓心,半徑.所以.又PM,PN是圓C的切線,所以,,則,,所以,所以.21、(1)函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,(2)【解析】(1)利用導數(shù)求得的單調(diào)區(qū)間.(2)利用導數(shù)研究的單調(diào)性、極值,從而求得的值.【小問1詳解】由,得,令,得或;令,得.∴函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,.【小問2詳解】∵,∴.當時,;當時,∴的單調(diào)遞減區(qū)間為,;單調(diào)遞增區(qū)間為.∴的極小值為,極大值為.當時,;當時,.又∵函數(shù)有且僅有2個零點,∴實數(shù)的值為.22、(1)證明見解析(2)【解析】(1)由線面垂直的判斷定理證明平面PAB,再由線面垂直的性質(zhì)定理即可證明;(2)以A為原點,AB,AC,AP分別為x軸,y軸,z軸,建立空間直角坐標系,設,求出平面PCD的法向量的坐標,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 脫貧戶信息保密協(xié)議書
- 集體勞動合同協(xié)商會議記錄
- 餐飲加盟簡易合同范例
- 社區(qū)勞動協(xié)議合同范例
- 采購恒溫設備合同范例
- 除草打農(nóng)藥合同范例
- 長期合同與固定合同范例
- 模特租用合同范例
- 上海廣告設計定制合同范例
- 維修雨水篦子合同范例
- 信訪論文資料
- eviews操作說明教學課件
- “東數(shù)西算”全面解讀學習課件
- 經(jīng)濟博弈論(謝織予)課后答案及補充習題答案
- 導游考試指南:一個月過北京導游考試
- 基于分形結(jié)構的多頻與寬帶天線技術研究
- 人間生活-中國部分+課件高中美術湘美版(2019)美術鑒賞1
- YY/T 1771-2021彎曲-自由恢復法測試鎳鈦形狀記憶合金相變溫度
- JJF 1874-2020(自動)核酸提取儀校準規(guī)范
- GB/T 7378-2012表面活性劑堿度的測定滴定法
- GB/T 37762-2019同步調(diào)相機組保護裝置通用技術條件
評論
0/150
提交評論