版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
天一大聯(lián)考2024屆高二數學第一學期期末考試試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知實數,滿足不等式組,則的最小值為()A2 B.3C.4 D.52.若直線的斜率,則直線的傾斜角的取值范圍是()A. B.C. D.3.已知隨機變量X的分布列如表所示,則()X123Pa2a3aA. B.C. D.4.已知數列滿足,,則()A. B.C. D.5.如圖,在直三棱柱中,且,點E為中點.若平面過點E,且平面與直線AB所成角和平面與平面所成銳二面角的大小均為30°,則這樣的平面有()A.1個 B.2個C.3個 D.4個6.某超市收銀臺排隊等候付款的人數及其相應概率如下:排隊人數01234概率0.10.16030.30.10.04則至少有兩人排隊的概率為()A.0.16 B.0.26C.0.56 D.0.747.如圖所示,在平行六面體中,,,,點是的中點,點是上的點,且,則向量可表示為()A. B.C. D.8.已知三棱錐O—ABC,點M,N分別為線段AB,OC的中點,且,,,用,,表示,則等于()A. B.C. D.9.“﹣3<m<4”是“方程表示橢圓”的()條件A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要10.設橢圓:的右頂點為,右焦點為,為橢圓在第二象限內的點,直線交橢圓于點,為原點,若直線平分線段,則橢圓的離心率為A. B.C. D.11.為了調查全國人口的壽命,抽查了11個?。ㄊ校┑?500名城鎮(zhèn)居民,這2500名城鎮(zhèn)居民的壽命的全體是()A.總體 B.個體C.樣本 D.樣本容量12.已知拋物線上的點到該拋物線焦點的距離為,則拋物線的方程是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設分別是平面的法向量,若,則實數的值是________14.如圖三角形數陣:132456109871112131415……按照自上而下,自左而右的順序,位于第行的第列,則______.15.已知原命題為“若,則”,則它的逆否命題是__________(填寫”真命題”或”假命題”)16.已知的頂點A(1,5),邊AB上的中線CM所在的直線方程為,邊AC上的高BH所在直線方程為,求(1)頂點C的坐標;(2)直線BC的方程;三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知直線l經過兩條直線2x﹣y﹣3=0和4x﹣3y﹣5=0的交點,且與直線x+y﹣2=0垂直(1)求直線l的方程;(2)若圓C過點(1,0),且圓心在x軸的正半軸上,直線l被該圓所截得的弦長為,求圓C的標準方程18.(12分)已知橢圓:,是坐標原點,,分別為橢圓的左、右焦點,點在橢圓上,過作的外角的平分線的垂線,垂足為,且(1)求橢圓方程:(2)設直線:與橢圓交于,兩點,且直線,,的斜率之和為0(其中為坐標原點)①求證:直線經過定點,并求出定點坐標:②求面積的最大值19.(12分)設正項數列的前項和為,已知,(1)求數列的通項公式;(2)數列滿足,數列的前項和為,若不等式對一切恒成立,求的取值范圍20.(12分)已知橢圓長軸長為4,A,B分別為左、右頂點,P為橢圓上不同于A,B的動點,且點在橢圓上,其中e為橢圓的離心率(1)求橢圓的標準方程;(2)直線AP與直線(m為常數)交于點Q,①當時,設直線OQ的斜率為,直線BP的斜率為.求證:為定值;②過Q與PB垂直的直線l是否過定點?如果是,請求出定點坐標;如果不是,請說明理由21.(12分)已知函數()(1)討論函數的單調區(qū)間;(2)若有兩個極值點,(),且不等式恒成立,求實數m的取值范圍22.(10分)已知數列滿足:(1)求數列的通項公式;(2)設數列的前n項和為.若對恒成立.求正整數m的最大值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】畫出可行域,找到最優(yōu)解,得最值.【詳解】畫出不等式組對應的可行域如下:平行移動直線,當直線過點時,.故選:B.2、B【解析】根據斜率的取值范圍,結合來求得傾斜角的取值范圍.【詳解】設傾斜角為,因為,且,所以.故選:B3、C【解析】根據分布列性質計算可得;【詳解】解:依題意,解得,所以;故選:C4、A【解析】根據遞推關系依次求出即可.【詳解】,,,,,.故選:A.5、B【解析】構造出長方體,取中點連接然后利用臨界位置分情況討論即可.【詳解】如圖,構造出長方體,取中點,連接則所有過點與成角的平面,均與以為軸的圓錐相切,過點繞且與成角,當與水平面垂直且在面的左側(在長方體的外面)時,與面所成角為75°(與面成45°,與成30°),過點繞旋轉,轉一周,90°顯然最大,到了另一個邊界(在面與之間)為15度,即與面所成角從75°→90°→15°→90°→75°變化,此過程中,有兩次角為30
,綜上,這樣的平面α有2個,故選:B.6、D【解析】利用互斥事件概率計算公式直接求解【詳解】由某超市收銀臺排隊等候付款的人數及其相應概率表,得:至少有兩人排隊的概率為:故選:D【點睛】本題考查概率的求法、互斥事件概率計算公式,考查運算求解能力,是基礎題7、D【解析】根據空間向量加法和減法的運算法則,以及向量的數乘運算即可求解.【詳解】解:因為在平行六面體中,,,,點是的中點,點是上的點,且,所以,故選:D.8、A【解析】利用空間向量基本定理進行計算.【詳解】.故選:A9、B【解析】求出方程表示橢圓的充要條件是且,由此可得答案.【詳解】因為方程表示橢圓的充要條件是,解得且,所以“﹣3<m<4”是“方程表示橢圓”的必要不充分條件.故選:B【點睛】本題考查了由方程表示橢圓求參數的范圍,考查了充要條件和必要不充分條件,本題易錯點警示:漏掉,本題屬于基礎題.10、B【解析】如上圖,設AC中點為M,連OM,則OM為的中位線,易得∽,且,即可得,選B.點睛:本題主要考查橢圓的方程和性質,主要是離心率的求法,本題的關鍵是利用中位線定理和相似三角形定理11、C【解析】由樣本的概念即知.【詳解】由題意可知,這2500名城鎮(zhèn)居民的壽命的全體是樣本.12、B【解析】由拋物線知識得出準線方程,再由點到焦點的距離等于其到準線的距離求出,從而得出方程.【詳解】由題意知,則準線為,點到焦點的距離等于其到準線的距離,即,∴,則故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】根據分別是平面的法向量,且,則有求解.【詳解】因為分別是平面的法向量,且所以所以解得故答案為:4【點睛】本題主要考查空間向量垂直,還考查了運算求解的能力,屬于基礎題.14、【解析】由題意可知到第行結束一共有個數字,由此可知在第行;又由圖可知,奇數行從左到右是從小到大排列,偶數行從左到右是從大到小排列,第行個數字從大到小排列,由此可知在到數第列,據此即可求出,進而求出結果.【詳解】由圖可知,第1行有1個數字,第2行有2個數字,第2行有3個數字,……第行有個數字,由此規(guī)律可知,到第行結束一共有個數字;又當時,,所以第行結束一共有個數字;當時,,所以在第行,故;由圖可知,奇數行從左到右是從小到大排列,偶數行從左到右是從大到小排列,第行是偶數行,共個數字,從大到小排列,所以在倒數第列,所以,所以.故答案為:.15、真命題【解析】先判斷原命題的真假,再由逆否命題與原命題是等價命題判斷.【詳解】因為命題“若,則”是真命題,且逆否命題與原命題是等價命題,所以它的逆否命題是真命題,故答案為:真命題16、(1);(2).【解析】(1)設出點C的坐標,進而根據點C在中線上及求得答案;(2)設出點B的坐標,進而求出點M的坐標,然后根據中線的方程及求出點B的坐標,進而求出直線BC的方程.【小問1詳解】設C點的坐標為,則由題知,即.【小問2詳解】設B點的坐標為,則中點M坐標代入中線CM方程則由題知,即,又,則,所以直線BC方程為.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)先求得直線和直線的交點坐標,再用點斜式求得直線的方程.(2)設圓的標準方程為,根據已知條件列方程組,求得,由此求得圓的標準方程.【小問1詳解】.直線的斜率為,所以直線的斜率為,所以直線的方程為.【小問2詳解】設圓的標準方程為,則,所以圓的標準方程為.18、(1);(2)①證明見解析,;②.【解析】(1)根據橢圓的定義以及角平分線的性質可得,,結合點在橢圓上,以及即可求出的值,進而可得橢圓的方程.(2)①設,,聯(lián)立直線與橢圓方程,求得,,利用斜率之和等于得出關于的方程,解得即可得所過的定點,②由弦長公式求出,點到直線的距離公式求得高,由面積公式表示三角形的面積,利用基本不等式即可求最值.【詳解】(1)如圖,由題意可知,由橢圓定義知,則,連接,所以,所以又在橢圓上則,解得:,,所以橢圓的方程為:;(2)①證明:設,,聯(lián)立,整理可得:,所以,可得,,,設直線,,的斜率為,,,因為直線,,的斜率之和為0,所以,即所以,由,所以,所以直線恒過定點;②由①可得:,原點到直線的距離,所以,因為,當且僅當時,即,即時取等號,所以,即面積的最大值為1【點睛】解決圓錐曲線中的范圍或最值問題時,若題目的條件和結論能體現出明確的函數關系,則可先建立目標函數,再求這個函數的最值.在利用代數法解決最值與范圍問題時常從以下幾個方面考慮:19、(1);(2).【解析】(1)利用的關系求的通項公式;(2)由(1)得,應用錯位相減法求,根據不等式,討論n的奇偶性求參數范圍即可.【小問1詳解】由題設,當時,則,整理得,,則,當時,,又得:,故,所以數列是首項、公差均為2的等差數列,故.【小問2詳解】由(1),,所以,,兩式相減得,故,所以令,易知:單調遞增,若為偶數,則,所以;若為奇數,則,所以,即綜上,20、(1)(2)①證明見解析;②直線過定點;【解析】(1)依題意得到方程組,解得,即可求出橢圓方程;(2)①由(1)可得,,設,,表示出直線的方程,即可求出點坐標,從而得到、,即可求出;②在直線方程中令,即可得到的坐標,再求出直線的斜率,即可得到直線的方程,從而求出定點坐標;【小問1詳解】解:依題意可得,即,解得或(舍去),所以,所以橢圓方程為【小問2詳解】解:①由(1)可得,,設,,則直線的方程為,令則,所以,,所以,又點在橢圓上,所以,即,所以,即為定值;②因為直線的方程為,令則,因為,所以,所以直線的方程為,即又,所以,令,解得,所以直線過定點;21、(1)時,在遞增,時,在遞減,在遞增(2)【解析】(1)求出函數導數,分和兩種情況討論可得單調性;(2)根據導數可得有兩個極值點等價于有兩不等實根,則可得出,進而得出,可得恒成立,等價于,構造函數求出最小值即可.【小問1詳解】的定義域是,,①時,,則,在遞增;②時,令,解得,令,解得,故在遞減,在遞增.綜上,時,在遞增時,在遞減,在遞增【小問2詳解】,定義域是,有2個極值點,,即,則有2個不相等實數根,,∴,,解得,且,,從而,由不等式恒成立,得恒成立
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《園林樹木》課程標準
- 2BizBoxERP用戶基礎手冊
- 三角形的翻折課件
- 第1單元 古代亞非文明(高頻選擇題50題)(原卷版)
- 2024年農業(yè)和農村檔案工作總結
- 七年級下《保護野生動物》蘇教版-課件
- 農業(yè)科創(chuàng):研發(fā)力量展示
- 機場服務行業(yè)銷售工作總結
- 資金借貸合同個人醫(yī)療保健費用貸款支出租賃保險三篇
- 初一生物教學工作總結實踐探索培養(yǎng)動手能力
- 員工月度績效考核管理辦法
- 2023年云南保山電力股份有限公司招聘筆試題庫及答案解析
- GB/T 41904-2022信息技術自動化基礎設施管理(AIM)系統(tǒng)要求、數據交換及應用
- GB/T 41908-2022人類糞便樣本采集與處理
- GB/T 3745.1-1983卡套式三通管接頭
- GB/T 26003-2010無負壓管網增壓穩(wěn)流給水設備
- 信息系統(tǒng)運維服務方案
- 簡支梁、懸臂梁撓度計算程序(自動版)
- DB44∕T 2149-2018 森林資源規(guī)劃設計調查技術規(guī)程
- 統(tǒng)編版小學四年級語文上冊五六單元測試卷(附答案)
- 商票保貼協(xié)議
評論
0/150
提交評論