七年級(jí)下冊(cè)期末壓軸題數(shù)學(xué)試題及答案_第1頁(yè)
七年級(jí)下冊(cè)期末壓軸題數(shù)學(xué)試題及答案_第2頁(yè)
七年級(jí)下冊(cè)期末壓軸題數(shù)學(xué)試題及答案_第3頁(yè)
七年級(jí)下冊(cè)期末壓軸題數(shù)學(xué)試題及答案_第4頁(yè)
七年級(jí)下冊(cè)期末壓軸題數(shù)學(xué)試題及答案_第5頁(yè)
已閱讀5頁(yè),還剩44頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

一、解答題1.如圖,在平面直角坐標(biāo)系中,,CD//x軸,CD=AB.(1)求點(diǎn)D的坐標(biāo):(2)四邊形OCDB的面積四邊形OCDB;(3)在y軸上是否存在點(diǎn)P,使△PAB=四邊形OCDB;若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.2.如圖1,點(diǎn)在直線上,點(diǎn)在直線上,點(diǎn)在,之間,且滿足.(1)證明:;(2)如圖2,若,,點(diǎn)在線段上,連接,且,試判斷與的數(shù)量關(guān)系,并說(shuō)明理由;(3)如圖3,若(為大于等于的整數(shù)),點(diǎn)在線段上,連接,若,則______.3.綜合與探究(問(wèn)題情境)王老師組織同學(xué)們開(kāi)展了探究三角之間數(shù)量關(guān)系的數(shù)學(xué)活動(dòng)(1)如圖1,,點(diǎn)、分別為直線、上的一點(diǎn),點(diǎn)為平行線間一點(diǎn),請(qǐng)直接寫(xiě)出、和之間的數(shù)量關(guān)系;(問(wèn)題遷移)(2)如圖2,射線與射線交于點(diǎn),直線,直線分別交、于點(diǎn)、,直線分別交、于點(diǎn)、,點(diǎn)在射線上運(yùn)動(dòng),①當(dāng)點(diǎn)在、(不與、重合)兩點(diǎn)之間運(yùn)動(dòng)時(shí),設(shè),.則,,之間有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由.②若點(diǎn)不在線段上運(yùn)動(dòng)時(shí)(點(diǎn)與點(diǎn)、、三點(diǎn)都不重合),請(qǐng)你畫(huà)出滿足條件的所有圖形并直接寫(xiě)出,,之間的數(shù)量關(guān)系.4.已知,AB∥CD,點(diǎn)E為射線FG上一點(diǎn).(1)如圖1,若∠EAF=25°,∠EDG=45°,則∠AED=.(2)如圖2,當(dāng)點(diǎn)E在FG延長(zhǎng)線上時(shí),此時(shí)CD與AE交于點(diǎn)H,則∠AED、∠EAF、∠EDG之間滿足怎樣的關(guān)系,請(qǐng)說(shuō)明你的結(jié)論;(3)如圖3,當(dāng)點(diǎn)E在FG延長(zhǎng)線上時(shí),DP平分∠EDC,∠AED=32°,∠P=30°,求∠EKD的度數(shù).5.如圖,直線AB∥直線CD,線段EF∥CD,連接BF、CF.(1)求證:∠ABF+∠DCF=∠BFC;(2)連接BE、CE、BC,若BE平分∠ABC,BE⊥CE,求證:CE平分∠BCD;(3)在(2)的條件下,G為EF上一點(diǎn),連接BG,若∠BFC=∠BCF,∠FBG=2∠ECF,∠CBG=70°,求∠FBE的度數(shù).6.如圖1,已知直線m∥n,AB是一個(gè)平面鏡,光線從直線m上的點(diǎn)O射出,在平面鏡AB上經(jīng)點(diǎn)P反射后,到達(dá)直線n上的點(diǎn)Q.我們稱OP為入射光線,PQ為反射光線,鏡面反射有如下性質(zhì):入射光線與平面鏡的夾角等于反射光線與平面鏡的夾角,即∠OPA=∠QPB.(1)如圖1,若∠OPQ=82°,求∠OPA的度數(shù);(2)如圖2,若∠AOP=43°,∠BQP=49°,求∠OPA的度數(shù);(3)如圖3,再放置3塊平面鏡,其中兩塊平面鏡在直線m和n上,另一塊在兩直線之間,四塊平面鏡構(gòu)成四邊形ABCD,光線從點(diǎn)O以適當(dāng)?shù)慕嵌壬涑龊?,其傳播路徑為O→P→Q→R→O→P→…試判斷∠OPQ和∠ORQ的數(shù)量關(guān)系,并說(shuō)明理由.7.我們知道,任意一個(gè)正整數(shù)都可以進(jìn)行這樣的分解:(,是正整數(shù),且),在的所有這種分解中,如果,兩因數(shù)之差的絕對(duì)值最小,我們就稱是的最佳分解,并規(guī)定:.例如:可分解成,或,因?yàn)椋允堑淖罴逊纸?,所以?)填空:;;(2)一個(gè)兩位正整數(shù)(,,,為正整數(shù)),交換其個(gè)位上的數(shù)字與十位上的數(shù)字得到的新數(shù)減去原數(shù)所得的差為,求出所有的兩位正整數(shù);并求的最大值;(3)填空:①;②;8.規(guī)定:求若干個(gè)相同的有理數(shù)(均不等于0)的除法運(yùn)算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,類比有理數(shù)的乘方,我們把2÷2÷2記作2③,讀作“2的圈3次方,”(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)記作(﹣3)④,讀作:“(﹣3)的圈4次方”.一般地,把個(gè)記作a?,讀作“a的圈n次方”(初步探究)(1)直接寫(xiě)出計(jì)算結(jié)果:2③,(﹣)③.(深入思考)2④我們知道,有理數(shù)的減法運(yùn)算可以轉(zhuǎn)化為加法運(yùn)算,除法運(yùn)算可以轉(zhuǎn)化為乘法運(yùn)算,有理數(shù)的除方運(yùn)算如何轉(zhuǎn)化為乘方運(yùn)算呢?(2)試一試,仿照上面的算式,將下列運(yùn)算結(jié)果直接寫(xiě)成冪的形式.5⑥;(﹣)⑩.(3)猜想:有理數(shù)a(a≠0)的圈n(n≥3)次方寫(xiě)成冪的形式等于多少.(4)應(yīng)用:求(-3)8×(-3)⑨-(﹣)9×(﹣)⑧9.據(jù)說(shuō),我國(guó)著名數(shù)學(xué)家華羅庚在一次訪問(wèn)途中,看到飛機(jī)鄰座的乘客閱讀的雜志上有一道智力題:一個(gè)數(shù)32768,它是一個(gè)正數(shù)的立方,希望求它的立方根,華羅庚不假思索給出了答案,鄰座乘客非常驚奇,很想得知其中的奧秘,你知道華羅庚是怎樣準(zhǔn)確計(jì)算出的嗎?請(qǐng)按照下面的問(wèn)題試一試:(1)由,因?yàn)椋?qǐng)確定是______位數(shù);(2)由32768的個(gè)位上的數(shù)是8,請(qǐng)確定的個(gè)位上的數(shù)是________,劃去32768后面的三位數(shù)768得到32,因?yàn)?,?qǐng)確定的十位上的數(shù)是_____________(3)已知13824和分別是兩個(gè)數(shù)的立方,仿照上面的計(jì)算過(guò)程,請(qǐng)計(jì)算:=____;10.對(duì)于實(shí)數(shù)a,我們規(guī)定:用符號(hào)表示不大于的最大整數(shù),稱為a的根整數(shù),例如:,=3.(1)仿照以上方法計(jì)算:=______;=_____.(2)若,寫(xiě)出滿足題意的x的整數(shù)值______.如果我們對(duì)a連續(xù)求根整數(shù),直到結(jié)果為1為止.例如:對(duì)10連續(xù)求根整數(shù)2次=1,這時(shí)候結(jié)果為1.(3)對(duì)100連續(xù)求根整數(shù),____次之后結(jié)果為1.(4)只需進(jìn)行3次連續(xù)求根整數(shù)運(yùn)算后結(jié)果為1的所有正整數(shù)中,最大的是____.11.給定一個(gè)十進(jìn)制下的自然數(shù),對(duì)于每個(gè)數(shù)位上的數(shù),求出它除以的余數(shù),再把每一個(gè)余數(shù)按照原來(lái)的數(shù)位順序排列,得到一個(gè)新的數(shù),定義這個(gè)新數(shù)為原數(shù)的“模二數(shù)”,記為.如.對(duì)于“模二數(shù)”的加法規(guī)定如下:將兩數(shù)末位對(duì)齊,從右往左依次將相應(yīng)數(shù)位.上的數(shù)分別相加,規(guī)定:與相加得;與相加得與相加得,并向左邊一位進(jìn).如的“模二數(shù)”相加的運(yùn)算過(guò)程如下圖所示.根據(jù)以上材料,解決下列問(wèn)題:(1)的值為_(kāi)_____,的值為_(kāi)(2)如果兩個(gè)自然數(shù)的和的“模二數(shù)”與它們的“模二數(shù)”的和相等,則稱這兩個(gè)數(shù)“模二相加不變”.如,因?yàn)?,所以,即與滿足“模二相加不變”.①判斷這三個(gè)數(shù)中哪些與“模二相加不變”,并說(shuō)明理由;②與“模二相加不變”的兩位數(shù)有______個(gè)12.若一個(gè)四位數(shù)t的前兩位數(shù)字相同且各位數(shù)字均不為0,則稱這個(gè)數(shù)為“前介數(shù)”;若把這個(gè)數(shù)的個(gè)位數(shù)字放到前三位數(shù)字組成的數(shù)的前面組成一個(gè)新的四位數(shù),則稱這個(gè)新的四位數(shù)為“中介數(shù)”;記一個(gè)“前介數(shù)”t與它的“中介數(shù)”的差為P(t).例如,5536前兩位數(shù)字相同,所以5536為“前介數(shù)”;則6553就為它的“中介數(shù)”,P(5536)=5536﹣6553=-1017.(1)P(2215)=,P(6655)=.(2)求證:任意一個(gè)“前介數(shù)”t,P(t)一定能被9整除.(3)若一個(gè)千位數(shù)字為2的“前介數(shù)”t能被6整除,它的“中介數(shù)”能被2整除,請(qǐng)求出滿足條件的P(t)的最大值.13.已知、兩點(diǎn)的坐標(biāo)分別為,,將線段水平向右平移到,連接,,得四邊形,且.(1)點(diǎn)的坐標(biāo)為_(kāi)_____,點(diǎn)D的坐標(biāo)為_(kāi)_____;(2)如圖1,軸于,上有一動(dòng)點(diǎn),連接、,求最小時(shí)點(diǎn)位置及其坐標(biāo),并說(shuō)明理由;(3)如圖2,為軸上一點(diǎn),若平分,且于,.求與之間的數(shù)量關(guān)系.14.問(wèn)題情境:(1)如圖1,,,.求度數(shù).小穎同學(xué)的解題思路是:如圖2,過(guò)點(diǎn)作,請(qǐng)你接著完成解答.問(wèn)題遷移:(2)如圖3,,點(diǎn)在射線上運(yùn)動(dòng),當(dāng)點(diǎn)在、兩點(diǎn)之間運(yùn)動(dòng)時(shí),,.試判斷、、之間有何數(shù)量關(guān)系?(提示:過(guò)點(diǎn)作),請(qǐng)說(shuō)明理由;(3)在(2)的條件下,如果點(diǎn)在、兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)與點(diǎn)、、三點(diǎn)不重合),請(qǐng)你猜想、、之間的數(shù)量關(guān)系并證明.15.如圖①,在平面直角坐標(biāo)系中,點(diǎn),,其中,是16的算術(shù)平方根,,線段由線段平移所得,并且點(diǎn)與點(diǎn)A對(duì)應(yīng),點(diǎn)與點(diǎn)對(duì)應(yīng).(1)點(diǎn)A的坐標(biāo)為;點(diǎn)的坐標(biāo)為;點(diǎn)的坐標(biāo)為;(2)如圖②,是線段上不同于的任意一點(diǎn),求證:;(3)如圖③,若點(diǎn)滿足,點(diǎn)是線段OA上一動(dòng)點(diǎn)(與點(diǎn)、A不重合),連交于點(diǎn),在點(diǎn)運(yùn)動(dòng)的過(guò)程中,是否總成立?請(qǐng)說(shuō)明理由.16.某水果店到水果批發(fā)市場(chǎng)采購(gòu)蘋(píng)果,師傅看中了甲、乙兩家某種品質(zhì)一樣的蘋(píng)果,零售價(jià)都為8元/千克,批發(fā)價(jià)各不相同,甲家規(guī)定:批發(fā)數(shù)量不超過(guò)100千克,全部按零價(jià)的九折優(yōu)惠;批發(fā)數(shù)量超過(guò)100千克全部按零售價(jià)的八五折優(yōu)惠,乙家的規(guī)定如下表:數(shù)量范圍(千克)不超過(guò)50的部分50以上但不超過(guò)150的部分150以上的部分價(jià)格(元)零售價(jià)的95%零售價(jià)的85%零售價(jià)的75%(1)如果師傅要批發(fā)240千克蘋(píng)果選擇哪家批發(fā)更優(yōu)惠?(2)設(shè)批發(fā)x千克蘋(píng)果(),問(wèn)師傅應(yīng)怎樣選擇兩家批發(fā)商所花費(fèi)用更少?17.如圖,在平面直角坐標(biāo)系中,四邊形各頂點(diǎn)的坐標(biāo)分別為,,,,現(xiàn)將四邊形經(jīng)過(guò)平移后得到四邊形,點(diǎn)的對(duì)應(yīng)點(diǎn)的坐標(biāo)為.(1)請(qǐng)直接寫(xiě)點(diǎn)、、的坐標(biāo);(2)求四邊形與四邊形重疊部分的面積;(3)在軸上是否存在一點(diǎn),連接、,使,若存在這樣一點(diǎn),求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.18.對(duì)于平面直角坐標(biāo)系xOy中的圖形G和圖形G上的任意點(diǎn)P(x,y),給出如下定義:將點(diǎn)P(x,y)平移到P'(x+t,y﹣t)稱為將點(diǎn)P進(jìn)行“t型平移”,點(diǎn)P'稱為將點(diǎn)P進(jìn)行“t型平移”的對(duì)應(yīng)點(diǎn);將圖形G上的所有點(diǎn)進(jìn)行“t型平移”稱為將圖形G進(jìn)行“t型平移”.例如,將點(diǎn)P(x,y)平移到P'(x+1,y﹣1)稱為將點(diǎn)P進(jìn)行“l(fā)型平移”,將點(diǎn)P(x,y)平移到P'(x﹣1,y+1)稱為將點(diǎn)P進(jìn)行“﹣l型平移”.已知點(diǎn)A(2,1)和點(diǎn)B(4,1).(1)將點(diǎn)A(2,1)進(jìn)行“l(fā)型平移”后的對(duì)應(yīng)點(diǎn)A'的坐標(biāo)為.(2)①將線段AB進(jìn)行“﹣l型平移”后得到線段A'B',點(diǎn)P1(1.5,2),P2(2,3),P3(3,0)中,在線段A′B′上的點(diǎn)是.②若線段AB進(jìn)行“t型平移”后與坐標(biāo)軸有公共點(diǎn),則t的取值范圍是.(3)已知點(diǎn)C(6,1),D(8,﹣1),點(diǎn)M是線段CD上的一個(gè)動(dòng)點(diǎn),將點(diǎn)B進(jìn)行“t型平移”后得到的對(duì)應(yīng)點(diǎn)為B',當(dāng)t的取值范圍是時(shí),B'M的最小值保持不變.19.某企業(yè)用規(guī)格是170cm×40cm的標(biāo)準(zhǔn)板材作為原材料,按照?qǐng)D①所示的裁法一或裁法二,裁剪出甲型與乙型兩種板材(單位:cm).(1)求圖中a、b的值;(2)若將40張標(biāo)準(zhǔn)板材按裁法一裁剪,5張標(biāo)準(zhǔn)板材按裁法二裁剪,裁剪后將得到的甲型與乙型板材做側(cè)面或底面,做成如圖②所示的豎式與橫式兩種無(wú)蓋的裝飾盒若干個(gè)(接縫處的長(zhǎng)度忽略不計(jì)).①一共可裁剪出甲型板材張,乙型板材張;②恰好一共可以做出豎式和橫式兩種無(wú)蓋裝飾盒子多少個(gè)?20.閱讀下列材料,解答下面的問(wèn)題:我們知道方程有無(wú)數(shù)個(gè)解,但在實(shí)際生活中我們往往只需求出其正整數(shù)解.例:由,得:,(x、y為正整數(shù))∴,則有.又為正整數(shù),則為正整數(shù).由2與3互質(zhì),可知:x為3的倍數(shù),從而x=3,代入∴2x+3y=12的正整數(shù)解為問(wèn)題:(1)請(qǐng)你寫(xiě)出方程的一組正整數(shù)解:.(2)若為自然數(shù),則滿足條件的x值為.(3)七年級(jí)某班為了獎(jiǎng)勵(lì)學(xué)習(xí)進(jìn)步的學(xué)生,購(gòu)買了單價(jià)為3元的筆記本與單價(jià)為5元的鋼筆兩種獎(jiǎng)品,共花費(fèi)35元,問(wèn)有幾種購(gòu)買方案?21.如圖,已知,,且滿足.(1)求、兩點(diǎn)的坐標(biāo);(2)點(diǎn)在線段上,、滿足,點(diǎn)在軸負(fù)半軸上,連交軸的負(fù)半軸于點(diǎn),且,求點(diǎn)的坐標(biāo);(3)平移直線,交軸正半軸于,交軸于,為直線上第三象限內(nèi)的點(diǎn),過(guò)作軸于,若,且,求點(diǎn)的坐標(biāo).22.如圖,在平面直角坐標(biāo)系中,已知,點(diǎn),,,,,滿足,(1)直接寫(xiě)出點(diǎn),,的坐標(biāo)及的面積;(2)如圖2,過(guò)點(diǎn)作直線,已知是上的一點(diǎn),且,求的取值范圍;(3)如圖3,是線段上一點(diǎn),①求,之間的關(guān)系;②點(diǎn)為點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),已知,求點(diǎn)的坐標(biāo).23.如圖,正方形ABCD的邊長(zhǎng)是2厘米,E為CD的中點(diǎn),Q為正方形ABCD邊上的一個(gè)動(dòng)點(diǎn),動(dòng)點(diǎn)Q以每秒1厘米的速度從A出發(fā)沿運(yùn)動(dòng),最終到達(dá)點(diǎn)D,若點(diǎn)Q運(yùn)動(dòng)時(shí)間為秒.(1)當(dāng)時(shí),平方厘米;當(dāng)時(shí),平方厘米;(2)在點(diǎn)Q的運(yùn)動(dòng)路線上,當(dāng)點(diǎn)Q與點(diǎn)E相距的路程不超過(guò)厘米時(shí),求的取值范圍;(3)若的面積為平方厘米,直接寫(xiě)出值.24.某工廠準(zhǔn)備用圖甲所示的A型正方形板材和B型長(zhǎng)方形板材,制作成圖乙所示的豎式和橫式兩種無(wú)蓋箱子.(1)若現(xiàn)有A型板材150張,B型板材300張,可制作豎式和橫式兩種無(wú)蓋箱子各多少個(gè)?(2)若該工廠準(zhǔn)備用不超過(guò)24000元資金去購(gòu)買A、B兩種型號(hào)板材,制作豎式、橫式箱子共100個(gè),已知A型板材每張20元,B型板材每張60元,問(wèn)最多可以制作豎式箱子多少個(gè)?(3)若該工廠新購(gòu)得65張規(guī)格為的C型正方形板材,將其全部切割成A型或B型板材(不計(jì)損耗),用切割的板材制作兩種類型的箱子,要求豎式箱子不少于10個(gè),且材料恰好用完,則最多可以制作豎式箱子多少個(gè)?25.對(duì)于實(shí)數(shù)x,若,則符合條件的中最大的正數(shù)為的內(nèi)數(shù),例如:8的內(nèi)數(shù)是5;7的內(nèi)數(shù)是4.(1)1的內(nèi)數(shù)是______,20的內(nèi)數(shù)是______,6的內(nèi)數(shù)是______;(2)若3是x的內(nèi)數(shù),求x的取值范圍;(3)一動(dòng)點(diǎn)從原點(diǎn)出發(fā),以3個(gè)單位/秒的速度按如圖1所示的方向前進(jìn),經(jīng)過(guò)秒后,動(dòng)點(diǎn)經(jīng)過(guò)的格點(diǎn)(橫,縱坐標(biāo)均為整數(shù)的點(diǎn))中能圍成的最大實(shí)心正方形的格點(diǎn)數(shù)(包括正方形邊界與內(nèi)部的格點(diǎn))為,例如當(dāng)時(shí),,如圖2①……;當(dāng)時(shí),,如圖2②,③;……①用表示的內(nèi)數(shù);②當(dāng)?shù)膬?nèi)數(shù)為9時(shí),符合條件的最大實(shí)心正方形有多少個(gè),在這些實(shí)心正方形的格點(diǎn)中,直接寫(xiě)出離原點(diǎn)最遠(yuǎn)的格點(diǎn)的坐標(biāo).(若有多點(diǎn)并列最遠(yuǎn),全部寫(xiě)出)26.小語(yǔ)爸爸開(kāi)了一家茶葉專賣店,包裝設(shè)計(jì)專業(yè)畢業(yè)的小語(yǔ)為爸爸設(shè)計(jì)了一款紙質(zhì)長(zhǎng)方體茶葉包包裝盒(紙片厚度不計(jì)).如圖,陰影部分是裁剪掉的部分,沿圖中實(shí)線折疊做成的長(zhǎng)方體紙盒的上下底面是正方形,有三處長(zhǎng)方形形狀的“接口”用來(lái)折疊后粘貼或封蓋.(1)若小語(yǔ)用長(zhǎng),寬的長(zhǎng)方形紙片,恰好能做成一個(gè)符合要求的包裝盒,盒高是盒底邊長(zhǎng)的倍,三處“接口”的寬度相等.則該茶葉盒的容積是多少?(2)小語(yǔ)爸爸的茶葉專賣店以每盒元購(gòu)進(jìn)一批茶葉,按進(jìn)價(jià)增加作為售價(jià),第一個(gè)月由于包裝粗糙,只售出不到一半但超過(guò)三分之一的量;第二個(gè)月采用了小語(yǔ)的包裝后,馬上售完了余下的茶葉,但每盒成本增加了元,售價(jià)仍不變,已知在整個(gè)買賣過(guò)程中共盈利元,求這批茶葉共進(jìn)了多少盒?27.對(duì)于平面直角坐標(biāo)系xOy中的任意兩點(diǎn)M(x1,y1),N(x2,y2),給出如下定義:將|x1﹣x2|稱為點(diǎn)M,N之間的“橫長(zhǎng)”,|y1﹣y2|稱為點(diǎn)M,N之間的縱長(zhǎng)”,點(diǎn)M與點(diǎn)N的“橫長(zhǎng)”與“縱長(zhǎng)”之和稱為“折線距離”,記作d(M,N)=|x1﹣x2|+|y1﹣y2|“.例如:若點(diǎn)M(﹣1,1),點(diǎn)N(2,﹣2),則點(diǎn)M與點(diǎn)N的“折線距離”為:d(M,N)=|﹣1﹣2|+|1﹣(﹣2)|=3+3=6.根據(jù)以上定義,解決下列問(wèn)題:已知點(diǎn)P(3,2).(1)若點(diǎn)A(a,2),且d(P,A)=5,求a的值;(2)已知點(diǎn)B(b,b),且d(P,B)<3,直接寫(xiě)出b的取值范圍;(3)若第一象限內(nèi)的點(diǎn)T與點(diǎn)P的“橫長(zhǎng)”與“縱長(zhǎng)”相等,且d(P,T)>5,簡(jiǎn)要分析點(diǎn)T的橫坐標(biāo)t的取值范圍.28.已知,在平面直角坐標(biāo)系中,AB⊥x軸于點(diǎn)B,點(diǎn)A滿足,平移線段AB使點(diǎn)A與原點(diǎn)重合,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)C.(1)則a=,b=,點(diǎn)C坐標(biāo)為;(2)如圖1,點(diǎn)D(m,n)在線段BC上,求m,n滿足的關(guān)系式;(3)如圖2,E是線段OB上一動(dòng)點(diǎn),以O(shè)B為邊作∠BOG=∠AOB,交BC于點(diǎn)G,連CE交OG于點(diǎn)F,當(dāng)點(diǎn)E在線段OB上運(yùn)動(dòng)過(guò)程中,的值是否會(huì)發(fā)生變化?若變化請(qǐng)說(shuō)明理由,若不變,請(qǐng)求出其值.29.我區(qū)防汛指揮部在一河道的危險(xiǎn)地帶兩岸各安置一探照燈,便于夜間查看江水及兩岸河堤的情況.如圖1,燈光射線自順時(shí)針旋轉(zhuǎn)至便立即逆時(shí)針旋轉(zhuǎn)至,如此循環(huán)燈光射線自順時(shí)針旋轉(zhuǎn)至便立即逆時(shí)針旋轉(zhuǎn)至,如此循環(huán).兩燈交叉照射且不間斷巡視.若燈轉(zhuǎn)動(dòng)的速度是度/秒,燈轉(zhuǎn)動(dòng)的速度是度/秒,且,滿足.若這一帶江水兩岸河堤相互平行,即,且.根據(jù)相關(guān)信息,解答下列問(wèn)題.(1)__________,__________.(2)若燈的光射線先轉(zhuǎn)動(dòng)24秒,燈的光射線才開(kāi)始轉(zhuǎn)動(dòng),在燈的光射線到達(dá)之前,燈轉(zhuǎn)動(dòng)幾秒,兩燈的光射線互相平行?(3)如圖2,若兩燈同時(shí)開(kāi)始轉(zhuǎn)動(dòng)照射,在燈的光射線到達(dá)之前,若兩燈射出的光射線交于點(diǎn),過(guò)點(diǎn)作交于點(diǎn),則在轉(zhuǎn)動(dòng)的過(guò)程中,與間的數(shù)量關(guān)系是否發(fā)生變化?若不變,請(qǐng)求出這兩角間的數(shù)量關(guān)系;若改變,請(qǐng)求出各角的取值范圍.30.閱讀以下內(nèi)容:已知有理數(shù)m,n滿足m+n=3,且求k的值.三位同學(xué)分別提出了以下三種不同的解題思路:甲同學(xué):先解關(guān)于m,n的方程組,再求k的值;乙同學(xué):將原方程組中的兩個(gè)方程相加,再求k的值;丙同學(xué):先解方程組,再求k的值.(1)試選擇其中一名同學(xué)的思路,解答此題;(2)在解關(guān)于x,y的方程組時(shí),可以用①×7﹣②×3消去未知數(shù)x,也可以用①×2+②×5消去未知數(shù)y.求a和b的值.【參考答案】***試卷處理標(biāo)記,請(qǐng)不要?jiǎng)h除一、解答題1.(1)(2)7(3)點(diǎn)的坐標(biāo)為或【詳解】試題分析:⑴抓住∥軸,可以推出縱坐標(biāo)相等,而是橫坐標(biāo)之差的絕對(duì)值,以此可以求出點(diǎn)的坐標(biāo),根據(jù)圖示要舍去一種情況.⑵四邊形是梯形,根據(jù)點(diǎn)的坐標(biāo)可以求出此梯形的上、下底和高,面積可求.⑶存在性問(wèn)題可以先假設(shè)存在,在假設(shè)的基礎(chǔ)上以△=四邊形為等量關(guān)系建立方程,以此來(lái)探討在軸上是否存在著符合條件的點(diǎn).試題解析:⑴.∵∥軸,∴縱坐標(biāo)相等;∵∴點(diǎn)的縱坐標(biāo)也為2.設(shè)點(diǎn)的坐標(biāo)為,則.又,且,∴,解得:.由于點(diǎn)在第一象限,所以,所以的坐標(biāo)為.⑵.∵∥軸,且∴∴四邊形=.⑶.假設(shè)在軸上存在點(diǎn),使△=四邊形.設(shè)的坐標(biāo)為,則,而∴△=.∵△=四邊形,四邊形∴,解得;.均符合題意.∴在軸上存在點(diǎn),使△=四邊形.點(diǎn)的坐標(biāo)為或.2.(1)見(jiàn)解析;(2)見(jiàn)解析;(3)n-1【分析】(1)連接AB,根據(jù)已知證明∠MAB+∠SBA=180°,即可得證;(2)作CF∥ST,設(shè)∠CBT=α,表示出∠CAN,∠ACF,∠BCF,根據(jù)AD∥BC,得到∠DAC=120°,求出∠CAE即可得到結(jié)論;(3)作CF∥ST,設(shè)∠CBT=β,得到∠CBT=∠BCF=β,分別表示出∠CAN和∠CAE,即可得到比值.【詳解】解:(1)如圖,連接,,,,,(2),理由:作,則如圖,設(shè),則.,,,,.即.(3)作,則如圖,設(shè),則.,,,,,故答案為.【點(diǎn)睛】本題主要考查平行線的性質(zhì)和判定,解題關(guān)鍵是角度的靈活轉(zhuǎn)換,構(gòu)建數(shù)量關(guān)系式.3.(1);(2)①,理由見(jiàn)解析;②圖見(jiàn)解析,或【分析】(1)作PQ∥EF,由平行線的性質(zhì),即可得到答案;(2)①過(guò)作交于,由平行線的性質(zhì),得到,,即可得到答案;②根據(jù)題意,可對(duì)點(diǎn)P進(jìn)行分類討論:當(dāng)點(diǎn)在延長(zhǎng)線時(shí);當(dāng)在之間時(shí);與①同理,利用平行線的性質(zhì),即可求出答案.【詳解】解:(1)作PQ∥EF,如圖:∵,∴,∴,,∵∴;(2)①;理由如下:如圖,過(guò)作交于,∵,∴,∴,,∴;②當(dāng)點(diǎn)在延長(zhǎng)線時(shí),如備用圖1:∵PE∥AD∥BC,∴∠EPC=,∠EPD=,∴;當(dāng)在之間時(shí),如備用圖2:∵PE∥AD∥BC,∴∠EPD=,∠CPE=,∴.【點(diǎn)睛】本題考查了平行線的性質(zhì),解題的關(guān)鍵是熟練掌握兩直線平行同旁內(nèi)角互補(bǔ),兩直線平行內(nèi)錯(cuò)角相等,從而得到角的關(guān)系.4.(1)70°;(2),證明見(jiàn)解析;(3)122°【分析】(1)過(guò)作,根據(jù)平行線的性質(zhì)得到,,即可求得;(2)過(guò)過(guò)作,根據(jù)平行線的性質(zhì)得到,,即;(3)設(shè),則,通過(guò)三角形內(nèi)角和得到,由角平分線定義及得到,求出的值再通過(guò)三角形內(nèi)角和求.【詳解】解:(1)過(guò)作,,,,,,故答案為:;(2).理由如下:過(guò)作,,,,,,,;(3),設(shè),則,,,又,,,平分,,,,即,解得,,.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)和判定,正確做出輔助線是解決問(wèn)題的關(guān)鍵.5.(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)∠FBE=35°.【分析】(1)根據(jù)平行線的性質(zhì)得出∠ABF=∠BFE,∠DCF=∠EFC,進(jìn)而解答即可;(2)由(1)的結(jié)論和垂直的定義解答即可;(3)由(1)的結(jié)論和三角形的角的關(guān)系解答即可.【詳解】證明:(1)∵AB∥CD,EF∥CD,∴AB∥EF,∴∠ABF=∠BFE,∵EF∥CD,∴∠DCF=∠EFC,∴∠BFC=∠BFE+∠EFC=∠ABF+∠DCF;(2)∵BE⊥EC,∴∠BEC=90°,∴∠EBC+∠BCE=90°,由(1)可得:∠BFC=∠ABE+∠ECD=90°,∴∠ABE+∠ECD=∠EBC+∠BCE,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ECD=∠BCE,∴CE平分∠BCD;(3)設(shè)∠BCE=β,∠ECF=γ,∵CE平分∠BCD,∴∠DCE=∠BCE=β,∴∠DCF=∠DCE﹣∠ECF=β﹣γ,∴∠EFC=β﹣γ,∵∠BFC=∠BCF,∴∠BFC=∠BCE+∠ECF=γ+β,∴∠ABF=∠BFE=2γ,∵∠FBG=2∠ECF,∴∠FBG=2γ,∴∠ABE+∠DCE=∠BEC=90°,∴∠ABE=90°﹣β,∴∠GBE=∠ABE﹣∠ABF﹣∠FBG=90°﹣β﹣2γ﹣2γ,∵BE平分∠ABC,∴∠CBE=∠ABE=90°﹣β,∴∠CBG=∠CBE+∠GBE,∴70°=90°﹣β+90°﹣β﹣2γ﹣2γ,整理得:2γ+β=55°,∴∠FBE=∠FBG+∠GBE=2γ+90°﹣β﹣2γ﹣2γ=90°﹣(2γ+β)=35°.【點(diǎn)睛】本題主要考查平行線的性質(zhì),解決本題的關(guān)鍵是根據(jù)平行線的性質(zhì)解答.6.(1)49°,(2)44°,(3)∠OPQ=∠ORQ【分析】(1)根據(jù)∠OPA=∠QPB.可求出∠OPA的度數(shù);(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度數(shù),轉(zhuǎn)化為(1)來(lái)解決問(wèn)題;(3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,從而∠OPQ=∠ORQ.【詳解】解:(1)∵∠OPA=∠QPB,∠OPQ=82°,∴∠OPA=(180°-∠OPQ)×=(180°-82°)×=49°,(2)作PC∥m,∵m∥n,∴m∥PC∥n,∴∠AOP=∠OPC=43°,∠BQP=∠QPC=49°,∴∠OPQ=∠OPC+∠QPC=43°+49°=92°,∴∠OPA=(180°-∠OPQ)×=(180°-92°)×44°,(3)∠OPQ=∠ORQ.理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,∵入射光線與平面鏡的夾角等于反射光線與平面鏡的夾角,∴∠AOP=∠DOR,∠BQP=∠RQC,∴∠OPQ=∠ORQ.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)和入射角等于反射角的規(guī)定,解決本題的關(guān)鍵是注意問(wèn)題的設(shè)置環(huán)環(huán)相扣、前為后用的設(shè)置目的.7.(1),1;(2)兩位正整數(shù)為39,28,17,的最大值為;(3)①;②【分析】(1)仿照樣例進(jìn)行計(jì)算即可;(2)由題設(shè)可以看出交換前原數(shù)的十位上數(shù)字為a,個(gè)位上數(shù)字為b,則原數(shù)可以表示為,交換后十位上數(shù)字為b,個(gè)位上數(shù)字為a,則交換后數(shù)字可以表示為,根據(jù)“交換其個(gè)位上的數(shù)字與十位上的數(shù)字得到的新數(shù)減去原數(shù)所得的差為54”確定出a與b的關(guān)系式,進(jìn)而求出所有的兩位數(shù),然后求解確定出的最大值即可;(3)根據(jù)樣例分解計(jì)算即可.【詳解】解:(1)∵,∴;∵,∴,故答案為:;1;(2)由題意可得:交換后的數(shù)減去交換前的數(shù)的差為:,∴,∵,∴或或,∴t為39,28,17;∵39=1×39=3×13,∴;28=1×28=2×14=4×7,∴=;17=1×17,∴;∴的最大值.(3)①∵∴;②∴;故答案為:;【點(diǎn)睛】本題主要考查了有理數(shù)的運(yùn)算,理解最佳分解的定義,并將其轉(zhuǎn)化為有理數(shù)的運(yùn)算是解題的關(guān)鍵.8.(1),-2;(2)()4,(﹣2)8;(3);(4).【分析】(1)分別按公式進(jìn)行計(jì)算即可;(2)把除法化為乘法,第一個(gè)數(shù)不變,從第二個(gè)數(shù)開(kāi)始依次變?yōu)榈箶?shù),由此分別得出結(jié)果;(3)結(jié)果前兩個(gè)數(shù)相除為1,第三個(gè)數(shù)及后面的數(shù)變?yōu)?,則a?=a×()n-1;(4)將第二問(wèn)的規(guī)律代入計(jì)算,注意運(yùn)算順序.【詳解】解:(1)2③=2÷2÷2=,(﹣)③=﹣÷(﹣)÷(﹣)=﹣2;(2)5⑥=5×××××=()4,同理得;(﹣)⑩=(﹣2)8;(3)a?=a×××…×;(4)(-3)8×(-3)⑨-(﹣)9×(﹣)⑧=(-3)8×()7-(﹣)9×(-2)6=-3-(-)3=-3+=.【點(diǎn)睛】本題是有理數(shù)的混合運(yùn)算,也是一個(gè)新定義的理解與運(yùn)用;一方面考查了有理數(shù)的乘除法及乘方運(yùn)算,另一方面也考查了學(xué)生的閱讀理解能力;注意:負(fù)數(shù)的奇數(shù)次方為負(fù)數(shù),負(fù)數(shù)的偶數(shù)次方為正數(shù),同時(shí)也要注意分?jǐn)?shù)的乘方要加括號(hào),對(duì)新定義,其實(shí)就是多個(gè)數(shù)的除法運(yùn)算,要注意運(yùn)算順序.9.(1)兩;(2)2,3;(3)24,-48.【分析】(1)根據(jù)題中所給的分析方法先求出這32768的立方根都是兩位數(shù);(2)繼續(xù)分析求出個(gè)位數(shù)和十位數(shù)即可;(3)利用(1)(2)中材料中的過(guò)程進(jìn)行分析可得結(jié)論.【詳解】解:(1)由103=1000,1003=1000000,∵1000<32768<100000,∴10<<100,∴是兩位數(shù);故答案為:兩;(2)∵只有個(gè)位數(shù)是2的立方數(shù)是個(gè)位數(shù)是8,∴的個(gè)位上的數(shù)是2劃去32768后面的三位數(shù)768得到32,因?yàn)?3=27,43=64,∵27<32<64,∴30<<40.∴的十位上的數(shù)是3.故答案為:2,3;(3)由103=1000,1003=1000000,1000<13824<1000000,∴10<<100,∴是兩位數(shù);∵只有個(gè)位數(shù)是4的立方數(shù)是個(gè)位數(shù)是4,∴的個(gè)位上的數(shù)是4劃去13824后面的三位數(shù)824得到13,因?yàn)?3=8,33=27,∵8<13<27,∴20<<30.∴=24;由103=1000,1003=1000000,1000<110592<1000000,∴10<<100,∴是兩位數(shù);∵只有個(gè)位數(shù)是8的立方數(shù)是個(gè)位數(shù)是2,∴的個(gè)位上的數(shù)是8,劃去110592后面的三位數(shù)592得到110,因?yàn)?3=64,53=125,∵64<110<125,∴40<<50.∴=-48;故答案為:24,-48.【點(diǎn)睛】此題考查立方根,解題關(guān)鍵在于理解一個(gè)數(shù)的立方的個(gè)位數(shù)就是這個(gè)數(shù)的個(gè)位數(shù)的立方的個(gè)位數(shù).10.(1)2;5;(2)1,2,3;(3)3;(4)255【分析】(1)先估算和的大小,再由并新定義可得結(jié)果;(2)根據(jù)定義可知x<4,可得滿足題意的x的整數(shù)值;(3)根據(jù)定義對(duì)120進(jìn)行連續(xù)求根整數(shù),可得3次之后結(jié)果為1;(4)最大的正整數(shù)是255,根據(jù)操作過(guò)程分別求出255和256進(jìn)行幾次操作,即可得出答案.【詳解】解:(1)∵22=4,62=36,52=25,∴5<<6,∴[]=[2]=2,[]=5,故答案為2,5;(2)∵12=1,22=4,且[]=1,∴x=1,2,3,故答案為1,2,3;(3)第一次:[]=10,第二次:[]=3,第三次:[]=1,故答案為3;(4)最大的正整數(shù)是255,理由是:∵[]=15,[]=3,[]=1,∴對(duì)255只需進(jìn)行3次操作后變?yōu)?,∵[]=16,[]=4,[]=2,[]=1,∴對(duì)256只需進(jìn)行4次操作后變?yōu)?,∴只需進(jìn)行3次操作后變?yōu)?的所有正整數(shù)中,最大的是255,故答案為255.【點(diǎn)睛】本題考查了估算無(wú)理數(shù)的大小的應(yīng)用,主要考查學(xué)生的閱讀能力和猜想能力,同時(shí)也考查了一個(gè)數(shù)的平方數(shù)的計(jì)算能力.11.(1)1011,1101;(2)①12,65,97,見(jiàn)解析,②38【分析】(1)根據(jù)“模二數(shù)”的定義計(jì)算即可;(2)①根據(jù)“模二數(shù)”和模二相加不變”的定義,分別計(jì)算和12+23,65+23,97+23的值,即可得出答案②設(shè)兩位數(shù)的十位數(shù)字為a,個(gè)位數(shù)字為b,根據(jù)a、b的奇偶性和“模二數(shù)”和模二相加不變”的定義進(jìn)行討論,從而得出與“模二相加不變”的兩位數(shù)的個(gè)數(shù)【詳解】解:(1),故答案為:①,,與滿足“模二相加不變”.,,,與不滿足“模二相加不變”.,,,與滿足“模二相加不變”②當(dāng)此兩位數(shù)小于77時(shí),設(shè)兩位數(shù)的十位數(shù)字為a,個(gè)位數(shù)字為b,;當(dāng)a為偶數(shù),b為偶數(shù)時(shí),∴∴與滿足“模二相加不變”有12個(gè)(28、48、68不符合)當(dāng)a為偶數(shù),b為奇數(shù)時(shí),∴∴與不滿足“模二相加不變”.但27、47、67、29、49、69符合共6個(gè)當(dāng)a為奇數(shù),b為奇數(shù)時(shí),∴∴與不滿足“模二相加不變”.但17、37、57、19、39、59也不符合當(dāng)a為奇數(shù),b為偶數(shù)時(shí),∴∴與滿足“模二相加不變”有16個(gè),(18、38、58不符合)當(dāng)此兩位數(shù)大于等于77時(shí),符合共有4個(gè)綜上所述共有12+6+16+4=38故答案為:38【點(diǎn)睛】本題考查新定義,數(shù)字的變化類,認(rèn)真觀察、仔細(xì)思考,分類討論的數(shù)學(xué)思想是解決這類問(wèn)題的方法.能夠理解定義是解題的關(guān)鍵.12.(1)-3006,990;(2)見(jiàn)解析;(3)P(t)的最大值是P(2262)=36.【分析】(1)根據(jù)“前介數(shù)”t與它的“中介數(shù)”的差為P(t)的定義求解即可;(2)設(shè)“前介數(shù)”為且a、b、c均不為0的整數(shù),即1a、b、c,根據(jù)定義得到P(t)=,則P(t)一定能被9整除;(3)設(shè)“前介數(shù)”為,根據(jù)題意得到能被3整除,且b只能取2,4,6,8中的其中一個(gè)數(shù);對(duì)應(yīng)的“中介數(shù)”是,得到a只能取2,4,6,8中的其中一個(gè)數(shù),計(jì)算P(t),推出要求P(t)的最大值,即要盡量的大,要盡量的小,再分類討論即可求解.【詳解】(1)解:2215是“前介數(shù)”,其對(duì)應(yīng)的“中介數(shù)”是5221,∴P(2215)=2215-5221=-3006;6655是“前介數(shù)”,其對(duì)應(yīng)的“中介數(shù)”是5665,∴P(6655)=6655-5665=990;故答案為:-3006,990;(2)證明:設(shè)“前介數(shù)”為且a、b、c均為不為0的整數(shù),即1a、b、c,∴,又對(duì)應(yīng)的“中介數(shù)”是,∴P(t)=,∵a、b、c均不為0的整數(shù),∴為整數(shù),∴P(t)一定能被9整除;(3)證明:設(shè)“前介數(shù)”為且即1a、b,a、b均為不為0的整數(shù),∴,∵能被6整除,∴能被2整除,也能被3整除,∴為偶數(shù),且能被3整除,又1,∴b只能取2,4,6,8中的其中一個(gè)數(shù),又對(duì)應(yīng)的“中介數(shù)”是,且該“中介數(shù)”能被2整除,∴為偶數(shù),又1,∴a只能取2,4,6,8中的其中一個(gè)數(shù),∴P(t)=,要求P(t)的最大值,即要盡量的大,要盡量的小,①的最大值為8,的最小值為2,但此時(shí),且14不能被3整除,不符合題意,舍去;②的最大值為6,的最小值仍為2,但此時(shí),能被3整除,且P(t)=2262-2226=36;③的最大值仍為8,的最小值為4,但此時(shí),且16不能被3整除,不符合題意,舍去;其他情況,減少,增大,則P(t)減少,∴滿足條件的P(t)的最大值是P(2262)=36.【點(diǎn)睛】本題考查用新定義解題,根據(jù)新定義,表示出“前介數(shù)”,與其對(duì)應(yīng)的“中介數(shù)”是求解本題的關(guān)鍵.本題中運(yùn)用到的分類討論思想是重要一種數(shù)學(xué)解題思想方法.13.(1),;(2),理由見(jiàn)解析;(3)【分析】(1)根據(jù)已知條件求出AD和BC的長(zhǎng)度,即可得到D、C的坐標(biāo);(2)連接BD與直線CG相交,其交點(diǎn)Q即為所求,然后根據(jù)求出QC、QG后即可得到Q點(diǎn)坐標(biāo);(3)過(guò)H作HF∥AB,過(guò)C作CM∥ED,則根據(jù)已知條件、平行線的性質(zhì)和角的有關(guān)知識(shí)可以得到.【詳解】(1)解:由題意可得四邊形ABCD是平行四邊形,且AD與BC間距離為1-(-1)=2,∴平行四邊形ABCD的高為2,∴AD=BC=S四邊形ABCD÷2=12÷2=6,∴C點(diǎn)坐標(biāo)為(-4+6,-1)即(2,-1),D點(diǎn)坐標(biāo)為(-2+6,1)即(4,1);(2)解:如圖,連接交于,∵,∴此時(shí)最?。▋牲c(diǎn)之間,線段最短),過(guò)作于,∵,,,∴,,,設(shè),∴,,,又∵,∴,∴,∴,∴.(3)∵,,∴,,∴.∵平分,∴.又∵,設(shè),則,∴,,過(guò)作,又∵,∴,∴,∴.過(guò)作,∴,.∵于,∴,∴,∴,又∵,∴.【點(diǎn)睛】本題考查平行線的綜合應(yīng)用,熟練掌握平行線的判定與性質(zhì)、平移坐標(biāo)變換規(guī)律、兩點(diǎn)之間線段最短的性質(zhì)、角的有關(guān)知識(shí)和運(yùn)算是解題關(guān)鍵.14.(1)見(jiàn)解析;(2),理由見(jiàn)解析;(3)①當(dāng)在延長(zhǎng)線時(shí)(點(diǎn)不與點(diǎn)重合),;②當(dāng)在之間時(shí)(點(diǎn)不與點(diǎn),重合),.理由見(jiàn)解析【分析】(1)過(guò)P作PE∥AB,構(gòu)造同旁內(nèi)角,利用平行線性質(zhì),可得∠APC=113°;(2)過(guò)過(guò)作交于,,推出,根據(jù)平行線的性質(zhì)得出,即可得出答案;(3)畫(huà)出圖形(分兩種情況:①點(diǎn)P在BA的延長(zhǎng)線上,②當(dāng)在之間時(shí)(點(diǎn)不與點(diǎn),重合)),根據(jù)平行線的性質(zhì)即可得出答案.【詳解】解:(1)過(guò)作,,,,,,,,;(2),理由如下:如圖3,過(guò)作交于,,,,,,,又;(3)①當(dāng)在延長(zhǎng)線時(shí)(點(diǎn)不與點(diǎn)重合),;理由:如圖4,過(guò)作交于,,,,,,,,又,;②當(dāng)在之間時(shí)(點(diǎn)不與點(diǎn),重合),.理由:如圖5,過(guò)作交于,,,,,,,,又.【點(diǎn)睛】本題考查了平行線的性質(zhì)的應(yīng)用,主要考查學(xué)生的推理能力,解決問(wèn)題的關(guān)鍵是作輔助線構(gòu)造內(nèi)錯(cuò)角以及同旁內(nèi)角.15.(1),,;(2)證明見(jiàn)解析;(3)成立,理由見(jiàn)解析【分析】(1)根據(jù)算術(shù)平方根、立方根得、;再根據(jù)直角坐標(biāo)系、平移的性質(zhì)分析,即可得到答案;(2)根據(jù)平移的性質(zhì),得;根據(jù)平行線性質(zhì),分別推導(dǎo)得,,從而完成證明;(3)結(jié)合題意,根據(jù)平行線的性質(zhì),推導(dǎo)得、;結(jié)合(2)的結(jié)論,通過(guò)計(jì)算即可完成證明.【詳解】(1)連接∵是16的算術(shù)平方根∴∴∴∵∴∴∴∵線段由線段平移所得,并且點(diǎn)與點(diǎn)A對(duì)應(yīng),點(diǎn)與點(diǎn)對(duì)應(yīng)∴,∴故答案為:,,;(2)∵線段由線段平移所得∴,∴∵∴∵∴∴(3)∵∴∵∴∵∴,即∵∴∴∵∴∵,∴由(2)的結(jié)論得:,∵,∴∴∵∴∴∴在點(diǎn)運(yùn)動(dòng)的過(guò)程中,總成立.【點(diǎn)睛】本題考查了算術(shù)平方根、立方根、平行線、平移、直角坐標(biāo)系的知識(shí);解題的關(guān)鍵是熟練掌握直角坐標(biāo)系、平移、平行線的性質(zhì),從而完成求解.16.(1)在乙家批發(fā)更優(yōu)惠;(2)當(dāng)x=200時(shí)他選擇任何一家批發(fā)所花費(fèi)用一樣多;當(dāng)100<x<200時(shí),師傅應(yīng)選擇甲家批發(fā)商所花費(fèi)用更少;當(dāng)x>200時(shí),師傅應(yīng)選擇乙家批發(fā)商所花費(fèi)用更少.【分析】(1)分別求出在甲、乙兩家批發(fā)240千克蘋(píng)果所需費(fèi)用,比較后即可得出結(jié)論;(2)分兩種情況:①若100<x≤150時(shí),②若x>150時(shí),分別用含x的代數(shù)式表示出在甲、乙兩家批發(fā)x千克蘋(píng)果所需費(fèi)用,再比較大小,列出不等式,求出x的范圍,即可得到結(jié)論.【詳解】(1)在甲家批發(fā)所需費(fèi)用為:240×8×85%=1632(元),在乙家批發(fā)所需費(fèi)用為:50×8×95%+(150?50)×8×85%+(240?150)×8×75%=1600(元),∵1632>1600,∴在乙家批發(fā)更優(yōu)惠;(2)①若100<x≤150時(shí),在甲家批發(fā)所需費(fèi)用為:8×85%x=6.8x,在乙家批發(fā)所需費(fèi)用為:50×8×95%+(x?50)×8×85%=6.8x+40,∵6.8x<6.8x+40,∴師傅應(yīng)選擇甲家批發(fā)商所花費(fèi)用更少;②若x>150時(shí),在甲家批發(fā)所需費(fèi)用為:8×85%x=6.8x,在乙家批發(fā)所需費(fèi)用為:50×8×95%+(150?50)×8×85%+(x?150)×8×75%=6x+160,當(dāng)6.8x=6x+160時(shí),即x=200時(shí),師傅選擇兩家批發(fā)商所花費(fèi)用一樣多,當(dāng)6.8x>6x+160時(shí),即x>200時(shí),師傅應(yīng)選擇乙家批發(fā)商所花費(fèi)用更少,當(dāng)6.8x<6x+160時(shí),即150<x<200時(shí),師傅應(yīng)選擇甲家批發(fā)商所花費(fèi)用更少.綜上所得:當(dāng)x=200時(shí)他選擇任何一家批發(fā)所花費(fèi)用一樣多;當(dāng)100<x<200時(shí),師傅應(yīng)選擇甲家批發(fā)商所花費(fèi)用更少;當(dāng)x>200時(shí),師傅應(yīng)選擇乙家批發(fā)商所花費(fèi)用更少.【點(diǎn)睛】本題主要考查代數(shù)式,一元一次方程,一元一次不等式的綜合實(shí)際應(yīng)用,理清數(shù)量關(guān)系,列出代數(shù)式,不等式或方程,是解題的關(guān)鍵.17.(1);(2);(3)存在,或【分析】(1)先確定平移的規(guī)則,然后根據(jù)平移的規(guī)則,求出點(diǎn)的坐標(biāo)即可;(2)由平移的性質(zhì)可知,重疊部分為平行四邊形,且底邊長(zhǎng)為3,高為2,即可求出面積;(3)設(shè)點(diǎn)的坐標(biāo)為,先求出平行四邊形ABCD的面積,然后利用三角形的面積公式,即可求出b的值.【詳解】解:(1)∵,,∴平移的規(guī)則為:向右平移2個(gè)單位,向上平移一個(gè)單位;∵,,,∴;(2)如圖,延長(zhǎng)交x軸于點(diǎn)E,過(guò)點(diǎn)做由平移可知,重疊部分為平行四邊形,高為2,∴重疊部分的面積為(3)存在;設(shè)點(diǎn)的坐標(biāo)為,∵,,∴,∴點(diǎn)的坐標(biāo)為或.【點(diǎn)睛】本題考查了平移的性質(zhì),平行四邊形的性質(zhì),坐標(biāo)與圖形,以及求陰影部分的面積,解題的關(guān)鍵是熟練掌握平移的性質(zhì)進(jìn)行解題.18.(1)(3,0);(2)①P1;②或;(3)【分析】(1)根據(jù)“l(fā)型平移”的定義解決問(wèn)題即可.(2)①畫(huà)出線段A1B1即可判斷.②根據(jù)定義求出t最大值,最小值即可判斷.(3)如圖2中,觀察圖象可知,當(dāng)B′在線段B′B″上時(shí),B'M的最小值保持不變,最小值為.【詳解】(1)將點(diǎn)A(2,1)進(jìn)行“l(fā)型平移”后的對(duì)應(yīng)點(diǎn)A'的坐標(biāo)為(3,0),故答案為:(3,0);(2)①如圖1中,觀察圖象可知,將線段AB進(jìn)行“﹣l型平移”后得到線段A'B',點(diǎn)P1(1.5,2),P2(2,3),P3(3,0)中,在線段A′B′上的點(diǎn)是P1,故答案為:P1;②若線段AB進(jìn)行“t型平移”后與坐標(biāo)軸有公共點(diǎn),則t的取值范圍是﹣4≤t≤﹣2或t=1.故答案為:﹣4≤t≤﹣2或t=1.(3)如圖2中,觀察圖象可知,當(dāng)B′在線段B′B″上時(shí),B'M的最小值保持不變,最小值為,此時(shí)1≤t≤3.故答案為:1≤t≤3.【點(diǎn)睛】本題屬于幾何變換綜合題,考查了平移變換,“t型平移”的定義等知識(shí),解題的關(guān)鍵理解題意,靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,學(xué)會(huì)利用圖象法解決問(wèn)題,屬于中考創(chuàng)新題型.19.(1)60,40;(2)①甲:85;乙50;②27【分析】(1)由圖示列出關(guān)于a、b的二元一次方程組求解.(2)①根據(jù)已知和圖示計(jì)算出兩種裁法共產(chǎn)生甲型板材和乙型板材的張數(shù);②根據(jù)豎式與橫式禮品盒所需要的甲、乙兩種型號(hào)板材的張數(shù)列出關(guān)于m、n的二元一次方程,求解,即可得出結(jié)論.【詳解】解:(1)依題意,得:解得:a=60b=40答:a、b的值分別為60,40.(2)①一共可裁剪出甲型板材40×2+5=85(張)乙型板材40+5×2=50(張).故答案是:85,50;②設(shè)可做成m個(gè)豎式無(wú)蓋裝飾盒,n個(gè)橫式無(wú)蓋裝飾盒.依題意得:,解得:m=4,n=23所以m+n=27,故答案為27個(gè)【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是二元一次方程組的應(yīng)用,關(guān)鍵是根據(jù)已知先列出二元一次方程組求出a、b的值,根據(jù)圖示列出算式以及關(guān)于m、n的二元一次方程.20.(1)方程的正整數(shù)解是或.(只要寫(xiě)出其中的一組即可);(2)滿足條件x的值有4個(gè):x=3或x=4或x=5或x=8;(3)有兩種購(gòu)買方案:即購(gòu)買單價(jià)為3元的筆記本5本,單價(jià)為5元的鋼筆4支;或購(gòu)買單價(jià)為3元的筆記本10本,單價(jià)為5元的鋼筆1支.【解析】(1)---------------------------.(2)C(3)解:設(shè)購(gòu)買單價(jià)為3元的筆記本x個(gè),購(gòu)買單價(jià)5元的鋼筆y個(gè),由題意得:3x+5y=35此方程的正整數(shù)解為有兩種購(gòu)買方案:方案一:購(gòu)買單價(jià)為3元的筆記本5個(gè),購(gòu)買單價(jià)為5元的鋼筆4支.方案二:購(gòu)買單價(jià)為3元的筆記本10個(gè),購(gòu)買單價(jià)為5元的鋼筆1支(1)只要使等式成立即可(2)x-2必須是6的約數(shù)(3)設(shè)購(gòu)買單價(jià)為3元的筆記本x個(gè),購(gòu)買單價(jià)5元的鋼筆y個(gè),根據(jù)題意列二元一次方程,去正整數(shù)解求值21.(1),;(2);(3)【解析】【分析】(1)利用非負(fù)數(shù)的性質(zhì)即可解決問(wèn)題;(2)利用三角形面積求法,由列方程組,求出點(diǎn)C坐標(biāo),進(jìn)而由△ACD面積求出D點(diǎn)坐標(biāo).(3)由平行線間距離相等得到,繼而求出E點(diǎn)坐標(biāo),同理求出F點(diǎn)坐標(biāo),再由GE=12求出G點(diǎn)坐標(biāo),根據(jù)求出PG的長(zhǎng)即可求P點(diǎn)坐標(biāo).【詳解】解:(1),∴,,,,,,,(2)由∴,,,如圖1,連,作軸,軸,,即,,,而,,,,(3)如圖2:∵EF∥AB,∴,∴,即,,,,,,,,,,,,,,【點(diǎn)睛】本題考查的是二元一次方程的應(yīng)用、三角形的面積公式、坐標(biāo)與圖形的性質(zhì)、平移的性質(zhì),靈活運(yùn)用分情況討論思想、掌握平移規(guī)律是解題的關(guān)鍵.22.(1),,,;(2)的取值范圍為;(3)①;②【分析】(1)根據(jù)求出a、b、c的值,由此求解即可;(2)分當(dāng)點(diǎn)在直線上位于軸左側(cè)時(shí)和當(dāng)點(diǎn)在直線上位于軸右側(cè)時(shí)討論求解即可得到答案;(3)①由由得,,由此求解即可;②易得,連接,由得,,化簡(jiǎn)得,,然后聯(lián)立求解即可.【詳解】解:(1)∵,∴,∴,,,∴,,,∴,,,∴AC=10,OB=6,∴;(2)當(dāng)點(diǎn)在直線上位于軸左側(cè)時(shí),由題意得,,解得,,當(dāng)時(shí),,結(jié)合圖形可知,當(dāng)時(shí),;同理可得,當(dāng)點(diǎn)在直線上位于軸右側(cè)時(shí),,當(dāng)時(shí),,,解得,,結(jié)合圖形可知,當(dāng)時(shí),,∴的取值范圍為;(3)①由得,,化簡(jiǎn)得,;②易得,連接,由得,,化簡(jiǎn)得,,聯(lián)立方程組,解得,∴【點(diǎn)睛】本題主要考查了絕對(duì)值和算術(shù)平方根的非負(fù)性,三角形面積,解二元一次方程組,坐標(biāo)與圖形,截圖的關(guān)鍵在于能夠熟練掌握相關(guān)是進(jìn)行求解.23.(1)1;(2)(3)【分析】(1)根據(jù)三角形的面積公式即可求解;(2)根據(jù)題意列出不等式組故可求解;(3)分Q點(diǎn)在AB上、BC上和CD上分別列出方程即可求解.【詳解】(1)當(dāng)時(shí),=1平方厘米;當(dāng)時(shí),=平方厘米;故答案為;;(2)解:根據(jù)題意,得解得,故的取值范圍為;(3)當(dāng)Q點(diǎn)在AB上時(shí),依題意可得解得;當(dāng)Q點(diǎn)在BC上時(shí),依題意可得解得>6,不符合題意;當(dāng)Q點(diǎn)在AB上時(shí),依題意可得或解得或;∴值為.【點(diǎn)睛】此題主要考查不等式組與一元一次方程的應(yīng)用,解題的關(guān)鍵是根據(jù)題意得到方程或不等式組進(jìn)行求解.24.(1)可制作豎式無(wú)蓋箱子30個(gè),可制作橫式無(wú)蓋箱子60個(gè);(2)最多可以制作豎式箱子50個(gè);(3)最多可以制作豎式箱子45個(gè)【分析】(1)根據(jù)題意可以列出相應(yīng)的二元一次方程組,再解方程組即可解答本題;(2)根據(jù)題意可以列出相應(yīng)的不等式,從而可以求得最多可以制作豎式箱子多少個(gè);(3)根據(jù)題意可以列出相應(yīng)的二元一次方程,再根據(jù)a為整數(shù)和a≥10,即可解答本題.【詳解】解:(1)設(shè)可制作豎式無(wú)蓋箱子m個(gè),可制作橫式無(wú)蓋箱子n個(gè),依題意有,解得,故可制作豎式無(wú)蓋箱子30個(gè),可制作橫式無(wú)蓋箱子60個(gè);(2)由題意可得,1個(gè)豎式箱子需要1個(gè)A型和4個(gè)B型,1個(gè)橫式箱子需要2個(gè)A型和3個(gè)B型,設(shè)豎式箱子x個(gè),則橫式箱子(100-x)個(gè),(20+4×60)x+(2×20+3×60)(100-x)≤24000,解得x≤50,故x的最大值是50,答:最多可以制作豎式箱子50個(gè);(3)C型可以看成三列,每一列可以做成3個(gè)A型或1個(gè)B型,65個(gè)C型就有65×3=195列,∵材料恰好用完,∴最后A型的數(shù)量一定是3的倍數(shù),設(shè)豎式a個(gè),橫式b個(gè),∵1個(gè)豎式箱子需要1個(gè)A型和4個(gè)B型,1個(gè)橫式箱子需要2個(gè)A型和3個(gè)B型,1個(gè)B型相當(dāng)于3個(gè)A型,∴(1+4×3)a+(2+3×3)b=195×3,∴13a+11b=585,∵a、b均為整數(shù),a≥10,∴或或或,故最多可以制作豎式箱子45個(gè).【點(diǎn)睛】本題考查一元一次不等式的應(yīng)用、二元一次方程(組)的應(yīng)用,解答本題的關(guān)鍵是明確題意,利用方程和不等式的性質(zhì)解答.25.(1)2,7,4;(2);(3)①t的內(nèi)數(shù);②符合條件的最大實(shí)心正方形有2個(gè),離原點(diǎn)最遠(yuǎn)的格點(diǎn)的坐標(biāo)有兩個(gè),為.【分析】(1)根據(jù)內(nèi)數(shù)的定義即可求解;(2)根據(jù)內(nèi)數(shù)的定義可列不等式,求解即可;(3)①分析可得當(dāng)時(shí),即t的內(nèi)數(shù)為2時(shí),;當(dāng)時(shí),即t的內(nèi)數(shù)為3時(shí),,當(dāng)時(shí),即t的內(nèi)數(shù)為4時(shí),……歸納可得結(jié)論;②分析可得當(dāng)t的內(nèi)數(shù)為奇數(shù)時(shí),最大實(shí)心正方形有2個(gè);當(dāng)t的內(nèi)數(shù)為偶數(shù)時(shí),最大實(shí)心正方形有1個(gè);且最大實(shí)心正方形的邊長(zhǎng)為:的內(nèi)數(shù)-1,即可求解.【詳解】解:(1),所以1的內(nèi)數(shù)是2;,所以20的內(nèi)數(shù)是7;,所以6的內(nèi)數(shù)是4;(2)∵3是x的內(nèi)數(shù),∴,解得;(3)①當(dāng)時(shí),即t的內(nèi)數(shù)為2時(shí),;當(dāng)時(shí),即t的內(nèi)數(shù)為3時(shí),,當(dāng)時(shí),即t的內(nèi)數(shù)為4時(shí),,……∴t的內(nèi)數(shù);②當(dāng)t的內(nèi)數(shù)為2時(shí),最大實(shí)心正方形有1個(gè);當(dāng)t的內(nèi)數(shù)為3時(shí),最大實(shí)心正方形有2個(gè),當(dāng)t的內(nèi)數(shù)為4時(shí),最大實(shí)心正方形有1個(gè),……即當(dāng)t的內(nèi)數(shù)為奇數(shù)時(shí),最大實(shí)心正方形有2個(gè);當(dāng)t的內(nèi)數(shù)為偶數(shù)時(shí),最大實(shí)心正方形有1個(gè);∴當(dāng)?shù)膬?nèi)數(shù)為9時(shí),符合條件的最大實(shí)心正方形有2個(gè),由前幾個(gè)例子推理可得最大實(shí)心正方形的邊長(zhǎng)為:的內(nèi)數(shù)-1,∴此時(shí)最大實(shí)心正方形的邊長(zhǎng)為8,離原點(diǎn)最遠(yuǎn)的格點(diǎn)的坐標(biāo)有兩個(gè),為.【點(diǎn)睛】本題考查圖形類規(guī)律探究,明確題干中內(nèi)數(shù)的定義是解題的關(guān)鍵.26.(1);(2)【分析】(1)根據(jù)題意設(shè)盒底邊長(zhǎng),接口的寬度,分別為,,根據(jù)題意列方程組,再根據(jù)長(zhǎng)寬高求得體積;(2)分別設(shè)第一個(gè)月和第二個(gè)月的銷售量為盒,根據(jù)題意列出方程和不等式組,根據(jù)不等式確定二元一次方程的解,兩個(gè)月的銷售總量為盒【詳解】(1)設(shè)設(shè)盒底邊長(zhǎng)為,接口的寬度為,則盒高是,根據(jù)題意得:解得:茶葉盒的容積是:答:該茶葉盒的容積是(2)設(shè)第一個(gè)月銷售了盒,第二個(gè)月銷售了盒,根據(jù)題意得:化簡(jiǎn)得:①第一個(gè)月只售出不到一半但超過(guò)三分之一的量即由①得:解得:是整數(shù),所以為5的倍數(shù)或者或者答:這批茶葉共進(jìn)了或者盒.【點(diǎn)睛】本題考查了二元一次方程組的應(yīng)用,一元一次不等式組的求解,理解題意列出方程組和不等式組是解題的關(guān)鍵.27.(1)a=﹣2或a=8;(2)1<b<4;(3)t或0<t.【分析】(1)將點(diǎn)P與點(diǎn)A代入d(M,N)=|x1?x2|+|y1?y2|即可求解;(2)將點(diǎn)B與

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論