新高考數(shù)學二輪復習重點突破訓練第7講 比較大?。ê馕觯第1頁
新高考數(shù)學二輪復習重點突破訓練第7講 比較大?。ê馕觯第2頁
新高考數(shù)學二輪復習重點突破訓練第7講 比較大?。ê馕觯第3頁
新高考數(shù)學二輪復習重點突破訓練第7講 比較大?。ê馕觯第4頁
新高考數(shù)學二輪復習重點突破訓練第7講 比較大?。ê馕觯第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

第7講比較大小真題展示2022新高考一卷第7題設SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】【解法一】(構造法1)構造函數(shù)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,∴SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減;SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,SKIPIF1<0在SKIPIF1<0處取最小值SKIPIF1<0(1)SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;SKIPIF1<0,而SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故選:SKIPIF1<0.【解法二】(構造法2):先比較a與b。設F(x)=(1?x)SKIPIF1<0?1,0<x<1,則F'(x)=?xSKIPIF1<0<0,∴F(x)在0<x<1上減,故F(x)<F(0)=1,即(1?x)SKIPIF1<0QUOTEex<1,0<x<1,∴SKIPIF1<0QUOTEex<SKIPIF1<0QUOTE11-x,0<x<1,取x=0.1,SKIPIF1<0=SKIPIF1<0,∴0.1SKIPIF1<0<SKIPIF1<0,即a<b;再比較a與c。易知SKIPIF1<0≥x+1,當且僅當x=0時取等號,取x=0.1,得SKIPIF1<0>1.1,∴a=0.1SKIPIF1<0QUOTEe0.1>0.11.設G(x)=2lnx?x+SKIPIF1<0,x>1,則SKIPIF1<0QUOTEG'(x)=SKIPIF1<0<0,∴G(x)在x>1上減,故G(x)<G(1)=0,即2lnx<x?SKIPIF1<0,取x=SKIPIF1<0QUOTE109,得lnSKIPIF1<0<SKIPIF1<0QUOTE12(SKIPIF1<0?SKIPIF1<0)=SKIPIF1<0<0.11<0.1SKIPIF1<0QUOTEe0.1=a,即c<a,綜上c<a<b.【解法三】:由不等式SKIPIF1<0得SKIPIF1<0,又因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0;由SKIPIF1<0得SKIPIF1<0SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0.所以SKIPIF1<0,綜上SKIPIF1<0.故選項C正確.【試題評價】本題考查三個數(shù)的大小的判斷,考查構造法、導數(shù)性質(zhì)等基礎知識,考查運算求解能力,是難題.考查目標試題以三個數(shù)值大小的比較為具體情境,通過數(shù)值的共性與特點,構建函數(shù)模型,研究導函數(shù)的符號,得到函數(shù)的單調(diào)性,從而得到函數(shù)不等式和所需結(jié)論.試題考查了考生分析問題、解決問題的能力.作為新高考試卷的題目,試題緊扣課程標準,力圖引導教學,符合基礎性、綜合性、應用性、創(chuàng)新性的考查要求,體現(xiàn)了較好的選拔功能.試題亮點以往的試題中,大小比較的問題往往通過差值比較或商值比較,結(jié)合對數(shù)函數(shù)與指數(shù)函數(shù)的性質(zhì)即可得到結(jié)論,試題將函數(shù)、導數(shù)、不等式這三者通過比較大小的問題有機結(jié)合起來,成為一大亮點.值得注意的是,試題的解法多樣,構造函數(shù)的方法也不盡相同,這為不同能力層次的考生提供了發(fā)揮的空間.但有部分考生應用了泰勒公式等大學數(shù)學的知識,這是沒有任何基礎的.對于泰勒公式的使用條件與結(jié)論,很多考生均不清楚,生搬硬套會導致理解不透徹,甚至得到錯誤答案.對于高中生而言,不應該使用二級結(jié)論,對自己不清楚的結(jié)論更不能隨意使用.試題源于教材,緊扣課標,可以對考生的能力進行很好的區(qū)分,具有較好的選拔功能.知識要點整理(一)常用技巧和方法1、如何快速判斷對數(shù)的符號?八字真言“同區(qū)間正,異區(qū)間負”,容我慢慢道來:判斷對數(shù)的符號,關鍵看底數(shù)和真數(shù),區(qū)間分為和(1)如果底數(shù)和真數(shù)均在中,或者均在中,那么對數(shù)的值為正數(shù)(2)如果底數(shù)和真數(shù)一個在中,一個在中,那么對數(shù)的值為負數(shù)例如:等2、要善于利用指對數(shù)圖象觀察指對數(shù)與特殊常數(shù)(如0,1)的大小關系,一作圖,自明了3、比較大小的兩個理念:(1)求同存異:如果兩個指數(shù)(或?qū)?shù))的底數(shù)相同,則可通過真數(shù)的大小與指對數(shù)函數(shù)的單調(diào)性,判斷出指數(shù)(或?qū)?shù))的關系,所以要熟練運用公式,盡量將比較的對象轉(zhuǎn)化為某一部分相同的情況例如:,比較時可進行轉(zhuǎn)化,盡管底數(shù)難以轉(zhuǎn)化為同底,但指數(shù)可以變?yōu)橄嗤?,從而只需比較底數(shù)的大小即可(2)利用特殊值作“中間量”:在指對數(shù)中通??蓛?yōu)先選擇“-1,0,1”對所比較的數(shù)進行劃分,然后再進行比較,有時可以簡化比較的步驟(在兵法上可稱為“分割包圍,各個擊破”,也有一些題目需要選擇特殊的常數(shù)對所比較的數(shù)的值進行估計,例如,可知,進而可估計是一個1點幾的數(shù),從而便于比較4、常用的指對數(shù)變換公式:(1)(2)(3)(4)換底公式:進而有兩個推論:(令)(二)利用函數(shù)單調(diào)性比較大小1、函數(shù)單調(diào)性的作用:在單調(diào)遞增,則(在單調(diào)區(qū)間內(nèi),單調(diào)性是自變量大小關系與函數(shù)值大小關系的橋梁)2、導數(shù)運算法則:(1)(2)3、常見描述單調(diào)性的形式(1)導數(shù)形式:單調(diào)遞增;單調(diào)遞減(2)定義形式:或:表示函數(shù)值的差與對應自變量的差同號,則說明函數(shù)單調(diào)遞增,若異號則說明函數(shù)單調(diào)遞減4、技巧與方法:(1)此類問題往往條件比較零散,不易尋找入手點.所以處理這類問題要將條件與結(jié)論結(jié)合著分析.在草稿紙上列出條件能夠提供什么,也列出要得出結(jié)論需要什么.兩者對接通??梢源_定入手點(2)在構造函數(shù)時要根據(jù)條件的特點進行猜想,例如出現(xiàn)輪流求導便猜有可能是具備乘除關系的函數(shù).在構造時多進行試驗與項的調(diào)整(3)在比較大小時,通常可利用函數(shù)性質(zhì)(對稱性,周期性)將自變量放入至同一單調(diào)區(qū)間中進行比較(三)數(shù)形結(jié)合比較大小1、對稱性與單調(diào)性:若已知單調(diào)性與對稱性,則可通過作出草圖觀察得到諸如“距軸越近,函數(shù)值越……”的結(jié)論,從而只需比較自變量與坐標軸的距離,即可得到函數(shù)值的大小關系(1)若關于軸對稱,且單調(diào)增,則圖象可能以下三種情況,可發(fā)現(xiàn)一個共同點:自變量距離軸越近,其函數(shù)值越?。?)若關于軸對稱,且單調(diào)減,則圖象可能以下三種情況,可發(fā)現(xiàn)一個共同點:自變量距離軸越近,其函數(shù)值越大2、函數(shù)的交點:如果所比較的自變量是一些方程的解,則可將方程的根視為兩個函數(shù)的交點.抓住共同的函數(shù)作為突破口,將其余函數(shù)的圖象作在同一坐標系下,觀察交點的位置即可判斷出自變量的大小.三年真題1.設SKIPIF1<0是定義在SKIPIF1<0上以SKIPIF1<0為周期的函數(shù),SKIPIF1<0在SKIPIF1<0內(nèi)單調(diào)遞減,且SKIPIF1<0的圖象關于直線SKIPIF1<0對稱,則下面正確的結(jié)論是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】解:因為SKIPIF1<0在SKIPIF1<0上以SKIPIF1<0為周期,對稱軸為SKIPIF1<0,且在SKIPIF1<0內(nèi)單調(diào)遞減,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0.故選:B.2.如果函數(shù)SKIPIF1<0對于任意實數(shù)t都有SKIPIF1<0,那么(

)A.f(2)<f(1)<f(4) B.f(1)<f(2)<f(4)C.f(4)<f(2)<f(1) D.f(2)<f(4)<f(1)【答案】A【詳解】因函數(shù)SKIPIF1<0對于任意實數(shù)t都有SKIPIF1<0,則其圖象對稱軸為SKIPIF1<0,且SKIPIF1<0在SKIPIF1<0上遞增,于是得SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0.故選:A3.設函數(shù)SKIPIF1<0定義在實數(shù)集上,它的圖像關于直線SKIPIF1<0對稱,且當SKIPIF1<0時,SKIPIF1<0,則有(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】由題意可得,函數(shù)SKIPIF1<0在SKIPIF1<0上是增函數(shù),再根據(jù)函數(shù)的圖象關于直線SKIPIF1<0對稱,可得函數(shù)在SKIPIF1<0上是減函數(shù),故離直線SKIPIF1<0越近的點,函數(shù)值越小,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,故選:B.4.已知函數(shù)SKIPIF1<0,其圖象上兩點的橫坐標SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,則有(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<0的大小不確定【答案】C【分析】根據(jù)函數(shù)SKIPIF1<0,作差比較.【詳解】已知函數(shù)SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故選:C5.已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),且在區(qū)間SKIPIF1<0上是增函數(shù),令SKIPIF1<0則A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】試題分析:注意到,,,從而有;因為函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),且在區(qū)間SKIPIF1<0上是增函數(shù),所以有,而,,所以有SKIPIF1<0,故選A.考點:1.函數(shù)的奇偶性與單調(diào)性;2.三角函數(shù)的大?。?.定義在R上的函數(shù)f(x)滿足f(x)=f(x+2),當x∈[3,5]時,f(x)=2﹣|x﹣4|,A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】試題分析:利用函數(shù)的周期性及x∈[3,5]時的表達式f(x)=2-|x-4|,可求得x∈[-1,1]時的表達式,從而可判斷逐個選項的正誤.解:∵f(x+2)=f(x),∴函數(shù)f(x)是周期為2的周期函數(shù),又當x∈[3,5]時f(x)=2-|x-4|,∴當-1≤x≤1時,x+4∈[3,5],∴f(x)=f(x+4)=2-|x|,∴f(sinSKIPIF1<0))=f(SKIPIF1<0)=SKIPIF1<0-SKIPIF1<0=f(cosSKIPIF1<0)),排除A,f(sin1)=2-sin1<2-cos1=f(cos1)排除B,f(sinSKIPIF1<0))=2-SKIPIF1<0<2-SKIPIF1<0=f(cosSKIPIF1<0),D正確;f(sin2)=2-sin2<2-(-cos2)=f(cos2)排除C.故選:D7.已知函數(shù)是R上的偶函數(shù),且在區(qū)間上是增函數(shù).令,則A. B. C. D.【答案】A【詳解】SKIPIF1<0,SKIPIF1<0因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,選A.8.已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】令SKIPIF1<0,則SKIPIF1<0.當SKIPIF1<0,即SKIPIF1<0時,函數(shù)SKIPIF1<0單調(diào)遞增;當SKIPIF1<0,即SKIPIF1<0時,函數(shù)SKIPIF1<0單調(diào)遞減.由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,得SKIPIF1<0.當SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0.在上式中,令SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0,從而SKIPIF1<0,即SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,綜上可得,SKIPIF1<0,即SKIPIF1<0.故選:D.三年模擬1.已知SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則a,b,c的大小關系為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】因為SKIPIF1<0,定義域關于原點對稱,SKIPIF1<0,所以SKIPIF1<0為SKIPIF1<0上的偶函數(shù),當SKIPIF1<0時,SKIPIF1<0,設SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0即SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,又因為SKIPIF1<0為偶函數(shù),所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又因為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0又因為SKIPIF1<0,因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.故選:D.2.已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】由SKIPIF1<0,同理SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,可得函數(shù)SKIPIF1<0的遞減區(qū)間為SKIPIF1<0,遞增區(qū)間為SKIPIF1<0,而2<e<3<4,又由SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又由SKIPIF1<0及SKIPIF1<0的單調(diào)性,可知SKIPIF1<0,故SKIPIF1<0.故選:C.3.已知定義在R上的函數(shù)SKIPIF1<0滿足SKIPIF1<0為偶函數(shù),SKIPIF1<0為奇函數(shù),當SKIPIF1<0時,SKIPIF1<0,則下列說法正確的是(

).①SKIPIF1<0,②函數(shù)SKIPIF1<0為周期函數(shù),③函數(shù)SKIPIF1<0為R上的偶函數(shù),④SKIPIF1<0.A.①② B.②③④ C.②④ D.①②③【答案】A【詳解】因為SKIPIF1<0為偶函數(shù),所以SKIPIF1<0是SKIPIF1<0的一條對稱軸,又SKIPIF1<0關于SKIPIF1<0軸對稱后得到SKIPIF1<0,橫坐標伸長為原來的3倍得到SKIPIF1<0,向右平移SKIPIF1<0個單位得到SKIPIF1<0,所以SKIPIF1<0時SKIPIF1<0的一條對稱軸,則SKIPIF1<0;因為SKIPIF1<0為奇函數(shù),所以SKIPIF1<0是SKIPIF1<0的一個對稱中心,同理可得SKIPIF1<0是SKIPIF1<0的一個對稱中心,則SKIPIF1<0,又SKIPIF1<0為R上的奇函數(shù),所以SKIPIF1<0會經(jīng)過SKIPIF1<0這個點,代入得SKIPIF1<0,因為SKIPIF1<0是SKIPIF1<0的一條對稱軸,所以SKIPIF1<0,故①正確;由SKIPIF1<0和SKIPIF1<0得SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0是SKIPIF1<0的一個周期,故②正確;由SKIPIF1<0得SKIPIF1<0,又SKIPIF1<0是SKIPIF1<0的一個周期,所以SKIPIF1<0,則SKIPIF1<0為奇函數(shù),故③錯;因為SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,因為SKIPIF1<0為奇函數(shù),所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故④錯.故選:A.4.已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0,其導函數(shù)為SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的大小關系是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】設SKIPIF1<0,則SKIPIF1<0,由題意知當SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0時單調(diào)遞增,故SKIPIF1<0,即SKIPIF1<0,故選:D.5.己知定義域為SKIPIF1<0的奇函數(shù)SKIPIF1<0滿足SKIPIF1<0,且當SKIPIF1<0時,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】由于函數(shù)SKIPIF1<0為定義在SKIPIF1<0上的奇函數(shù),所以SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以函數(shù)SKIPIF1<0的圖像關于直線SKIPIF1<0對稱.又SKIPIF1<0,所以SKIPIF1<0,所以函數(shù)SKIPIF1<0是周期4的周期函數(shù),所以SKIPIF1<0.當SKIPIF1<0時,SKIPIF1<0,顯然SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.又SKIPIF1<0,所以SKIPIF1<0所以根據(jù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增可得SKIPIF1<0.即SKIPIF1<0.故選:A.6.已知函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,導函數(shù)為SKIPIF1<0,若SKIPIF1<0恒成立,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】設函數(shù)SKIPIF1<0,因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,從而SKIPIF1<0,即SKIPIF1<0.所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故選:B7.已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】由SKIPIF1<0,得SKIPIF1<0,于是SKIPIF1<0,同理由SKIPIF1<0,可得SKIPIF1<0SKIPIF1<0.對于SKIPIF1<0,兩邊同時取對數(shù)得SKIPIF1<0,于是SKIPIF1<0.構造函數(shù)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0因為SKIPIF1<0,所以當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.即SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,如圖所示,所以SKIPIF1<0.故選:A.8.已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,下列說法正確的是(

).A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】設SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上恒成立,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0在SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0;設SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上恒成立,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0所以SKIPIF1<0;綜上所述:SKIPIF1<0,故選:C9.設SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】令函數(shù)SKIPIF1<0,SKIPIF1<0,求導得:SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0,因此函數(shù)SKIPIF1<0在SKIPIF1<0上遞減,即有SKIPIF1<0,即SKIPIF1<0,于是得SKIPIF1<0在SKIPIF1<0上遞減,而SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,有SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.故選:B10.已知SKIPIF1<0是定義在R上的函數(shù),SKIPIF1<0是SKIPIF1<0的導函數(shù),且SKIPIF1<0,則下列結(jié)論一定成立的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】令SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0是增函數(shù),所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.故選:D.11.已知SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),且SKIPIF1<0,對于SKIPIF1<0上任意兩個不相等實數(shù)SKIPIF1<0和SKIPIF1<0,SKIPIF1<0都滿足SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的大小關系為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】解:因為SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),所以SKIPIF1<0,所以SKIPIF1<0,即函數(shù)SKIPIF1<0為偶函數(shù),因為對于SKIPIF1<0上任意兩個不相等實數(shù)SKIPIF1<0和SKIPIF1<0,SKIPIF1<0都滿足SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,因為SKIPIF1<0,因為SKIPIF1<0,所以,SKIPIF1<0,即SKIPIF1<0.故選:A12.已知SKIPIF1<0,則這三個數(shù)的大小關系為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】令SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0,解得SKIPIF1<0,由SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減;因為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0遞增,所以SKIPIF1<0,即SKIPIF1<0;SKIPIF1<0,在同一坐標系中作出SKIPIF1<0與SKIPIF1<0的圖象,如圖:由圖象可知在SKIPIF1<0中恒有SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0所以SKIPIF1<0,即SKIPIF1<0;綜上可知:SKIPIF1<0,故選:A13.已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的大小關系為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】令SKIPIF1<0,則SKIPIF1<0.因為SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.而SKIPIF1<0,SKIPIF1<0,所以在SKIPIF1<0上有SKIPIF1<0.所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.所以SKIPIF1<0,即SKIPIF1<0.故SKIPIF1<0.故選:D.14.設SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則a,b,c之間的大小關系為(

)A.c<b<a B.c<a<b C.b<c<a D.a(chǎn)<c<b【答案】A【詳解】構造函數(shù)SKIPIF1<0,x>-1,則SKIPIF1<0,當-1<x<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,當x>0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,∴SKIPIF1<0,∴SKIPIF1<0(當x=0時等號成立),∴SKIPIF1<0,則c<b,構造函數(shù)SKIPIF1<0,0<x<1,則SKIPIF1<0,令SKIPIF1<0,0<x<1,∴SKIPIF1<0,SKIPIF1<0單調(diào)遞增,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0單調(diào)遞增,從而SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,則a>b.∴c<b<a.故選:A.15.設SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的大小關系正確的是(

).A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】由SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,構造函數(shù)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0得SKIPIF1<0,下面說明SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0是增函數(shù),因為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,整理可得SKIPIF1<0,即SKIPIF1<0,因為SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,構造函數(shù)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0是增函數(shù),所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0是增函數(shù),所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,綜上,SKIPIF1<0.故選:C.16.設SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】令SKIPIF1<0,則SKIPIF1<0,設SKIPIF1<0,則SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0,即SKIPIF1<0;又因為SKIPIF1<0,所以SKIPIF1<0,綜上,SKIPIF1<0.故選:D.17.已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】因為SKIPIF1<0,構造函數(shù)求導易證所以SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論