Chap5確定型決策方法_第1頁(yè)
Chap5確定型決策方法_第2頁(yè)
Chap5確定型決策方法_第3頁(yè)
Chap5確定型決策方法_第4頁(yè)
Chap5確定型決策方法_第5頁(yè)
已閱讀5頁(yè),還剩33頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

Chap5確定型決策方法決策科學(xué)與藝術(shù)11/18/2023§1確定型決策的決策規(guī)則一、確定型決策的特點(diǎn)和模型特點(diǎn):決策問(wèn)題的每一個(gè)自然狀態(tài)變量q=常量,概率p(q)=1,決策者能夠完全確定今后將會(huì)發(fā)生哪種狀態(tài),一個(gè)方案xi只可能出現(xiàn)一種后果c(xi)。單目標(biāo)確定型決策模型一般形式:

s.t.vi(x)≤(或=,≥)εi,i=1,...,l

11/18/2023二、成本規(guī)則——以成本最小化為決策的準(zhǔn)則例:確定使采購(gòu)費(fèi)用和庫(kù)存費(fèi)用最小的每批采購(gòu)量。

C——采購(gòu)與庫(kù)存總費(fèi)用;q——每批采購(gòu)量;Cp——采購(gòu)費(fèi)用;Cs——庫(kù)存費(fèi)用;C1——每次采購(gòu)成本;n——采購(gòu)次數(shù);Q——原料總需求量;C2——單位原料的庫(kù)存費(fèi)用;v——平均庫(kù)存量。

令dc/dq=0,求得最佳采購(gòu)批量為:

其中:11/18/2023三、盈虧平衡規(guī)則盈虧平衡分析,又稱為量本利分析,由美國(guó)哥倫比亞大學(xué)勞施特勞赫(W.Rauthstrauch)教授在20世紀(jì)30年代提出。盈虧平衡分析是通過(guò)對(duì)產(chǎn)量、成本和利潤(rùn)的綜合分析建立三者之間關(guān)系的數(shù)學(xué)模型,其目的是掌握企業(yè)經(jīng)營(yíng)的盈虧界限,確定企業(yè)的盈虧平衡的產(chǎn)量和最優(yōu)生產(chǎn)規(guī)模,以便作出合理的決策。

11/18/2023四、凈現(xiàn)值規(guī)則凈現(xiàn)值是指某備選方案未來(lái)現(xiàn)金流入的現(xiàn)值與未來(lái)現(xiàn)金流出的現(xiàn)值之間的差額,它是考察方案盈利能力的一個(gè)動(dòng)態(tài)指標(biāo)。凈現(xiàn)值計(jì)算公式:式中,n——投資方案涉及的年限;t——時(shí)間(第幾年);CIt

——第t年的現(xiàn)金流入量(cashinflow);COt

——第t年的現(xiàn)金流出量(cashoutflow);i——預(yù)定的貼現(xiàn)率(折現(xiàn)率)。凈現(xiàn)值為正,說(shuō)明該投資方案可以采用;反之,則放棄。

11/18/2023五、內(nèi)部收益率規(guī)則內(nèi)部收益率(theinternalrateofreturn,IRR)是使未來(lái)收益的現(xiàn)值總額與投資量的現(xiàn)值總額相等的貼現(xiàn)率,即投資項(xiàng)目在使用期內(nèi),累計(jì)凈現(xiàn)值為零時(shí)的貼現(xiàn)率,是判別投資方案獲利能力的一種動(dòng)態(tài)分析方法。某個(gè)備選方案的IRR越高,對(duì)收益貼現(xiàn)得越多,這樣越能夠平衡最初支出,該方案就越具有吸引力。內(nèi)部收益率的計(jì)算方法通常有試算法、插入法(逐步測(cè)試法)和圖解法幾種。

11/18/20231.試算法通過(guò)試算,找出凈現(xiàn)值接近于0的貼現(xiàn)率。試算公式:

C0——投資方案的凈現(xiàn)金投資總量(或成本)

11/18/20232.插值法思路:先用試算法進(jìn)行粗略地估算,然后再用插入法進(jìn)行比較精確的計(jì)算。內(nèi)部收益率i的計(jì)算公式:式中,NPV1——由貼現(xiàn)率i1計(jì)算出來(lái)的凈現(xiàn)值,且NPV1略大于零;NPV2——由略高的貼現(xiàn)率i2求得的凈現(xiàn)值,且NPV2略小于零。(i2與i1之間一般不超過(guò)5%)11/18/20233.圖解法凈現(xiàn)值(萬(wàn)元)1000100200300400內(nèi)部收益率(%)5101520

+78-344iA=10.92%圖4-1求取內(nèi)部收益率的圖解法11/18/2023§2連續(xù)方案的決策一、線性規(guī)劃法線性規(guī)劃是運(yùn)籌學(xué)的一個(gè)重要分支,1947年丹捷格(G.B.Dantzig)提出求解線性規(guī)劃問(wèn)題的一般方法——單純形法。

線性規(guī)劃問(wèn)題一般具有3個(gè)基本特征:(1)對(duì)于所要解決的決策問(wèn)題,用一組決策變量(x1,x2,…,xn)表示某一方案,且決策變量的取值一般是非負(fù)。(2)決策的目標(biāo)函數(shù)是未知量(即決策變量)的線性函數(shù),約束條件是未知量的線性等式或線性不等式。(3)能夠建立線性規(guī)劃的數(shù)學(xué)模型。即能將實(shí)際決策問(wèn)題定量地表示成數(shù)學(xué)解析方程。11/18/20231.線性規(guī)劃模型例4-1:某企業(yè)在1個(gè)月內(nèi)要安排生產(chǎn)甲、乙兩種產(chǎn)品,已知,生產(chǎn)1件甲產(chǎn)品,可獲利潤(rùn)2元;生產(chǎn)1件乙產(chǎn)品,可獲利潤(rùn)3元。此外,甲、乙兩產(chǎn)品分別在A、B、C、D四種不同設(shè)備上加工。按工藝規(guī)定,兩產(chǎn)品在各設(shè)備上所需加工臺(tái)時(shí)數(shù)以及設(shè)備在計(jì)劃期內(nèi)總有效臺(tái)時(shí)數(shù)如表所示?,F(xiàn)取利潤(rùn)f(x)最大為決策目標(biāo),試決定兩種產(chǎn)品的產(chǎn)量x1和x2(kg)。表4-2各設(shè)備加工臺(tái)時(shí)與總有效臺(tái)時(shí)設(shè)備產(chǎn)品設(shè)備A設(shè)備B設(shè)備C設(shè)備D產(chǎn)品甲(臺(tái)時(shí)/件)2140產(chǎn)品乙(臺(tái)時(shí)/件)2204總有效臺(tái)時(shí)ei(千臺(tái)時(shí))1181612Go11/18/2023建立該決策問(wèn)題的線性規(guī)劃模型:

11/18/20232.圖解法對(duì)于只有2個(gè)決策變量的情況,可以用簡(jiǎn)單直觀的二維空間的圖解法來(lái)求解線性規(guī)劃問(wèn)題。12345

6786543210f增大(2,3)可行域X(4,1.5)(3,2.5)*x2x12x1+2x2≤114x1≤16x1,x2≥04x2≤12x1+2x2≤8f=2x1+3x2=6AB圖4-3線性規(guī)劃的圖解法11/18/20233.單純形法的基本思路1947年美國(guó)數(shù)學(xué)家丹捷格(G.B.Dantzig)提出了求解線性規(guī)劃問(wèn)題的一種算法——單純形法,它已成為求解線性規(guī)劃問(wèn)題算法中應(yīng)用最廣泛、使用方便、行之有效、具有權(quán)威性的算法。11/18/2023幾個(gè)概念和定理設(shè)K是n維歐氏空間的一個(gè)點(diǎn)集,若任意兩點(diǎn)x(1)∈K和x(2)∈K的連線上的一切點(diǎn)x都屬于集合K:x=ax(1)+(1

a)x(2)∈K,0≤a≤1則稱K為凸集。設(shè)K為凸集,x∈K。若x不能用不同的兩點(diǎn)x(1)∈K和x(2)∈K的線性組合表示為:x=ax(1)+(1

a)x(2)∈K,0≤a≤1即,x不在x(1)和x(2)的連線上,則稱x為K的一個(gè)頂點(diǎn)。11/18/2023在二維空間上,凸集和頂點(diǎn)的幾何含義

(1)凸集(2)非凸集x1x2x(1)x(2)頂點(diǎn)Kx2x1K′x′(1)x′(2)圖4-3凸集和頂點(diǎn)的幾何意義11/18/2023兩個(gè)定理定理1:若線性規(guī)劃問(wèn)題存在可行域(即可行域非空集),則其可行域是凸集。定理2:若線性規(guī)劃問(wèn)題可行域有界,則其目標(biāo)函數(shù)一定可以在其可行域的頂點(diǎn)上達(dá)到最優(yōu)(不一定是唯一最優(yōu)解)。11/18/2023定理2的幾何意義(二維決策空間時(shí))決策空間可行域目標(biāo)可行域目標(biāo)函數(shù)平面最優(yōu)目標(biāo)值f*最優(yōu)解(x1*,x2*)x2x1f圖4-4定理2的幾何意義11/18/2023單純形法的基本思路:從可行域的一個(gè)頂點(diǎn)(初始頂點(diǎn))出發(fā),根據(jù)使目標(biāo)函數(shù)增大(求max時(shí))或減?。ㄇ髆in時(shí))的原則,轉(zhuǎn)換到另一個(gè)頂點(diǎn),直到目標(biāo)函數(shù)達(dá)到最大的值為止,就得到了該問(wèn)題的一個(gè)最優(yōu)解。由于頂點(diǎn)個(gè)數(shù)是有限的,因此該算法在有限步內(nèi)可達(dá)到最優(yōu)解。11/18/2023二、非線性規(guī)劃法1.非線性規(guī)劃問(wèn)題及其數(shù)學(xué)模型

目標(biāo)函數(shù)或約束條件中包含有非線性函數(shù)的數(shù)學(xué)規(guī)劃問(wèn)題[目標(biāo)函數(shù)和約束函數(shù)中至少有一者為非線性函數(shù)]。。例如:11/18/20232.求解非線性規(guī)劃問(wèn)題的思路對(duì)于非線性規(guī)劃問(wèn)題,目前還沒(méi)有適于各種問(wèn)題的一般算法,常用方法是搜索法

。求解非線性規(guī)劃問(wèn)題的各種方法主要根據(jù)以下定理。定理:設(shè)x*=(x1*,x2*,…,xn*)是可行域的內(nèi)點(diǎn),若f(x)在x0處可微,且在該點(diǎn)取得極值的必要條件是:11/18/2023搜索法的基本思路——通過(guò)在可行域中不斷搜索使得(i=1,…,n)的點(diǎn)x=x*。在每一步搜索過(guò)程中,需要判斷是否已經(jīng)達(dá)到最優(yōu)解,如果尚未達(dá)到,則需要確定下一步搜索的“方向”和“步長(zhǎng)”……,如此不斷逼近最優(yōu)解,直到找到基本滿足的解。

11/18/2023可行域f曲面f(max)x1x2最優(yōu)點(diǎn)f*最優(yōu)解x*圖4-5二維非線性規(guī)劃幾何意義11/18/2023說(shuō)明:非線性規(guī)劃如果算法不合適,或模型太復(fù)雜,則收斂時(shí)間很長(zhǎng),甚至無(wú)法收斂,或者算法發(fā)散,即無(wú)法保證非線性規(guī)劃問(wèn)題的求解在有限步內(nèi)完成。人們常常對(duì)非線性規(guī)劃問(wèn)題進(jìn)行線性化處理,把非線性模型在局部范圍內(nèi)近似成線性模型,因而變成為線性規(guī)劃問(wèn)題。11/18/2023§3離散方案的決策一、逐個(gè)方案評(píng)價(jià)法離散方案:指決策變量取離散值,且備選方案的個(gè)數(shù)是有限的。逐個(gè)方案評(píng)價(jià)法:逐個(gè)對(duì)備選方案進(jìn)行評(píng)價(jià),以便從中選出最佳的方案,故又稱為枚舉法、窮舉法。該法適用于決策變量及每個(gè)決策變量的離散取值不多的場(chǎng)合。

11/18/20231.單目標(biāo)確定型決策舉例以前述例4-1為例,某工廠在計(jì)劃期內(nèi)安排生產(chǎn)甲、乙兩種產(chǎn)品,試決定兩種產(chǎn)品的產(chǎn)量x1和x2(千件)。決策變量x1和x2是可以連續(xù)取值,為簡(jiǎn)化問(wèn)題,將決策變量x1和x2離散化,得16個(gè)備選方案,如表4-2所示。11/18/2023表4-2備選方案集X′乙產(chǎn)量x2甲產(chǎn)量x1

1千件2千件3千件4千件1千件(1,1)(1,2)(1,3)(1,4)2千件(2,1)(2,2)(2,3)(2,4)3千件(3,1)(3,2)(3,3)(3,4)4千件(4,1)(4,2)(4,3)(4,4)11/18/2023寫(xiě)出該決策問(wèn)題的數(shù)學(xué)模型:11/18/2023根據(jù)約束模型對(duì)表4-2的備選方案集X′逐一進(jìn)行評(píng)價(jià)。刪除不可行的方案:(i,4)(i=1,2,3,4),(3,3),(4,3),(4,2)。剩下的方案構(gòu)成了可行方案集X。

表4-3可行方案集X′乙產(chǎn)量x2甲產(chǎn)量x1

1千件2千件3千件4千件1千件(1,1)(1,2)(1,3)(1,4)2千件(2,1)(2,2)(2,3)(2,4)3千件(3,1)(3,2)(3,3)(3,4)4千件(4,1)(4,2)(4,3)(4,4)11/18/2023表4-4可行方案目標(biāo)值f(x1,x2)(千元)乙產(chǎn)量x2甲產(chǎn)量x1

1千件2千件3千件4千件1千件5811—2千件71013*—3千件912——4千件11———再根據(jù)目標(biāo)模型對(duì)可行方案集X中的方案逐一評(píng)價(jià),結(jié)果見(jiàn)表4-4,最佳方案是x*=(x1,x2)*=(2,3)。11/18/20232.多目標(biāo)確定型決策舉例多目標(biāo)確定型決策的數(shù)學(xué)模型如下:基本思路與單目標(biāo)一樣,先根據(jù)約束模型評(píng)價(jià)方案的可行性,由此得出可行方案集合X。然后,根據(jù)目標(biāo)函數(shù)評(píng)價(jià)可行方案的最優(yōu)性。

11/18/2023例4-3某鍛造廠欲擴(kuò)大汽車半軸的生產(chǎn)量。通過(guò)對(duì)現(xiàn)有生產(chǎn)情況和汽車半軸生產(chǎn)的系統(tǒng)分析,提出了4種擴(kuò)產(chǎn)和改造備選方案,見(jiàn)表4-5。根據(jù)企業(yè)的經(jīng)濟(jì)能力,目前只能在這4個(gè)方案中選1個(gè)實(shí)施。首先,經(jīng)過(guò)對(duì)備選方案進(jìn)行可行性分析,決策者認(rèn)為方案x1投資大,難度高,根據(jù)工廠的經(jīng)濟(jì)狀況,無(wú)法實(shí)現(xiàn),所以予以淘汰。11/18/2023表4-5備選方案的可行性評(píng)價(jià)方案方案說(shuō)明約束條件可行性結(jié)論投資額<50(萬(wàn)元)年產(chǎn)量>3.2(萬(wàn)根)難度:不宜過(guò)大x1上平鍛機(jī)13010.0很難不可行x2用軋制機(jī)代替原有夾板錘13.23.6一般可行x3用軋制機(jī)和碾壓機(jī)代替原有夾板錘和空氣錘20.44.0較難可行x4增加1臺(tái)空氣錘3.53.6較易可行11/18/2023對(duì)其余3個(gè)可行方案,決策者確定了11個(gè)指標(biāo)(決策目標(biāo))進(jìn)行評(píng)價(jià)。這3個(gè)方案都可在該廠應(yīng)用,技術(shù)上沒(méi)有問(wèn)題,區(qū)別在于投資的多少,技術(shù)的先進(jìn)程度,成本的高低,耗電量的多少等。為了進(jìn)行優(yōu)選,采用方案互比打分法,即對(duì)3個(gè)方案的評(píng)價(jià)指標(biāo)逐項(xiàng)比較打分,最好的打2分,中等的1分,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論