版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
計(jì)算數(shù)學(xué)基礎(chǔ)第2章沈復(fù)民
電子科技大學(xué)計(jì)算機(jī)科學(xué)與工程學(xué)院Chapter2UnitarySimilarityandUnitaryEquivalence2.0Introduction2.1UnitarymatricesandtheQRfactorization2.2Unitarysimilarity2.3Unitaryandrealorthogonaltriangularizations2.4ConsequencesofSchur’striangularizationtheorem2.5Normalmatrices2.6Unitaryequivalenceandthesingularvalueposition2.7TheCSpositionDefinition1.3.1Let
A,B
Mnbegiven.Wesaythat
BissimilartoA
ifthereexistsanonsingularmatrixS
MnsuchthatB=S1ASThetransformationA
S
1A
SiscalledasimilaritytransformationbythesimilaritymatrixS.Therelation“BissimilartoA”issometimesabbreviatedB
A.1.3SimilarityS1=S
2.0IntroductionSimilarityviaaunitarymatrixU,A
U
AU,isnotonlyconceptuallysimplerthangeneralsimilarity(theconjugatetransposeismucheasiertocomputethantheinverse),butitalsohassuperiorstabilitypropertiesinnumericalcomputations.2.0IntroductionForA
Mn,m,thetransformationA
UAV,inwhichU
MmandV
Mnarebothunitary,iscalledunitaryequivalence.ThetransformationA
S
AS,inwhichS
is
nonsingularbutnot
necessarilyunitary,iscalled
congruence;westudyitinChapter4.Definition2.1.12.1UnitarymatricesandtheQRfactorizationAlistofvectorsx1,,xkCnisorthogonalifforalli
j
,i,j{1,,k}.If,inaddition,forall
i=1,,k(thatis,thevectorsarenormalized),
thenthelistisorthonormal.Theorem2.1.2EveryorthonormallistofvectorsinCnislinearlyindependent.2.1UnitarymatricesandtheQRfactorizationAlinearlyindependentlistneednotbeorthonormal,ofcourse,butonecanapplytheGram-Schmidtorthonormalizationprocedure
(0.6.4)
toitandobtainanorthonormallistwiththesamespan.2.1UnitarymatricesandtheQRfactorizationDefinition2.1.3U
=U1
AmatrixU
Mn
(C)isunitary
if
U
U=I.AmatrixU
Mn(R)isrealorthogonalif
UTU=I.DefinitionAmatrixA
MnissaidtobeHermitian
if
A
=A.If,inaddition,A
Mn(R),Aissaidtobesymmetric.AmatrixA
Mnissaidtobenormal
if
A
A=AA
,thatis,if
AcommuteswithitsHermitianadjoint.AmatrixU
Mnissaidtobeunitary
if
U
U=I.If,inaddition,U
Mn(R),Uissaidtoberealorthogonal.7.1DefinitionsandpropertiesAHermitianmatrixA
Mnispositivedefinite
ifx
Ax0forallnonzeroxCn.(7.1.1a)Itispositivesemidefinite
ifx
Ax0forallnonzeroxCn.(7.1.1b)Implicitinthesedefinitionsisthefactthatif
AisHermitian,then
x
AxisrealforallxCn;see(4.1.3).Conversely,if
A
Mnandx
AxisrealforallxCn,then
AisHermitian,soassumingthatAisHermitianintheprecedingdefinitions,whilecustomary,isactuallysuperfluous;see(4.1.4).Theorem7.2.17.2CharacterizationsandpropertiesAHermitianmatrixispositivesemidefinite
ifandonlyifallofitseigenvaluesarenonnegative.Itispositivedefinite
ifandonlyifallofitseigenvaluesarepositive.SeveralClassesofMatricesChapters2,4,and7HermitianmatrixChapters4Positive(semi)definitematrixChapters7NormalmatrixChapters2UnitarymatrixChapters2Theunitarymatricesin
Mnformaremarkableandimportantset.WelistsomeofthebasicequivalentconditionsforUtobeunitaryin(2.1.4).7.2CharacterizationsandpropertiesTheorem2.1.4
IfU
Mn,thefollowingareequivalent:
(a)
Uisunitary.(U
U=I)
(b)
UisnonsingularandU
=U
1.
(c)
UU
=I.
(d)
U
isunitary.
(e)ThecolumnsofUareorthonormal.
(f)TherowsofUareorthonormal.
(g)ForallxCn,||x||2=||Ux||2,thatis,xandUxhavethesameEuclideannorm.Definition2.1.5AlineartransformationT:
CnCmiscalledaEuclideanisometry
if
||x||2=||Tx||2
forallxCn.Theorem2.1.4saysthatasquarecomplexmatrixU
MnisaEuclideanisometry(viaU:x
Ux)ifandonlyifitisunitary.2.1UnitarymatricesandtheQRfactorizationObservation2.1.6
If
U,V
Mnareunitary(respectively,realorthogonal),thentheUVisalsounitary(respectively,realorthogonal).Theorem2.1.4(b)2.1UnitarymatricesandtheQRfactorizationObservation2.1.7Thesetofunitary(respectively,realorthogonal)matricesinMn
formsagroup
.Thisgroupisgenerallyreferredtoasthen-by-nunitary(respectively,realorthogonal)group,asubgroupofGL(n,C)
(0.5).2.1UnitarymatricesandtheQRfactorization0.5NonsingularityThenonsingularmatricesinMn(F)
formagroup,thegenerallineargroup,oftendenotedbyGL(n,F)
GL(n,C)F=CNotionsof“convergence”and“l(fā)imit”ofasequenceofmatricesarepresentedprecisely
inChapter5.2.1UnitarymatricesandtheQRfactorizationLemma2.1.8(TheSelectionPrincipleforUnitaryMatrices)2.1UnitarymatricesandtheQRfactorizationLet
U1,U2,Mnbeagiveninfinitesequenceofunitarymatrices.ThereexistsaninfinitesubsequenceUk1,Uk2,,1k1<k2<,suchthatalloftheentriesof
Ukiconverge(assequencesofcomplexnumbers)totheentriesofaunitarymatrixasi
.ThesetofsuchmatricesiseasilycharacterizedastherangeofthemappingA
A1A
forallnonsingularA
Mn.AunitarymatrixUhasthepropertythatU
1
equals
U
.OnewaytogeneralizethenotionofaunitarymatrixistorequirethatU
1besimilartoU
.2.1UnitarymatricesandtheQRfactorizationTheorem2.1.9Let
A
Mnbenonsingular.Then
A1issimilartoA
ifandonlyifthereisanonsingularmatrixB
MnsuchthatA=B1B
.A{B1B
,B
Mnisanonsingularmatrix}A
1issimilartoA
2.1UnitarymatricesandtheQRfactorization2.1UnitarymatricesandtheQRfactorizationIfaunitarymatrixispresentedasa2-by-2blockmatrix,thentheranksofitsoff-diagonalblocksareequal
;theranksofitsdiagonalblocksarerelatedbyasimpleformula.Lemma2.1.102.1UnitarymatricesandtheQRfactorizationLetaunitarymatrixU
Mnbepartitionedas,inwhichU11
Mk.Then
rankU12=rankU21andrankU22=rankU11+n2k.Inparticular,U12=0
ifandonlyifU21=0,inwhichcaseU11andU22
areunitary.
PlanerotationsandHouseholdermatricesarespecial(andverysimple)unitarymatricesthatplayanimportantroleinestablishingsomebasicmatrixfactorizations.2.1UnitarymatricesandtheQRfactorizationcolumnicolumnjrowirowjdenotetheresultofreplacethe
i,iand
j,j
entriesofthen-by-nidentitymatrixbycos
,replacingits
i,j
entry
by
sin
andreplacingits
j,i
entryby
sin
.ThematrixU(
;i,j
)iscalledaplanerotationorGivensrotation.Example2.1.11.Planerotations.Let1
i<j
n
andletU(
;i,j
)Exercise2.1UnitarymatricesandtheQRfactorizationVerifythat
U(
;i,j)
Mn(R)isrealorthogonalforanypairofindicesi,jwith1i<j
nandanyparameter
[0,2
).ThematrixU(
;i,j)carriesoutarotation(throughanangle
)inthei,jcoordinateplaneofRn.2.1UnitarymatricesandtheQRfactorizationExample2.1.12.HouseholdermatricesLetw
Cnbeanonzerovector.TheHouseholdermatrixUw
MnisdefinedbyUw=I2(w
w)1ww
.If
wisaunitvector,then
Uw=I2ww
.Exercise2.1UnitarymatricesandtheQRfactorizationShowthataHouseholdermatrixUw
isboth
unitary
andHermitian,soUw1=Uw.ShowthataHouseholdermatrixUw
actsastheidentityonthecomplementarysubspacew
andthatitactsasareflectionontheone-dimensionalsubspacespannedbyw;thatis,Uw
x=x
if
x
w
and
Uw
w=w.2.1UnitarymatricesandtheQRfactorizationExerciseThefollowingQRfactorizationofacomplexorrealmatrixisofconsiderabletheoreticalandcomputationalimportance.2.1UnitarymatricesandtheQRfactorization(a)
If
n
m,thereisaQ
Mn,mwithorthonormalcolumnsandanuppertriangularR
MmwithnonnegativemaindiagonalentriessuchthatA=QR.
(b)
If
rankA=m,thenthefactorsQandRin(a)areuniquelydeterminedandthemaindiagonalentriesofRarepositive.
(c)
If
m=n,thenthefactorQin(a)isunitary.
(d)ThereisaunitaryQ
Mnandanuppertriangular
R
Mn,m
withnonnegativediagonalentriessuchthatA=QR.
(e)
If
Aisreal,thenthefactorsQandRin(a),(b),(c),and(d)
maybetakentobereal.Theorem2.1.14(QRfactorization)
LetA
Mn,mbegiven.QRfactorizationandQRalgorithmApopularnumericalmethodfor
calculatingeigenvalues(undersomeassumptions)iscalledtheQRalgorithm.ItisbasedontheQRfactorization.QRalgorithm
Let
A0
Mn
begiven.WriteA0=Q0R0,whereQ0andR0areasguaranteedinTheorem2.1.14,anddefineA1=R0Q0.Again,writeA1=Q1R1,withQ1unitaryandR1uppertriangular,andcontinue.Ingeneral,factorAk=Qk
RkanddefineAk+1=Rk
Qk
.QRfactorizationandQRalgorithmExercise
ShowthateachAkproducedbytheQRalgorithmisunitarilysimilartoA0,k=1,2,.QkRk
QkAk
Qk=QkAk+1=Ak+1=Qk
AkQkQkAk+1=AkQk
Undercertaincircumstances(forexample,ifalltheeigenvaluesofA0havedistinct
absolutevalues),theQRiteratesAkwillconvergetoanuppertriangularmatrixask
.SincethisuppertriangularmatrixisunitarilyequivalenttoA0,theeigenvaluesofA0arerevealed.QRfactorizationandQRalgorithmAnimportantgeometricalfactisthatanytwolistscontainingequalnumbersoforthonormalvectorsarerelatedviaaunitarytransformation.2.1UnitarymatricesandtheQRfactorizationTheorem2.1.182.1UnitarymatricesandtheQRfactorizationIf
X=[x1
xk]
Mn,kandY=[y1
yk]Mn,khaveorthonormalcolumns,thenthereisaunitaryU
MnsuchthatY=UX.If
XandYarereal,then
Umaybetakentobereal.Problems2.1UnitarymatricesandtheQRfactorization1.
IfU
Mnisunitary,showthat
|detU|=1.2.
Let
U
Mnbeunitaryandlet
beagiveneigenvalueofU.
Showthat
(a)
|
|=1and(b)
xisa(right)eigenvectorofU
associatedwith
ifandonlyif
xisalefteigenvectorofU
associatedwith
.9.
If
U
Mnisunitary,showthat
U,U
T,andU
areallunitary.–12.
Showthatif
A
Mnissimilartoaunitarymatrix,then
A
1issimilartoA
.2.2UnitarysimilaritySince
U
=
U1foraunitary
U
,thetransformationonMngivenbyA
U
AU
isasimilaritytransformationifUisunitary.Thisspecialtypeofsimilarityiscalledunitarysimilarity.Definition2.2.12.2UnitarysimilarityLet
A,B
Mnbegiven.WesaythatAisunitarilysimilartoBifthereisaunitaryU
MnsuchthatA=UBU
.If
Umaybetakentobereal(andhenceisrealorthogonal),then
Aissaidtobe(real)
orthogonallysimilartoB.WesaythatAisunitarilydiagonalizable
ifitisunitarilysimilartoadiagonalmatrix;Aisrealorthogonallydiagonalizable
ifitisrealorthogonallysimilartoadiagonalmatrix.ExerciseShowthatunitarysimilarityisanequivalencerelation.2.2UnitarysimilarityLet
A,
B
Mn.If
BissimilartoA,then
AandBhavethesamecharacteristicpolynomial.Theorem1.3.31.3SimilarityLet
A,
B
MnandsupposethatAissimilartoB,then(a)
AandBhavethesameeigenvalues.
(b)IfBisadiagonalmatrix,itsmaindiagonalentriesaretheeigenvaluesofA.
(c)
B=0(adiagonalmatrix)ifandonlyifA=0.
(d)
B=I(adiagonalmatrix)ifandonlyifA=I.Corollary1.3.41.3SimilarityThedeterminant,trace,andrankaresimilarityinvariants.rankS1AS=rankAtrS1AS=trAdetS1AS=detATheorem2.2.22.2UnitarysimilarityLet
U
MnandV
Mmbeunitary,let
A=[aij]Mn,m
and
B=[bij]
Mn,m,andsupposethat
A=UBV.Then.Inparticular,thisidentityissatisfiedif
m=nandV=U
,thatis,if
AisunitarilysimilartoB.trB
B
=trA
ATheorem2.2.2saysthattrA
Aisunitarysimilarityinvariant.ExerciseShowthatthematrices
andaresimilarbutnotunitarilysimilar.2.2UnitarysimilarityDefinition1.3.1Let
A,B
Mnbegiven.Wesaythat
BissimilartoA
ifthereexistsanonsingularmatrixS
MnsuchthatB=S1ASThetransformationA
S
1A
SiscalledasimilaritytransformationbythesimilaritymatrixS.Therelation“BissimilartoA”issometimesabbreviatedB
A.1.3SimilarityS1=S
2.2UnitarysimilarityUnitarysimilarity,likesimilarity,correspondstoachangeofbasis,butofaspecialtype–itcorrespondstoachangefromoneorthonormal
basistoanother.Unitarysimilarityimpliessimilaritybutnotconversely.TheunitarysimilarityequivalencerelationpartitionsMnintofinerequivalenceclassesthanthesimilarityequivalencerelation.Theorem2.2.22.2UnitarysimilarityLet
U
MnandV
Mmbeunitary,let
A=[aij]Mn,m
and
B=[bij]
Mn,m,andsupposethat
A=UBV.Then.Inparticular,thisidentityissatisfiedif
m=nandV=U
,thatis,if
AisunitarilysimilartoB.trB
B
=trA
AChapter2UnitarySimilarityandUnitaryEquivalence2.0Introduction2.1UnitarymatricesandtheQRfactorization2.2Unitarysimilarity2.3Unitaryandrealorthogonaltriangularizations2.4ConsequencesofSchur’striangularizationtheorem2.5Normalmatrices2.6Unitaryequivalenceandthesingularvalueposition2.7TheCSposition2.3UnitaryandrealorthogonaltriangularizationsPerhapsthemostfundamentallyusefulfactofelementarymatrixtheoryisatheoremattributedtoIssaiSchur:AnysquarecomplexmatrixAisunitarilysimilartoatriangularmatrixwhosediagonalentriesaretheeigenvaluesofA,inanyprescribedorder.Theorem2.3.1(Schurform:Schurtriangularization)Let
A
Mnhaveeigenvalues
1,,
ninanyprescribedorderandlet
xCnbeaunitvectorsuchthatAx=
1x.(a)ThereisaunitaryU={x,u2
un}MnsuchthatU
AU=T=[ti
j]isuppertriangularwithdiagonalentriesti
i=
i
,
i=1,,n.(b)
IfA
Mn(R)hasonlyrealeigenvalues,then
xmaybechosentoberealandthereisarealorthogonalQ={x
q2
qn}Mn(R)
suchthatQTAQ=T=[tij]isuppertriangularwithdiagonalentriestii=
i,i=1,,n.2.3UnitaryandrealorthogonaltriangularizationsNotethat
neithertheunitarymatrixU
northeuppertriangularmatrixTofTheorem2.3.1isunique.NotonlymaythediagonalentriesofT(theeigenvaluesofA)appearinanyorder,butalsotheunitarilysimilaruppertriangularmatricesmayappearverydifferentabovethediagonal.Example2.3.2VerifythatU
isunitaryand
T2=UT1U
.,.,IftheeignevaluesofAarereorderedandthecorrespondinguppertriangularization(2.3.1)isperformed,theentriesofTabovethemaindiagonalcanbedifferent.Consider2.3UnitaryandrealorthogonaltriangularizationsThereisausefulextensionof(2.3.1):Acommutingfamilyofcomplexmatricescanbereducedsimultaneouslytouppertriangularformbyasingleunitarysimilarity.Theorem2.3.32.3UnitaryandrealorthogonaltriangularizationsLet
F
Mnbeanonemptycommutingfamily.ThereisaunitaryU
MnsuchthatU
AUisuppertriangularforevery
A
F.2.3UnitaryandrealorthogonaltriangularizationsIfarealmatrixAhasanynon-realeigenvalues,thereisnohopeofreducingittoauppertriangularform
TbyarealsimilaritybecausesomemaindiagonalentriesofT(eigenvaluesofA)wouldbenon-real.However,wecanalwaysreduceAtoarealupperquasitriangularform
Tbyarealorthogonalsimilarity;conjugatepairsofnon-realeigenvaulesareassociatedwith2-by-2blocks.0.9.4BlocktriangularmatricesAblockuppertriangularmatrixinwhichallthediagonalblocksare1-by-1or2-by-2issaidtobeupperquasitriangular.Amatrixislowerquasitriangular
ifitstransposeisupperquasitriangular;itisquasitriangular
ifitiseitherupperquasitriangularorlowerquasitriangular.Amatrixthatisbothupperquasitriangularandlowerquasitriangularissaidtobequasidiagonal.withthefollowingproperties:(i)its1-by-1diagonalblocksdisplaytherealeignevaluesofA;(ii)eachofits2-by-2diagonalblockshasaspecialformthatdisplaysaconjugatepairofnon-realeigenvaluesofA:(iii)itsdiagonalblocksarecompletelydeterminedbytheeigenvaluesofA
;theymaybeappearinanyprescribedorder.Theorem2.3.4(RealSchurform)
Let
A
Mn(R)begiven.,a,b
R,b>0,anda
ibareeigenvaluesof
A.(2.3.5a)(a)Thereisarealnonsingular
S
Mn(R)suchthatS1ASisarealupperquasitriangularmatrix,eachAiis1-by-1or2-by-2(2.3.5)(i)Its1-by-1diagonalblocksdisplaytherealeignevaluesofA;(ii)Eachofits2-by-2diagonalblockshasaconjugatepairofnon-realei-genvalues(butnospecialform);(iii)Theorderingofitsdiagonalblocksmaybeprescribedinthefollowingsense:Iftherealeigenvaluesandconjugatepairsofnon-realeigenvluesofA
arelistedinaprescribedorder,thentherealeigenvaluesandconjugatepairsofnon-realeigenvaluesoftherespectivediagonalblocksA1,,AmofQTAQareinthesameorder.Theorem2.3.4(RealSchurform)
Let
A
Mn(R)begiven.(b)Thereisarealorthogonal
Q
Mn(R)suchthatQ
TAQisarealupperquasitriangularmatrixwiththefollowingproperties:2.3UnitaryandrealorthogonaltriangularizationsThereisacommutingfamiliesversionof
Theorem2.3.4:Acommutingfamilyofrealmatricesmaybereducedsimultaneouslytoacommonupperquasitriangularformbyasinglerealorthogonalsimilarity.Problem6.
Let
A,
B
Mnbegiven,andsuppose
AandBaresimultaneouslysimilartouppertriangularmatrices;thatis,S
1ASandS
1
BS
arebothuppertriangularforsomenonsingularS
Mn.ShowthateveryeigenvaluesofAB
BAmustbezero.2.3Unitaryandrealorthogonaltriangularizations2.4ConsequencesofSchur’striangularizationtheoremUse(2.3.1)toshowthatif
A
Mnhaseigenvalues
1,,
n,countingmultiplicity,then
detA=andtrA=.2.4.1ThetraceanddeterminantTheorem2.3.1(Schurform:Schurtriangularization)Let
A
Mnhaveeigenvalues
1,,
ninanyprescribedorderandlet
xCnbeaunitvectorsuchthatAx=
1x.(a)ThereisaunitaryU={x,u2
un}MnsuchthatU
AU=T=[ti
j]isuppertriangularwithdiagonalentriesti
i=
i
,
i=1,,n.(b)
IfA
Mn(R)hasonlyrealeigenvalues,then
xmaybechosentoberealandthereisarealorthogonalQ={x
q2
qn}Mn(R)
suchthatQTAQ=T=[tij]isuppertriangularwithdiagonalentriestii=
i,i=1,,n.2.4ConsequencesofSchur’striangularizationtheorem2.4.3TheCaley-Hamiltontheorem
Thefactthateverysquarecomplexmatrixsatisfiesitsowncharacteristicequationfollowsfrom
Schur’stheoremandanobservationaboutmultiplicationoftriangularmatriceswithspecialpatternsofzeroentries.Lemma2.4.3.1
Supposethat
R=[rij]and
T=[tij]Mnareuppertriangularandthatri
j=0
,1i,j
k
n,andt
k+1,k+1=0.Let
S==RT.Then
,
1i,j
k+1.2.4ConsequencesofSchur’striangularizationtheoremkkk+1k+1k+1k+12.4ConsequencesofSchur’striangularizationtheoremLemma2.4.3.1Theorem2.4.3.2(Cayley-Hamilton)Let
pA
(t)bethecharacteristicpolynomialofA
Mn
.Thenp
A(A)=02.4ConsequencesofSchur’striangularizationtheoremExerciseP.58Example1.3.5
&P.118Example2.4.8.42.4ConsequencesofSchur’striangularizationtheoremWhatiswrongwiththefollowingargument?“SincepA(
i)=0foreveryeigenvalue
iofA
Mn,andsincetheeigenvaluesofpA
(A)arepA(
1),,pA(
n),alleigenvaluesofpA(A)are0.Therefore,pA(A)
=0.”Itisacommonmistakenargumentfor
theCayley-Hamiltontheorem.Givenanexampletoillustratethefallacyintheargument.ExerciseThescalarpolynomialpA(t)isfirstcomputedaspA(t)=det(t
I
A),andonethenformsthematrixpA(A)fromthecharacteristicpolynomial.2.4ConsequencesofSchur’striangularizationtheoremWhatiswrongwiththefollowingargument?“SincepA(t)=det(t
I
A),wehavepA(A)=det(AI
A)=det(A
A)=det0=0.Therefore,pA(A)=
0.”
Theorem2.4.3.2(Cayley-Hamilton)Let
pA
(t)bethecharacteristicpolynomialofA
Mn
.Thenp
A(A)=02.4ConsequencesofSchur’striangularizationtheoremTheCayley-Hamiltontheoremisoftenparaphrasedas“
everysquarematrixsatisfiesitsowncharacteristicequation(1.2.3)”,butthismustbeunderstoodcarefully:ThescalarpolynomialpA(t)isfirstcomputedaspA(t)=det(tI
A);onethencomputesthematrixpA(A)bysubstitutingt
A.2.4ConsequencesofSchur’striangularizationtheoremTheorem2.4.3.2(Cayley-Hamilton)OneimportantuseoftheCayley-HamiltontheoremistowritepowersAkofA
Mn,fork
n,aslinearcombinationsofI,A,A2,,An1.2.4ConsequencesofSchur’striangularizationtheoremTheorem2.4.3.2(Cayley-Hamilton)Example2.4.3.3LetThen
pA(t)=t2
3t+2,so
A2
3A+2I=0.Thus,
A2=3A
2I;A3=A(A2)=3A2
2A=3(3A
2I)
2A=7A
6I;A4=7A2
6A=15A
14I,andsoon.
WecanalsoexpressnegativepowersofthenonsingularmatrixA
aslinearcombinationsofAandI.WriteA2
3A+2I=0
as2I=
A2+3A=A(
A+3I),or
I=A[(
A+3I)].Thus,A
1=
A+I=
,A
2=(A+I)2=A2
A+I=(3A2I)A+I
=A+I
,andsoon.Corollary2.4.3.4Suppose
A
Mn
isnonsingularandlet
pA(t)=tn+an1
t
n1++a1
t+a0.Let
q(t)=(tn1+an1
tn2++a2
t+a1)/a0.
Then
A
1=q(A)isapolynomialinA.2.4ConsequencesofSchur’striangularizationtheoremGivensomethoughttotheconverse:Satisfactionofthesamepolynomialequationsimpliessimilarity-trueorfalse?Exercise2.4ConsequencesofSchur’striangularizationtheoremIf
A,B
Mnaresimilarandg(t)isanygivenpolynomial,showthat
g(A)issimilartog(B),andthatanypolynomialequationsatisfiedbyAissatisfiedbyB.WehaveshownthateachA
Mnsatisfiesapolynomialequationofdegreen,forexample,itscharacteristicequation.ItispossibleforA
Mntosatisfyapolynomialequationofdegreelessthan
n,however.2.4ConsequencesofSchur’striangularizationtheoremExample2.4.3.5Example2.4.3.5ConsiderThecharacteristicpolynomialispA(t)=(t1)3andindeed(A
I)3=0.But(A
I)2=0soAsatisfiesapolynomialequationofdegree2.2.4ConsequencesofSchur’striangularizationtheoremTheequation
AXXA=0
associatedwithcommutativityisaspecialcaseofthelinearmatrixequationAX
XB=C,oftencalledSylvester’sequation.Thefollowingtheoremgivesanecessaryandsufficientconditionfor
Sylvester’sequationtohaveauniquesolutionX
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度苗木種植與水資源保護(hù)合同7篇
- 二零二五版農(nóng)機(jī)駕駛培訓(xùn)服務(wù)合同模板4篇
- 2025年度外墻仿石裝飾工程承攬合同4篇
- 2025年度農(nóng)業(yè)科技成果轉(zhuǎn)化交易合同3篇
- 2025年度田地流轉(zhuǎn)與農(nóng)業(yè)科技服務(wù)一體化合同
- 2025版美團(tuán)團(tuán)購合作合同范本更新版3篇
- 二零二五年度勞動(dòng)合同追訴期限認(rèn)定標(biāo)準(zhǔn)與爭議調(diào)解方案3篇
- 2025年度個(gè)人獨(dú)資企業(yè)整體出售及債務(wù)承接合同
- 二零二五年度總經(jīng)理崗位聘請(qǐng)及考核細(xì)則合同3篇
- 2025年度木結(jié)構(gòu)建筑綠色建材認(rèn)證合同
- 特魯索綜合征
- 《向心力》 教學(xué)課件
- 結(jié)構(gòu)力學(xué)數(shù)值方法:邊界元法(BEM):邊界元法的基本原理與步驟
- 2024年山東省泰安市高考語文一模試卷
- 工程建設(shè)行業(yè)標(biāo)準(zhǔn)內(nèi)置保溫現(xiàn)澆混凝土復(fù)合剪力墻技術(shù)規(guī)程
- 北師大版物理九年級(jí)全一冊(cè)課件
- 2024年第三師圖木舒克市市場監(jiān)督管理局招錄2人《行政職業(yè)能力測(cè)驗(yàn)》高頻考點(diǎn)、難點(diǎn)(含詳細(xì)答案)
- RFJ 006-2021 RFP型人防過濾吸收器制造與驗(yàn)收規(guī)范(暫行)
- 盆腔炎教學(xué)查房課件
- 新概念英語課件NCE3-lesson15(共34張)
- GB/T 3683-2023橡膠軟管及軟管組合件油基或水基流體適用的鋼絲編織增強(qiáng)液壓型規(guī)范
評(píng)論
0/150
提交評(píng)論