人教A版高中數(shù)學(xué)(必修第一冊)同步講義第27講 4.5.1函數(shù)的零點與方程的解(含解析)_第1頁
人教A版高中數(shù)學(xué)(必修第一冊)同步講義第27講 4.5.1函數(shù)的零點與方程的解(含解析)_第2頁
人教A版高中數(shù)學(xué)(必修第一冊)同步講義第27講 4.5.1函數(shù)的零點與方程的解(含解析)_第3頁
人教A版高中數(shù)學(xué)(必修第一冊)同步講義第27講 4.5.1函數(shù)的零點與方程的解(含解析)_第4頁
人教A版高中數(shù)學(xué)(必修第一冊)同步講義第27講 4.5.1函數(shù)的零點與方程的解(含解析)_第5頁
已閱讀5頁,還剩29頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

第05講4.5.1函數(shù)的零點與方程的解課程標準學(xué)習目標①了解函數(shù)的零點與方程的解的關(guān)系,并能結(jié)合函數(shù)的圖象判定函數(shù)的零點。②能根據(jù)函數(shù)零點存在性定理對函數(shù)零點存在進行判定,同時能處理與函數(shù)零點問題相結(jié)合的求參數(shù)及綜合類的問題。通過本節(jié)課的學(xué)習,要求能判定函數(shù)零點的存在,同時能解決與函數(shù)零點相結(jié)合的綜合問題知識點01:函數(shù)零點的概念1、函數(shù)零點的概念對于一般函數(shù)SKIPIF1<0,我們把使SKIPIF1<0的實數(shù)SKIPIF1<0叫做函數(shù)SKIPIF1<0的零點.幾何定義:函數(shù)SKIPIF1<0的零點就是方程SKIPIF1<0的實數(shù)解,也就是函數(shù)SKIPIF1<0的圖象與SKIPIF1<0軸的公共點的橫坐標.

這樣:方程SKIPIF1<0有實數(shù)解SKIPIF1<0函數(shù)SKIPIF1<0有零點SKIPIF1<0函數(shù)SKIPIF1<0的圖象與SKIPIF1<0軸有公共點2、已學(xué)基本初等函數(shù)的零點①一次函數(shù)SKIPIF1<0只有一個零點SKIPIF1<0;②反比例函數(shù)SKIPIF1<0沒有零點;③指數(shù)函數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)沒有零點;④對數(shù)函數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)只有一個零點1;⑤冪函數(shù)SKIPIF1<0當SKIPIF1<0時,有一個零點0;當SKIPIF1<0時,無零點。知識點02:函數(shù)零點存在定理及其應(yīng)用1、函數(shù)零點存在定理如果函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的圖象是一條連續(xù)不斷的曲線,且有SKIPIF1<0,那么函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)至少有一個零點,即存在SKIPIF1<0,使得SKIPIF1<0,這個SKIPIF1<0也就是方程SKIPIF1<0的解.說明:定理要求具備兩個條件:①函數(shù)在區(qū)間SKIPIF1<0上的圖象是連續(xù)不斷的;②SKIPIF1<0.兩個條件缺一不可.2、函數(shù)零點的求法①代數(shù)法:根據(jù)零點定義,求出方程SKIPIF1<0的實數(shù)解;②數(shù)形結(jié)合法:作出函數(shù)圖象,利用函數(shù)性質(zhì)求解【即學(xué)即練1】(2023春·四川廣安·高一??茧A段練習)函數(shù)SKIPIF1<0的零點為.【答案】2【詳解】令SKIPIF1<0,則SKIPIF1<0,得SKIPIF1<0.故答案為:SKIPIF1<03、函數(shù)零點個數(shù)的判斷①利用代數(shù)法,求出所有零點;②數(shù)形結(jié)合,通過作圖,找出圖象與SKIPIF1<0軸交點的個數(shù);③數(shù)形結(jié)合,通過分離,將原函數(shù)拆分成兩個函數(shù),找到兩個函數(shù)圖象交點的個數(shù);④函數(shù)零點唯一:函數(shù)存在零點+函數(shù)單調(diào).知識點03:二次函數(shù)的零點問題一元二次方程SKIPIF1<0的實數(shù)根也稱為函數(shù)SKIPIF1<0的零點.當SKIPIF1<0時,一元二次方程SKIPIF1<0的實數(shù)根、二次函數(shù)SKIPIF1<0的零點之間的關(guān)系如下表所示:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0的實數(shù)根SKIPIF1<0(其中SKIPIF1<0)SKIPIF1<0方程無實數(shù)根SKIPIF1<0的圖象SKIPIF1<0的零點SKIPIF1<0SKIPIF1<0函數(shù)無零點【即學(xué)即練2】(2023·高一課時練習)若函數(shù)SKIPIF1<0的一個零點是1,則它的另一個零點是.【答案】3【詳解】由SKIPIF1<0,所以令SKIPIF1<0或SKIPIF1<0,故另一個零點為3故答案為:3題型01求函數(shù)的零點【典例1】(2023·全國·高三專題練習)函數(shù)SKIPIF1<0的零點為.【答案】4【詳解】依題意有SKIPIF1<0,所以SKIPIF1<0.故答案為:4.【典例2】(2023秋·遼寧鐵嶺·高一鐵嶺市清河高級中學(xué)校考期末)已知函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的零點為.【答案】SKIPIF1<0和SKIPIF1<0【詳解】當SKIPIF1<0時,令SKIPIF1<0,解得SKIPIF1<0;當SKIPIF1<0時,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0內(nèi)有且僅有一個零點2;綜上所述:函數(shù)SKIPIF1<0的零點為SKIPIF1<0和SKIPIF1<0.故答案為:SKIPIF1<0和SKIPIF1<0.【變式1】(2023春·浙江·高一校聯(lián)考期中)函數(shù)SKIPIF1<0的零點是【答案】SKIPIF1<0/SKIPIF1<0【詳解】令SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,故答案為:SKIPIF1<0.【變式2】(2023·江蘇·高一假期作業(yè))求下列函數(shù)的零點.(1)SKIPIF1<0;(2)SKIPIF1<0.【答案】(1)9(2)答案見解析【詳解】(1)由SKIPIF1<0,得SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以函數(shù)SKIPIF1<0的零點為SKIPIF1<0.(2)由SKIPIF1<0,得SKIPIF1<0,①當SKIPIF1<0,SKIPIF1<0時,函數(shù)有唯一零點SKIPIF1<0;②當SKIPIF1<0,即SKIPIF1<0時,函數(shù)有兩個零點SKIPIF1<0和SKIPIF1<0.題型02函數(shù)零點個數(shù)的判斷【典例1】(2023·全國·高一假期作業(yè))函數(shù)SKIPIF1<0的零點個數(shù)為()A.1 B.2C.1或2 D.0【答案】C【詳解】由SKIPIF1<0,得SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0,當SKIPIF1<0時,函數(shù)的零點個數(shù)為SKIPIF1<0;當SKIPIF1<0時,函數(shù)的零點個數(shù)為SKIPIF1<0.所以該函數(shù)的零點個數(shù)是1或2.故選:C【典例2】(2023·高一課時練習)方程SKIPIF1<0的實數(shù)解的個數(shù)是(

)A.0 B.1 C.2 D.3【答案】B【詳解】在同一直角坐標系中畫出函數(shù)SKIPIF1<0和SKIPIF1<0的圖象,由圖象可知:兩個函數(shù)圖象只有一個交點,故方程SKIPIF1<0的實數(shù)解的個數(shù)為1,故選:B

【典例3】(2023·全國·高三專題練習)已知SKIPIF1<0,方程SKIPIF1<0的實根個數(shù)為.【答案】2【詳解】由SKIPIF1<0,則SKIPIF1<0,則令SKIPIF1<0,SKIPIF1<0,分別作出它們的圖象如下圖所示,

由圖可知,有兩個交點,所以方程SKIPIF1<0的實根個數(shù)為2.故答案為:2.【典例4】(2023春·山東德州·高二??茧A段練習)若函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的零點個數(shù)是.【答案】2【詳解】作出SKIPIF1<0與SKIPIF1<0的函數(shù)圖像如圖:

由圖像可知兩函數(shù)圖像有SKIPIF1<0個交點,所以函數(shù)SKIPIF1<0有兩個零點.故答案為:SKIPIF1<0【變式1】(2023·全國·高一假期作業(yè))函數(shù)SKIPIF1<0的零點的個數(shù)是(

)A.0 B.1 C.2 D.無數(shù)個【答案】C【詳解】令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0的零點為1和SKIPIF1<0,故有兩個零點,故選:C【變式2】(2023·江蘇·高一假期作業(yè))已知函數(shù)SKIPIF1<0.(1)作出函數(shù)SKIPIF1<0的圖象;(2)就a的取值范圍討論函數(shù)SKIPIF1<0的零點的個數(shù).【答案】(1)作圖見解析(2)答案見解析【詳解】(1)先作出SKIPIF1<0的圖象,然后將其在x軸下方的部分翻折到x軸上方,原x軸上及其上方的圖象及翻折上來的圖象便是所要作的圖象.

.

(2)由圖象易知,函數(shù)SKIPIF1<0的零點的個數(shù)就是函數(shù)SKIPIF1<0的圖象與直線SKIPIF1<0的交點的個數(shù).SKIPIF1<0.當SKIPIF1<0時,函數(shù)SKIPIF1<0的零點的個數(shù)為0;當SKIPIF1<0與SKIPIF1<0時,函數(shù)SKIPIF1<0的零點的個數(shù)為2;當SKIPIF1<0時,函數(shù)SKIPIF1<0的零點的個數(shù)為4;當SKIPIF1<0時,函數(shù)SKIPIF1<0的零點的個數(shù)為3.【變式3】(2023·上海浦東新·華師大二附中??寄M預(yù)測)若SKIPIF1<0的值域為SKIPIF1<0,則SKIPIF1<0至多有個零點.【答案】4【詳解】當SKIPIF1<0時,SKIPIF1<0,由SKIPIF1<0可得,SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0,由SKIPIF1<0可得,SKIPIF1<0或SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0,由SKIPIF1<0可得,SKIPIF1<0或SKIPIF1<0.綜上所述,SKIPIF1<0的零點可能是SKIPIF1<0或SKIPIF1<0或SKIPIF1<0或SKIPIF1<0.所以,SKIPIF1<0的零點至多有4個.故答案為:4.【變式4】(2023·全國·高三對口高考)函數(shù)SKIPIF1<0的圖象與函數(shù)SKIPIF1<0的圖象的交點個數(shù)為個.【答案】2【詳解】在同一坐標系中作出兩個函數(shù)的圖象,如圖,它們交點個數(shù)為2.

故答案為:2.題型03判斷函數(shù)零點所在的區(qū)間【典例1】(2023春·云南楚雄·高一統(tǒng)考期末)若SKIPIF1<0是方程SKIPIF1<0的解,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】因為函數(shù)SKIPIF1<0在定義上單調(diào)遞增,又SKIPIF1<0,SKIPIF1<0,所以函數(shù)SKIPIF1<0的零點所在區(qū)間是SKIPIF1<0,即SKIPIF1<0.故選:C.【典例2】(2023春·天津紅橋·高二統(tǒng)考學(xué)業(yè)考試)設(shè)SKIPIF1<0為方程SKIPIF1<0的解,若SKIPIF1<0,則SKIPIF1<0的值為.【答案】SKIPIF1<0【詳解】由題意可知SKIPIF1<0是方程SKIPIF1<0的解,所以SKIPIF1<0,令SKIPIF1<0,由SKIPIF1<0,所以SKIPIF1<0,再根據(jù)SKIPIF1<0,可得SKIPIF1<0,故答案為:SKIPIF1<0.【變式1】(2023秋·重慶長壽·高一統(tǒng)考期末)函數(shù)SKIPIF1<0的零點所在區(qū)間是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】易知函數(shù)定義域為SKIPIF1<0,且函數(shù)SKIPIF1<0單調(diào)遞增,又SKIPIF1<0,所以SKIPIF1<0上沒有零點;SKIPIF1<0,SKIPIF1<0,由零點存在定理可知SKIPIF1<0,所以零點所在區(qū)間是SKIPIF1<0.故選:D【變式2】(2023春·湖南岳陽·高一湖南省岳陽縣第一中學(xué)??计谀┖瘮?shù)SKIPIF1<0的零點為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則k的值為(

)A.1 B.2 C.0 D.3【答案】A【詳解】解:因為SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,所以SKIPIF1<0,故選:A題型04已知零點個數(shù)求參數(shù)的取值范圍【典例1】(2023·全國·高一假期作業(yè))若方程SKIPIF1<0有兩個不同的實數(shù)根,則實數(shù)SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】令SKIPIF1<0,由于當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,作出函數(shù)SKIPIF1<0的圖象如圖所示,則當SKIPIF1<0時,函數(shù)SKIPIF1<0與SKIPIF1<0的圖象有兩個交點,即方程SKIPIF1<0有兩個不同的實數(shù)根,SKIPIF1<0的取值范圍是SKIPIF1<0.故選:C.【典例2】(2023·湖南常德·常德市一中??寄M預(yù)測)設(shè)SKIPIF1<0表示m,n中的較小數(shù).若函數(shù)SKIPIF1<0至少有3個零點,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】由題意可得SKIPIF1<0有解,所以SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,當SKIPIF1<0時,必有SKIPIF1<0,解得SKIPIF1<0;當SKIPIF1<0時,必有SKIPIF1<0,不等式組無解,綜上所述,SKIPIF1<0,∴SKIPIF1<0的取值范圍為SKIPIF1<0.故選:A【典例3】(2023·高一課時練習)若函數(shù)SKIPIF1<0有2個零點,求實數(shù)a的取值范圍.【答案】SKIPIF1<0【詳解】令SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,畫出SKIPIF1<0的大致圖象如下:由圖象可知:當SKIPIF1<0或SKIPIF1<0時,直線SKIPIF1<0與SKIPIF1<0的圖象有兩個交點,符合題意,故a的取值范圍為SKIPIF1<0,

【典例4】(2023春·云南昆明·高三云南省昆明市第十二中學(xué)校考階段練習)已知函數(shù)SKIPIF1<0是偶函數(shù).當SKIPIF1<0時,SKIPIF1<0.(1)求函數(shù)SKIPIF1<0在SKIPIF1<0上的解析式;(2)若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào),求實數(shù)a的取值范圍;(3)已知SKIPIF1<0,試討論SKIPIF1<0的零點個數(shù),并求對應(yīng)的m的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0或SKIPIF1<0(3)答案見解析【詳解】(1)設(shè)SKIPIF1<0,則SKIPIF1<0∴SKIPIF1<0∵SKIPIF1<0為偶函數(shù)∴SKIPIF1<0綜上,有SKIPIF1<0(2)由(1)作出SKIPIF1<0的圖像如圖:因為函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上具有單調(diào)性,由圖可得SKIPIF1<0或SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0;故實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0或SKIPIF1<0.(3)由(1)作出SKIPIF1<0的圖像如圖:由圖像可知:當SKIPIF1<0時,SKIPIF1<0有兩個零點;當SKIPIF1<0時,SKIPIF1<0有四個零點;當SKIPIF1<0時,SKIPIF1<0有六個零點;當SKIPIF1<0時,SKIPIF1<0有三個零點;當SKIPIF1<0時,SKIPIF1<0沒有零點.【變式1】(2023·北京·高三專題練習)設(shè)SKIPIF1<0,函數(shù)SKIPIF1<0若SKIPIF1<0恰有一個零點,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】畫出函數(shù)SKIPIF1<0的圖象如下圖所示:函數(shù)SKIPIF1<0可由SKIPIF1<0分段平移得到,易知當SKIPIF1<0時,函數(shù)SKIPIF1<0恰有一個零點,滿足題意;當SKIPIF1<0時,代表圖象往上平移,顯然沒有零點,不符合題意;當SKIPIF1<0時,圖象往下平移,當SKIPIF1<0時,函數(shù)有兩個零點;當SKIPIF1<0時,SKIPIF1<0恰有一個零點,滿足題意,即SKIPIF1<0;綜上可得SKIPIF1<0的取值范圍是SKIPIF1<0.故選:D【變式2】(多選)(2023·全國·高三專題練習)已知函數(shù)SKIPIF1<0,若關(guān)于x的方程SKIPIF1<0恰有兩個互異的實數(shù)解,則實數(shù)a的值可以是(

)A.0 B.1 C.SKIPIF1<0 D.2【答案】BCD【詳解】函數(shù)SKIPIF1<0的圖象,如圖所示:由題意知,直線SKIPIF1<0與SKIPIF1<0的圖象有2個交點.當直線SKIPIF1<0過點SKIPIF1<0時,SKIPIF1<0,當直線SKIPIF1<0過點SKIPIF1<0時,SKIPIF1<0.結(jié)合圖象如圖可知,當SKIPIF1<0時,直線SKIPIF1<0與SKIPIF1<0的圖象有2個交點,如圖所示:又當直線SKIPIF1<0與曲線SKIPIF1<0相切在第一象限時,直線SKIPIF1<0與SKIPIF1<0的圖象也有2個交點,如圖所示:SKIPIF1<0,化簡可得SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,又由圖可知SKIPIF1<0,所以SKIPIF1<0,此時切點的橫坐標為2符合.綜上,實數(shù)a的取值范圍是SKIPIF1<0.故選:BCD.【變式3】(2023·全國·高一假期作業(yè))若函數(shù)SKIPIF1<0在SKIPIF1<0內(nèi)有且只有一個零點,則SKIPIF1<0的取值集合是.【答案】SKIPIF1<0【詳解】

由已知得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.由二次函數(shù)圖象及函數(shù)零點存在定理可知,該函數(shù)在SKIPIF1<0內(nèi)只有一個零點,只需SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<0.【變式4】(2023·高一課時練習)已知SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù).(1)求SKIPIF1<0的值;(2)畫出SKIPIF1<0的圖象,并指出其單調(diào)減區(qū)間;(3)若關(guān)于SKIPIF1<0的方程SKIPIF1<0有2個不相等的實數(shù)根,求實數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)作圖見解析;答案見解析(3)SKIPIF1<0【詳解】(1)因為SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0;(2)由(1)得SKIPIF1<0,列表:SKIPIF1<0…SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<001234…SKIPIF1<0…521252125…描點連線得圖象如圖所示:由圖象可得單調(diào)減區(qū)間為SKIPIF1<0和SKIPIF1<0;(3)因為關(guān)于SKIPIF1<0的方程SKIPIF1<0有2個不相等的實數(shù)根,所以SKIPIF1<0與SKIPIF1<0的圖象有兩個不同的交點,由(2)中的圖可知SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0,所以實數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.題型05已知零點所在區(qū)間求參數(shù)的取值范圍【典例1】(2023春·河南信陽·高一統(tǒng)考期末)函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上存在零點,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】由零點存在定理可知,若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上存在零點,顯然函數(shù)為增函數(shù),只需滿足SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故選:D【典例2】(多選)(2023秋·高一單元測試)函數(shù)SKIPIF1<0的一個零點在區(qū)間SKIPIF1<0內(nèi),則實數(shù)a的可能取值是(

)A.0 B.1 C.2 D.3【答案】BC【詳解】因為函數(shù)SKIPIF1<0在定義域SKIPIF1<0上單調(diào)遞增,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,由函數(shù)SKIPIF1<0的一個零點在區(qū)間SKIPIF1<0內(nèi),得SKIPIF1<0,解得SKIPIF1<0,故選:BC【典例3】(2023·全國·高三專題練習)設(shè)SKIPIF1<0為實數(shù),函數(shù)SKIPIF1<0在SKIPIF1<0上有零點,則實數(shù)SKIPIF1<0的取值范圍為.【答案】SKIPIF1<0【詳解】因為SKIPIF1<0在SKIPIF1<0單調(diào)遞增,且有零點,所以SKIPIF1<0,解得SKIPIF1<0,故答案為:SKIPIF1<0【變式1】(2023·高一課時練習)若函數(shù)SKIPIF1<0在SKIPIF1<0內(nèi)恰有一個零點,則a的取值范圍(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】當SKIPIF1<0時,SKIPIF1<0只有一個零點SKIPIF1<0,不符合題意,當SKIPIF1<0時,若SKIPIF1<0,即SKIPIF1<0,函數(shù)SKIPIF1<0只有一個零點SKIPIF1<0,不符合題意,因函數(shù)SKIPIF1<0在SKIPIF1<0內(nèi)恰有一個零點,則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以a的取值范圍是SKIPIF1<0.故選:A【變式2】(2023春·上海青浦·高一統(tǒng)考開學(xué)考試)若關(guān)于SKIPIF1<0的方程SKIPIF1<0在SKIPIF1<0上有解,則實數(shù)SKIPIF1<0的取值范圍是.【答案】SKIPIF1<0【詳解】方程SKIPIF1<0在SKIPIF1<0上有解,等價于函數(shù)SKIPIF1<0與SKIPIF1<0在SKIPIF1<0有交點,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<0【變式3】(2023秋·湖北襄陽·高一統(tǒng)考期末)若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)有零點,則實數(shù)SKIPIF1<0的取值范圍是.【答案】SKIPIF1<0【詳解】由題意得:SKIPIF1<0為連續(xù)函數(shù),且在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以只需SKIPIF1<0或SKIPIF1<0,解得:SKIPIF1<0,故實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0題型06二次函數(shù)的零點問題【典例1】(2023秋·江蘇常州·高一常州市北郊高級中學(xué)??计谀┮阎瘮?shù)SKIPIF1<0的零點為SKIPIF1<0,滿足SKIPIF1<0,則SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】SKIPIF1<0開口向上,對稱軸為SKIPIF1<0,要想滿足SKIPIF1<0,則要SKIPIF1<0,解得:SKIPIF1<0.故選:B【典例2】(2023·高一課時練習)方程SKIPIF1<0的一根大于1,一根小于1,則實數(shù)SKIPIF1<0的取值范圍是.【答案】SKIPIF1<0【詳解】∵方程SKIPIF1<0的一根大于1,另一根小于1,令SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<0.【典例3】(2023·江蘇·高一假期作業(yè))(1)判斷二次函數(shù)SKIPIF1<0在SKIPIF1<0內(nèi)是否存在零點;(2)若二次函數(shù)SKIPIF1<0SKIPIF1<0的兩個零點均為正數(shù),求實數(shù)SKIPIF1<0的取值范圍.【答案】(1)存在;(2)SKIPIF1<0【詳解】(1)由SKIPIF1<0得SKIPIF1<0或SKIPIF1<0,因為SKIPIF1<0,所以二次函數(shù)SKIPIF1<0在SKIPIF1<0內(nèi)存在零點.(2)因為二次函數(shù)SKIPIF1<0SKIPIF1<0的兩個零點均為正數(shù),所以二次SKIPIF1<0SKIPIF1<0有兩個正實數(shù)根.設(shè)為SKIPIF1<0,由一元二次方程的根與系數(shù)的關(guān)系得SKIPIF1<0,解得SKIPIF1<0.即實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.【變式1】(2023·云南紅河·彌勒市一中??寄M預(yù)測)已知關(guān)于SKIPIF1<0的方程SKIPIF1<0,SKIPIF1<0存在兩個不同的實根,則實數(shù)SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】由題意可得,SKIPIF1<0即SKIPIF1<0在SKIPIF1<0時有2個不同的解,設(shè)SKIPIF1<0,根據(jù)雙勾函數(shù)的性質(zhì)可知,SKIPIF1<0在SKIPIF1<0單調(diào)遞減,SKIPIF1<0單調(diào)遞增,且SKIPIF1<0,要使SKIPIF1<0在SKIPIF1<0時有2個不同的解,則SKIPIF1<0,故選:D.【變式2】(2023·高一課時練習)若關(guān)于SKIPIF1<0的方程SKIPIF1<0在SKIPIF1<0內(nèi)有解,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】由題意SKIPIF1<0在SKIPIF1<0內(nèi)有解,SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0.故選:A.【變式3】(2023·江蘇·高一假期作業(yè))已知函數(shù)SKIPIF1<0SKIPIF1<0.(1)若該函數(shù)有兩個不相等的正零點,求SKIPIF1<0的取值范圍;(2)若該函數(shù)有兩個零點,一個大于1,另一個小于1,求SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0或SKIPIF1<0(2)SKIPIF1<0或SKIPIF1<0【詳解】(1)因為二次函數(shù)SKIPIF1<0有兩個不相等的正零點,且對稱軸SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.(2)因為二次函數(shù)SKIPIF1<0有兩個零點,一個大于1,另一個小于1,所以SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0.題型07函數(shù)與方程綜合【典例1】(2023秋·高一單元測試)已知函數(shù)SKIPIF1<0,常數(shù)SKIPIF1<0.(1)若SKIPIF1<0是奇函數(shù),求SKIPIF1<0的值;(2)若SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)有且僅有一個零點,求實數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)①若SKIPIF1<0有定義,則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,此時SKIPIF1<0符合題意;②若SKIPIF1<0無定義,則SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0的定義域為SKIPIF1<0,不關(guān)于原點對稱,故SKIPIF1<0不是奇函數(shù),不符合題意.綜上,SKIPIF1<0.(2)當SKIPIF1<0時,SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0(舍),所以SKIPIF1<0,因為SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)有且僅有一個零點,所以SKIPIF1<0,解得SKIPIF1<0.【典例2】(2023春·福建福州·高二福建省福州延安中學(xué)??紝W(xué)業(yè)考試)已知函數(shù)SKIPIF1<0(1)證明:函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;(2)討論關(guān)于x的方程SKIPIF1<0的實數(shù)解的個數(shù).【答案】(1)證明見解析(2)答案見解析【詳解】(1)任取SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.(2)關(guān)于x的方程SKIPIF1<0的實數(shù)解的個數(shù),等價于函數(shù)SKIPIF1<0與常函數(shù)SKIPIF1<0的交點個數(shù),由(1)可得:SKIPIF1<0,令SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,結(jié)合(1)可得:函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0,令SKIPIF1<0,且SKIPIF1<0,整理得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,故函數(shù)SKIPIF1<0的圖像如圖所示:可得函數(shù)SKIPIF1<0的圖像如圖所示:對于函數(shù)SKIPIF1<0與常函數(shù)SKIPIF1<0的交點個數(shù),則有:當SKIPIF1<0時,交點個數(shù)為0個;當SKIPIF1<0或SKIPIF1<0時,交點個數(shù)為2個;當SKIPIF1<0時,交點個數(shù)為3個;當SKIPIF1<0時,交點個數(shù)為4個.【變式1】(2023秋·江蘇無錫·高一無錫市第一中學(xué)校考期末)已知函數(shù)SKIPIF1<0為奇函數(shù).(1)求實數(shù)a的值;(2)若方程SKIPIF1<0在區(qū)間SKIPIF1<0上無解,求實數(shù)m的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)若函數(shù)SKIPIF1<0為奇函數(shù),即SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0.(2)由(1)可得:SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,構(gòu)建SKIPIF1<0,對SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,可得SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,由SKIPIF1<0,可得SKIPIF1<0在SKIPIF1<0上的值域為SKIPIF1<0,故方程SKIPIF1<0無解,則實數(shù)m的取值范圍SKIPIF1<0.【變式2】(2023·全國·高三專題練習)已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),且當SKIPIF1<0時,SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0軸左側(cè)的圖象如圖所示.(1)求函數(shù)SKIPIF1<0的解析式;(2)若關(guān)于SKIPIF1<0的方程SKIPIF1<0有SKIPIF1<0個不相等的實數(shù)根,求實數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)由圖象知:SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0當SKIPIF1<0時,SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0上的偶函數(shù),SKIPIF1<0當SKIPIF1<0時,SKIPIF1<0;綜上所述:SKIPIF1<0;(2)SKIPIF1<0為偶函數(shù),SKIPIF1<0圖象關(guān)于SKIPIF1<0軸對稱,可得SKIPIF1<0圖象如下圖所示,SKIPIF1<0有SKIPIF1<0個不相等的實數(shù)根,等價于SKIPIF1<0與SKIPIF1<0有SKIPIF1<0個不同的交點,由圖象可知:SKIPIF1<0,即實數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.A夯實基礎(chǔ)B能力提升C綜合素養(yǎng)A夯實基礎(chǔ)一、單選題1.(2023春·黑龍江齊齊哈爾·高一校聯(lián)考開學(xué)考試)已知函數(shù)SKIPIF1<0,則SKIPIF1<0的零點所在的區(qū)間為(

).A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】因為SKIPIF1<0,SKIPIF1<0,所以由零點存在性定理知,SKIPIF1<0的零點所在的區(qū)間為SKIPIF1<0.故選:B.2.(2023·全國·高一假期作業(yè))已知方程SKIPIF1<0的解在SKIPIF1<0內(nèi),則SKIPIF1<0(

)A.3 B.2 C.1 D.0【答案】C【詳解】令函數(shù)SKIPIF1<0,顯然函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,而SKIPIF1<0,SKIPIF1<0,因此函數(shù)SKIPIF1<0的零點SKIPIF1<0,所以方程SKIPIF1<0的解在SKIPIF1<0內(nèi),即SKIPIF1<0.故選:C3.(2023·江蘇·高一假期作業(yè))已知函數(shù)SKIPIF1<0的兩個零點都大于2,則實數(shù)m的取值范圍是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【詳解】因為二次函數(shù)圖象的開口向上,對稱軸SKIPIF1<0,函數(shù)SKIPIF1<0的兩個零點都大于2,所以SKIPIF1<0,解得SKIPIF1<0.故選:C4.(2023·高一課時練習)已知二次函數(shù)SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)的零點情況是(

)A.有兩個零點 B.有唯一零點 C.沒有零點 D.不確定【答案】C【詳解】因為函數(shù)SKIPIF1<0開口向下,又SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)沒有零點.故選:C5.(2023春·山東聊城·高二統(tǒng)考期末)已知函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的零點分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0為SKIPIF1<0與SKIPIF1<0圖象交點的橫坐標,由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0為SKIPIF1<0與SKIPIF1<0圖象交點的橫坐標,由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0為SKIPIF1<0與SKIPIF1<0圖象交點的橫坐標,分別作出SKIPIF1<0和SKIPIF1<0的圖象,則由圖象可得SKIPIF1<0,

因為SKIPIF1<0和SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,故選:B6.(2023春·浙江溫州·高二統(tǒng)考學(xué)業(yè)考試)設(shè)實數(shù)a為常數(shù),則函數(shù)SKIPIF1<0存在零點的充分必要條件是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】因為函數(shù)SKIPIF1<0存在零點,等價于方程SKIPIF1<0在SKIPIF1<0上存在零點,注意到SKIPIF1<0的圖像開口向上,對稱軸為SKIPIF1<0,且SKIPIF1<0,故上述條件等價于SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.所以函數(shù)SKIPIF1<0存在零點的充分必要條件是SKIPIF1<0.故選:A.7.(2023春·江蘇南通·高二統(tǒng)考期末)已知函數(shù)SKIPIF1<0若函數(shù)SKIPIF1<0有五個零點,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】當SKIPIF1<0時,SKIPIF1<0則SKIPIF1<0,此時SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0則SKIPIF1<0,此時SKIPIF1<0,則SKIPIF1<0,故問題轉(zhuǎn)為SKIPIF1<0,SKIPIF1<0共有四個零點,畫出函數(shù)圖象如下可知:則SKIPIF1<0,故選:D

8.(2023春·河南駐馬店·高一河南省駐馬店高級中學(xué)??茧A段練習)享有“數(shù)學(xué)王子”稱號的德國數(shù)學(xué)家高斯,是近代數(shù)學(xué)奠基者之一,SKIPIF1<0被稱為“高斯函數(shù)”,其中SKIPIF1<0表示不超過SKIPIF1<0的最大整數(shù),例如:SKIPIF1<0,設(shè)SKIPIF1<0為函數(shù)SKIPIF1<0的零點,則SKIPIF1<0(

)A.3 B.4 C.5 D.6【答案】B【詳解】因為函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,SKIPIF1<0,則存在唯一零點SKIPIF1<0,使得SKIPIF1<0,由高斯函數(shù)的定義可知,SKIPIF1<0.故選:B.二、多選題9.(2023·全國·高一假期作業(yè))函數(shù)SKIPIF1<0的零點可以是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】CD【詳解】函數(shù)SKIPIF1<0的定義域為SKIPIF1<0令SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,故SKIPIF1<0的零點是SKIPIF1<0和SKIPIF1<0,故選:CD10.(2023·高一課時練習)設(shè)SKIPIF1<0為定義在R上的奇函數(shù),當SKIPIF1<0時,SKIPIF1<0為常數(shù)),則(

)A.SKIPIF1<0 B.SKIPIF

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論