版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
習題五5-1振動和波動有什么區(qū)別和聯(lián)系?平面簡諧波動方程和簡諧振動方程有什么不同?又有什么聯(lián)系?振動曲線和波形曲線有什么不同?解:(1)振動是指一個孤立的系統(tǒng)(也可是介質中的一個質元)在某固定平衡位置附近所做的往復運動,系統(tǒng)離開平衡位置的位移是時間的周期性函數,即可表示為;波動是振動在連續(xù)介質中的傳播過程,此時介質中所有質元都在各自的平衡位置附近作振動,因此介質中任一質元離開平衡位置的位移既是坐標位置,又是時間的函數,即.(2)在諧振動方程中只有一個獨立的變量時間,它描述的是介質中一個質元偏離平衡位置的位移隨時間變化的規(guī)律;平面諧波方程中有兩個獨立變量,即坐標位置和時間,它描述的是介質中所有質元偏離平衡位置的位移隨坐標和時間變化的規(guī)律.當諧波方程中的坐標位置給定后,即可得到該點的振動方程,而波源持續(xù)不斷地振動又是產生波動的必要條件之一.(3)振動曲線描述的是一個質點的位移隨時間變化的規(guī)律,因此,其縱軸為,橫軸為;波動曲線描述的是介質中所有質元的位移隨位置,隨時間變化的規(guī)律,其縱軸為,橫軸為.每一幅圖只能給出某一時刻質元的位移隨坐標位置變化的規(guī)律,即只能給出某一時刻的波形圖,不同時刻的波動曲線就是不同時刻的波形圖.5-2波動方程=cos[()+]中的表示什么?如果改寫為=cos(),又是什么意思?如果和均增加,但相應的[()+]的值不變,由此能從波動方程說明什么?解:波動方程中的表示了介質中坐標位置為的質元的振動落后于原點的時間;則表示處質元比原點落后的振動位相;設時刻的波動方程為則時刻的波動方程為其表示在時刻,位置處的振動狀態(tài),經過后傳播到處.所以在中,當,均增加時,的值不會變化,而這正好說明了經過時間,波形即向前傳播了的距離,說明描述的是一列行進中的波,故謂之行波方程.5-3波在介質中傳播時,為什么介質元的動能和勢能具有相同的位相,而彈簧振子的動能和勢能卻沒有這樣的特點?解:我們在討論波動能量時,實際上討論的是介質中某個小體積元內所有質元的能量.波動動能當然是指質元振動動能,其與振動速度平方成正比,波動勢能則是指介質的形變勢能.形變勢能由介質的相對形變量(即應變量)決定.如果取波動方程為,則相對形變量(即應變量)為.波動勢能則是與的平方成正比.由波動曲線圖(題5-3圖)可知,在波峰,波谷處,波動動能有極小(此處振動速度為零),而在該處的應變也為極小(該處),所以在波峰,波谷處波動勢能也為極?。辉谄胶馕恢锰幉▌觿幽転闃O大(該處振動速度的極大),而在該處的應變也是最大(該處是曲線的拐點),當然波動勢能也為最大.這就說明了在介質中波動動能與波動勢能是同步變化的,即具有相同的量值.題5-3圖對于一個孤立的諧振動系統(tǒng),是一個孤立的保守系統(tǒng),機械能守恒,即振子的動能與勢能之和保持為一個常數,而動能與勢能在不斷地轉換,所以動能和勢能不可能同步變化.5-4波動方程中,坐標軸原點是否一定要選在波源處?=0時刻是否一定是波源開始振動的時刻?波動方程寫成=cos()時,波源一定在坐標原點處嗎?在什么前提下波動方程才能寫成這種形式?解:由于坐標原點和開始計時時刻的選全完取是一種主觀行為,所以在波動方程中,坐標原點不一定要選在波源處,同樣,的時刻也不一定是波源開始振動的時刻;當波動方程寫成時,坐標原點也不一定是選在波源所在處的.因為在此處對于波源的含義已做了拓展,即在寫波動方程時,我們可以把介質中某一已知點的振動視為波源,只要把振動方程為已知的點選為坐標原點,即可得題示的波動方程.5-5在駐波的兩相鄰波節(jié)間的同一半波長上,描述各質點振動的什么物理量不同,什么物理量相同?解:取駐波方程為,則可知,在相鄰兩波節(jié)中的同一半波長上,描述各質點的振幅是不相同的,各質點的振幅是隨位置按余弦規(guī)律變化的,即振幅變化規(guī)律可表示為.而在這同一半波長上,各質點的振動位相則是相同的,即以相鄰兩波節(jié)的介質為一段,同一段介質內各質點都有相同的振動位相,而相鄰兩段介質內的質點振動位相則相反.5-6波源向著觀察者運動和觀察者向波源運動都會產生頻率增高的多普勒效應,這兩種情況有何區(qū)別?解:波源向著觀察者運動時,波面將被擠壓,波在介質中的波長,將被壓縮變短,(如題5-6圖所示),因而觀察者在單位時間內接收到的完整數目()會增多,所以接收頻率增高;而觀察者向著波源運動時,波面形狀不變,但觀察者測到的波速增大,即,因而單位時間內通過觀察者完整波的數目也會增多,即接收頻率也將增高.簡單地說,前者是通過壓縮波面(縮短波長)使頻率增高,后者則是觀察者的運動使得單位時間內通過的波面數增加而升高頻率.對于點:∵,∴對于點:∵,∴對于點:∵,∴(取負值:表示點位相,應落后于點的位相)(2)波沿軸負向傳播,則在時刻,有對于點:∵,∴對于點:∵,∴對于點:∵,∴對于點:∵,∴(此處取正值表示點位相超前于點的位相)5-11一列平面余弦波沿軸正向傳播,波速為5m·s-1,波長為2m,原點處質點的振動曲線如題5-11圖所示.(1)寫出波動方程;(2)作出=0時的波形圖及距離波源0.5m處質點的振動曲線.解:(1)由題5-11(a)圖知,m,且時,,∴,又,則題5-11圖(a)取,則波動方程為 (2)時的波形如題5-11(b)圖題5-11圖(b)題5-11圖(c)將m代入波動方程,得該點處的振動方程為如題5-11(c)圖所示.5-12如題5-12圖所示,已知=0時和=0.5s時的波形曲線分別為圖中曲線(a)和(b),波沿軸正向傳播,試根據圖中繪出的條件求:(1)波動方程;(2)點的振動方程.解:(1)由題5-12圖可知,,,又,時,,∴,而,,∴故波動方程為(2)將代入上式,即得點振動方程為題5-12圖5-13一列機械波沿軸正向傳播,=0時的波形如題5-13圖所示,已知波速為10m·s-1,波長為2m,求:(1)波動方程;(2)點的振動方程及振動曲線;(3)點的坐標;(4)點回到平衡位置所需的最短時間.解:由題5-13圖可知,時,,∴,由題知,,則∴(1)波動方程為題5-13圖(2)由圖知,時,,∴(點的位相應落后于點,故取負值)∴點振動方程為(3)∵∴解得(4)根據(2)的結果可作出旋轉矢量圖如題5-13圖(a),則由點回到平衡位置應經歷的位相角題5-13圖(a)∴所屬最短時間為5-14如題5-14圖所示,有一平面簡諧波在空間傳播,已知P點的振動方程為=cos().(1)分別就圖中給出的兩種坐標寫出其波動方程;(2)寫出距點距離為的點的振動方程.解:(1)如題5-14圖(a),則波動方程為如圖(b),則波動方程為題5-14圖(2)如題5-14圖(a),則點的振動方程為如題5-14圖(b),則點的振動方程為5-15已知平面簡諧波的波動方程為(SI).(1)寫出=4.2s時各波峰位置的坐標式,并求此時離原點最近一個波峰的位置,該波峰何時通過原點?(2)畫出=4.2s時的波形曲線.解:(1)波峰位置坐標應滿足解得(…)所以離原點最近的波峰位置為.∵故知,∴,這就是說該波峰在前通過原點,那么從計時時刻算起,則應是,即該波峰是在時通過原點的.題5-15圖(2)∵,∴,又處,時,又,當時,,則應有解得,故時的波形圖如題5-15圖所示5-16題5-16圖中(a)表示=0時刻的波形圖,(b)表示原點(=0)處質元的振動曲線,試求此波的波動方程,并畫出=2m處質元的振動曲線.解:由題5-16(b)圖所示振動曲線可知,,且時,,故知,再結合題5-16(a)圖所示波動曲線可知,該列波沿軸負向傳播,且,若取題5-16圖則波動方程為5-17一平面余弦波,沿直徑為14cm的圓柱形管傳播,波的強度為18.0×10-3J·m-2·s-1,頻率為300Hz,波速為300m·s-1,求:(1)波的平均能量密度和最大能量密度?(2)兩個相鄰同相面之間有多少波的能量?解:(1)∵∴(2)5-18如題5-18圖所示,和為兩相干波源,振幅均為,相距,較位相超前,求:(1)外側各點的合振幅和強度;(2)外側各點的合振幅和強度解:(1)在外側,距離為的點,傳到該點引起的位相差為(2)在外側.距離為的點,傳到該點引起的位相差.5-19如題5-19圖所示,設點發(fā)出的平面橫波沿方向傳播,它在點的振動方程為;點發(fā)出的平面橫波沿方向傳播,它在點的振動方程為,本題中以m計,以s計.設=0.4m,=0.5m,波速=0.2m·s-1,求:(1)兩波傳到P點時的位相差;(2)當這兩列波的振動方向相同時,處合振動的振幅;*(3)當這兩列波的振動方向互相垂直時,處合振動的振幅.解:(1)題5-19圖(2)點是相長干涉,且振動方向相同,所以(3)若兩振動方向垂直,又兩分振動位相差為,這時合振動軌跡是通過Ⅱ,Ⅳ象限的直線,所以合振幅為5-20一平面簡諧波沿軸正向傳播,如題5-20圖所示.已知振幅為,頻率為波速為.(1)若=0時,原點處質元正好由平衡位置向位移正方向運動,寫出此波的波動方程;(2)若從分界面反射的波的振幅與入射波振幅相等,試寫出反射波的波動方程,并求軸上因入射波與反射波干涉而靜止的各點的位置.解:(1)∵時,,∴故波動方程為m題5-20圖(2)入射波傳到反射面時的振動位相為(即將代入),再考慮到波由波疏入射而在波密界面上反射,存在半波損失,所以反射波在界面處的位相為若仍以點為原點,則反射波在點處的位相為,因只考慮以內的位相角,∴反射波在點的位相為,故反射波的波動方程為此時駐波方程為故波節(jié)位置為故(…)根據題意,只能取,即5-20一駐波方程為=0.02cos20cos750(SI),求:(1)形成此駐波的兩列行波的振幅和波速;(2)相鄰兩波節(jié)間距離.解:(1)取駐波方程為故知,則,∴(2)∵所以相鄰兩波節(jié)間距離5-22在弦上傳播的橫波,它的波動方程為=0.1cos(13+0.0079)(SI)試寫出一個波動方程,使它表示的波能與這列已知的橫波疊加形成駐波,并在=0處為波節(jié).解:為使合成駐波在處形成波節(jié),則要反射波在處與入射波有的位相差,故反射波的波動方程為5-23兩列波在一根很長的細繩上傳播,它們的波動方程分別為=0.06cos()(SI),=0.06cos()(SI).(1)試證明繩子將作駐波式振動,并求波節(jié)、波腹的位置;(2)波腹處的振幅多大?=1.2m處振幅多大?解:(1)它們的合成波為出現了變量的分離,符合駐波方程特征,故繩子在作駐波振動.令,則,k=0,±1,±2…此即波腹的位置;令,則,…,此即波節(jié)的位置.(2)波腹處振幅最大,即為m;處的振幅由下式決定,即5-24汽車駛過車站時,車站上的觀測者測得汽笛聲頻率由1200Hz變到了10
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024至2030年中國加熱泡沫切削機數據監(jiān)測研究報告
- 2024年中國訊響器防靜電包裝管市場調查研究報告
- 2024年中國電子式過壓保護器市場調查研究報告
- 2024年中國擺缸市場調查研究報告
- 2024八年級數學上冊階段專訓第11招整體思想在解題中的五種應用習題課件魯教版五四制
- 2024年武威客車上崗證模擬考試
- 2024年錦州客運資格證考試題目
- 2024年廣東客運從業(yè)資格證模擬考試題庫電子版
- 2024年拉薩客運資格證培訓考試題2024年版
- 2024年廣州客運上崗證急救知識
- 石材幕墻板縫打膠施工方案
- 跨部門工作聯(lián)絡單
- 跌倒墜床流程圖
- 大陸居民往來臺灣地區(qū)申請審批表
- “四新”背景下的2023年高考教學與備考指導
- 農業(yè)示范基地培訓觀摩方案
- 消防安全重點單位標準化管理操作手冊
- 軍事理論期末試題含答案
- 2023公路橋梁鋼結構防腐涂裝技術條件
- 電子商務平臺的用戶體驗與滿意度研究
- 大學動植物檢疫考試(習題卷5)
評論
0/150
提交評論