版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022高考數(shù)學(xué)模擬試卷帶答案
單選題(共8個(gè))
2+疝
1、若復(fù)數(shù)1+i(%€R,i為虛數(shù)單位)為純虛數(shù),則實(shí)數(shù)機(jī)的值為()
A.2B.-IC.1D.-2
2、函數(shù)k2,2+2,的值域是()
A.RB.[4,32]仁[2,32]口.[2,+oo)
3、已知集合A={L2,3,4},、{巾=2H},則集合Ag的真子集個(gè)數(shù)為()
A.IB.8C.4D.3
心)=尸產(chǎn)-#3),
4、已知函數(shù)膽-若關(guān)于1的方程[?。┝?時(shí)(*)+加+2=0有6個(gè)根,則用
的取值范圍為()
A.(f2-2G)B(-2,2-26)c.(一2,田)口.卜2,2-2百)
Z=-L
5、若復(fù)數(shù)2+『(i為虛數(shù)單位),則復(fù)數(shù)z在復(fù)平面直角坐標(biāo)系內(nèi)對(duì)應(yīng)的點(diǎn)在()
A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限
6、己知函數(shù)/⑴",則他電M升阿+喝+他佻()
212125
A.2B.4c.7D.2
7、已知向量"=(1,8)石=(2',4),若司氏則*=()
A.-2B.-IC.ID.2
8、已知集合A={x|x2-3x+2=0,xeR},8={I,3},則館8=()
A.WB.{l,2,3}c.HE."J},
多選題(共4個(gè))
9、下列關(guān)于平面向量的說法中正確的是()
A.已知”范均為非零向量,若,則存在唯一的實(shí)數(shù)幾,使得£=肪
B.已知非零向量0=(1,2),力=(1,1),且£與2+肪的夾角為銳角,則實(shí)數(shù)幾的取值范圍是I3
C.若ec="c且cwO,則2=石
D.若點(diǎn)G為AABC的重心,則醇+說+枇=0
10、已知i為虛數(shù)單位,復(fù)數(shù)z滿足z(2-i)=i?°2。,則下列說法錯(cuò)誤的是()
]_二」.
A.復(fù)數(shù)z的模為SB.復(fù)數(shù)z的共掘復(fù)數(shù)為不一不
C.復(fù)數(shù)z的虛部為9D.復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第一象限
11、已知/⑶是定義域?yàn)镽的奇函數(shù),且滿足/(-X+2)=/(X+2),則下列結(jié)論正確的是(
A.”4)=0
B.函數(shù)的圖象關(guān)于直線x=l對(duì)稱
Q/(x+8)=/(x)
D,若八一3)=-1,則“2021)=7
/■5)=尸/'0
12、設(shè)函數(shù).A一卜%>。,若/(0=4,則實(shí)數(shù)()
A.2B.-2C.4D.-4
填空題(共3個(gè))
13、以下說法中正確的是.(填序號(hào))
2
①函數(shù)X在區(qū)間(F,O)U(O,e)上單調(diào)遞減;
②已知函數(shù)/(xT)=f-2x+l,貝"5)=26;
③函數(shù)>=。+IS>I)的圖象過定點(diǎn)㈠,2);
2kg6=-x=—
④方程4的解是9
71
sin—+acos亞-2a
14、已知123,則6
15、已知復(fù)數(shù)z=l+i(/為虛數(shù)單位)是關(guān)于x的方程/+px+g=°(p,Q為實(shí)數(shù))的一個(gè)根,
則p+q=.
解答題(共6個(gè))
16、求證:函數(shù)〃*)=/+1在(一?Q上是減函數(shù).
17、如圖,矩形488與矩形O£FG全等,且CG=G>
⑴用向量而與通表示赤;
⑵用向量BG-與麗表示恁.
18、我國(guó)武漢在2019年的12月份開始出現(xiàn)不明原因的肺炎,在2020年的2月份命名為新型冠
狀病毒肺炎,新型冠狀病毒傳染性較強(qiáng).在傳染病學(xué)中,通常把從致病刺激物侵入機(jī)體或者對(duì)機(jī)體
發(fā)生作用起,到機(jī)體出現(xiàn)反應(yīng)或開始呈現(xiàn)該疾病對(duì)應(yīng)的相關(guān)癥狀時(shí)止的這一階段稱為潛伏期.一研
3
究團(tuán)隊(duì)統(tǒng)計(jì)了某地區(qū)200名患者的相關(guān)信息,得到如下表格:
潛伏期
[0,2](2,4](4,6](6,8](8,101(10,⑵(12,14]
(單位:天)
人數(shù)174162502631
(1)求這200名患者的潛伏期的樣本平均數(shù)"
(2)該新冠病毒的潛伏期受諸多因素的影響,為研究潛伏期與患者年齡的關(guān)系,以潛伏期是否
超過6天為標(biāo)準(zhǔn)進(jìn)行分層抽樣,從上述200名患者中抽取40人得到如下列聯(lián)表.請(qǐng)將列聯(lián)表補(bǔ)充
完整,并根據(jù)列聯(lián)表判斷是否有95%的把握認(rèn)為潛伏期與患者年齡有關(guān);
潛伏期S6天潛伏期>6天總計(jì)
50歲以上(含50歲)20
50歲以下9
總計(jì)40
(3)以(2)中40名患者的潛伏期46天的頻率代替該地區(qū)1名患者的潛伏期46天的概率,每名
患者的潛伏期是否46天相互獨(dú)立,從這40名患者中按潛伏期時(shí)間分層抽樣抽出5人,再?gòu)倪@5
人中隨機(jī)挑選出2人,求至少有1人是潛伏期大于6天的概率.
附:
川代名)0.050.0250.010
即3.8415.0246.635
n(ad-hc)2
(a+b)(c+d)(a+c)(b+d),其中〃::=a+h+c+d
19、如圖,在直三棱柱ABC—bE,尸分別為AG和BC的中點(diǎn).
J
B
(1)求證:即〃平面羽田田;
4
(2)若他=3,A8=2g,求所與平面ABC所成的角.
20、求值:
/、T
⑴25~一3)2、閡+卜叫;
8
⑵log62+log63+1g0.001+e'"
21、如圖,在四棱錐尸一四儀?中,底面48⑦為等腰梯形,ABWCD,⑺=2/8=4,AD=6,
△必8為等腰直角三角形,PA=PB,平面為反L底面力靦,£為如的中點(diǎn).
(1)求證:AEW平面陽7;
(2)求三棱錐〃一々%的體積.
雙空題(共1個(gè))
-47V
22、母線長(zhǎng)為1的圓錐,其側(cè)面展開圖的圓心角等于3,則該圓錐底面周長(zhǎng)為.
5
2022高考數(shù)學(xué)模擬試卷帶答案參考答案
1、答案:D
解析:
由復(fù)數(shù)除法法則化簡(jiǎn)復(fù)數(shù)為代數(shù)形式,再根據(jù)復(fù)數(shù)的分類得結(jié)論.
+2+機(jī)+(加一2)i
(l+i)(l-i)2為純虛數(shù),2+〃?=0且,〃一2#0,所以機(jī)=-2.
故選:D.
2、答案:C
解析:
令r=x2-2x+2,則y=2:先由二次函數(shù)的性質(zhì)求,=/-2x+2,x?T,2]的范圍,再根據(jù)指數(shù)函
數(shù)的單調(diào)性求的范圍,即可求解.
函數(shù)y=是由y=2,和/=X2_2X+2,x?T2]復(fù)合而成,
因?yàn)閒=-2x+2=(x-lf+l對(duì)稱軸為.1,開口向上,
所以f=d-2x+2在IT」)單調(diào)遞減,在口,2]單調(diào)遞增,
所以x=-l時(shí),*=(T)J2X(-1)+2=5
x=l時(shí),*=l-2xl+2=l,
所以1W,
因?yàn)檠?2'在R上單調(diào)遞增,所以2=2,=2&5=32,
所以函數(shù)尸,"?-1,2]的值域是[2,32],
故選:C.
3、答案:D
6
解析:
先求出集合8中的元素,在求出AH8,最后求出集合AAB的真子集個(gè)數(shù)即可
因?yàn)榧螦={1,2,3,4},B={y|y=2x-3”A},
所以B={T1,3,5},則4朋={1,3},
所以集合AA8的真子集個(gè)數(shù)為22-1=3.
故選:D
4、答案:B
解析:
作出函數(shù)“X)的圖象,令r=,(x),則原方程可化為產(chǎn)+mt+〃7+2=0在(0,2)上有2個(gè)不相等的實(shí)根,
再數(shù)形結(jié)合得解.
作出函數(shù)“X)的圖象如圖所示.令f=/(x),則]礦(力+帆+2=°可化為/+皿+初+2=0,
要使關(guān)于x的方程[/(x)丁+時(shí)(犬)+機(jī)+2=0有6個(gè)根,數(shù)形結(jié)合知需方程產(chǎn)+皿+機(jī)+2=0在(。,2)
7
上有2個(gè)不相等的實(shí)根G,"不妨設(shè)°J氣<2,g(r)=f"w+m+2,則
m2-4(〃z+2)>0,
八m八
0<——<2,
V2
g⑼=m+2>0,
g(2)=4+2"+m+2>°解得一2<.<2-26,故,"的取值范圍為(-2,2-2我,
故選反
小提示:
形如y=g[/a)]的函數(shù)的零點(diǎn)問題與函數(shù)圖象結(jié)合較為緊密,處理問題的基礎(chǔ)和關(guān)鍵是作出
“X),g(x)的圖象.若已知零點(diǎn)個(gè)數(shù)求參數(shù)的范圍,通常的做法是令‘="耳,先估計(jì)關(guān)于,的
方程g⑺=°的解的個(gè)數(shù),再根據(jù).“X)的圖象特點(diǎn),觀察直線'與y=〃x)圖象的交點(diǎn)個(gè)數(shù),進(jìn)
而確定參數(shù)的范圍.
5、答案:A
解析:
利用復(fù)數(shù)的除法和復(fù)數(shù)的幾何意義即可求解.
111+i11.
Z-——----------——H1
因?yàn)椤?T,所以"i1(l)(l+i)22,
故復(fù)數(shù)z在復(fù)平面直角坐標(biāo)系內(nèi)對(duì)應(yīng)的點(diǎn)為弓'5),
從而復(fù)數(shù)z在復(fù)平面直角坐標(biāo)系內(nèi)對(duì)應(yīng)的點(diǎn)在第一象限.
故選:A.
6、答案:B
解析:
3
/U)+/(2-x)=-
先利用解析式計(jì)算2,再計(jì)算和式即可得到結(jié)果.
8
/(x)=-------
因?yàn)?'+2,
f(2_x)=3=32f(x)+f(2-x)=——+—/:2'=3
所以‘~22-x+2~2-2,+4,2'+22(2"+2)2.
故G卜唱+咽+川+出卜唱+G卜沙+白骨
故選:B.
小提示:
3
f(x)+f(2-x)=-
本題解題關(guān)鍵是通過指數(shù)式運(yùn)算計(jì)算2,再配對(duì)求和即解決問題.
7、答案:B
解析:
根據(jù)平行向量的坐標(biāo)關(guān)系,即可求出x的值.
由小田,得4-8x2*=0,解得x=-1.
故選B
小提示:
本題考查向量的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.
8、答案:A
解析:
解一元二次方程求出集合A,然后由集合的交運(yùn)算即可求解.
..A={x|x2-3x+2=0,xe/?)={l,2},B={l,3}
...AcB={l}
故選:A.
9、答案:AD
9
解析:
由向量共線定理可判斷選項(xiàng)A;由向量夾角的的坐標(biāo)表示可判斷選項(xiàng)B;由數(shù)量積的運(yùn)算性質(zhì)可
判斷選項(xiàng)C;由三角形的重心性質(zhì)即向量線性運(yùn)算可判斷選項(xiàng)D.
對(duì)于選項(xiàng)A:由向量共線定理知選項(xiàng)A正確;
對(duì)于選項(xiàng)B:Z+花=(1,2)+硯1)=(1+42+4,若公與2+篇的夾角為銳角,則
“?(〃+砌=1+彳+2(2+為=5+32>0解得當(dāng)&與£+4共線時(shí),2+2=20+4),解得:/=(),
此時(shí)1(1,2),£+"=(1,2),此時(shí)2=石夾角為0,不符合題意,所以實(shí)數(shù)幾的取值范圍是
I3J,故選項(xiàng)B不正確;
對(duì)于選項(xiàng)C:若ec=b,c,則'',因?yàn)?。,則3=萬或C與"5垂直,
故選項(xiàng)C不正確;
對(duì)于選項(xiàng)D:若點(diǎn)G為的重心,延長(zhǎng)AG與BC交于M,則〃為8c的中點(diǎn),所以
AG=2GM=2x-x(GB+GC}=GB+GC——.—■-
2'),所以GA+G8+GC=0,故選項(xiàng)D正確.
故選:AD
小提示:
易錯(cuò)點(diǎn)睛:兩個(gè)向量夾角為銳角數(shù)量積大于0,但數(shù)量積大于。向量夾角為銳角或。,由向量夾
角為銳角數(shù)量積大于0,需要檢驗(yàn)向量共線的情況.兩個(gè)向量夾角為鈍角數(shù)量積小于。,但數(shù)量積
10
小于。向量夾角為鈍角或萬.
10、答案:ABC
解析:
直接利用復(fù)數(shù)的運(yùn)算,復(fù)數(shù)的模,復(fù)數(shù)的共加,復(fù)數(shù)的幾何意義判斷A、B、C、D的結(jié)論.
_(i2)'010_1_2+i
解:復(fù)數(shù)z滿足瑁一"嚴(yán),整理得虧.
z=-+-i|z|=J(-)2+(-)2=—
對(duì)于A:由于55,故V555,故A錯(cuò)誤;
z=-+-iz=--lj
對(duì)于B:由于55,故55,故B錯(cuò)誤;
對(duì)于C:復(fù)數(shù)z的虛部為勺,故C錯(cuò)誤;
2L
對(duì)于D:復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為I'?,故該點(diǎn)在第一象限內(nèi),故D正確;
故選:ABC.
11、答案:ACD
解析:
由『⑶奇函數(shù)可得f(0)=0,令x=-2,f(4)=f(。)可判斷A;由/(T+2)=/(X+2),可得>2為對(duì)
稱軸,可判斷B;由/(X)是奇函數(shù),/(X+2)=/(-X+2),分析可判斷c;由/(X)周期為8,可判斷
D
選項(xiàng)A,由于/*)是定義域?yàn)镽的奇函數(shù),故了(°)=°,令l=-2,〃4)=/(0)=0,故A正確;
選項(xiàng)B,由于“r+2)=/(x+2),故函數(shù)/⑶關(guān)于x=2對(duì)稱,不一定關(guān)于x=l對(duì)稱,故B錯(cuò)誤;
選項(xiàng)C,"X)是奇函數(shù),故八x+2)=/(-x+2)=-/(x—2),令r=x—2,有fQ+4)=-/⑺,故
/?+8)=-%+4)=/⑺,即/(x+8)"(x),故c正確;
選項(xiàng)D,由C,"X)周期為8,故/(2°2D=/(253X8-3)=/(-3)=-1,故口正確
11
故選:ACD
12、答案:AD
解析:
按照分類,結(jié)合分段函數(shù)解析式即可得解.
|-x,x<0
因?yàn)楹瘮?shù)/⑶一,,x>°,且"")=4'
Ja<0]a>0
所以la=4或==4,解得在一4或a=2.
故選:AD.
13、答案:③④
解析:
根據(jù)函數(shù)單調(diào)性定義可判斷①;取、=6可判斷②;當(dāng)x=T時(shí),丫=2,可判斷③;根據(jù)對(duì)數(shù)運(yùn)
算可判斷④.
f(x)=_
①函數(shù)一》在(《,°),(°,+8)上單調(diào)遞減,但是在整個(gè)定義域內(nèi)不具有單調(diào)性,
例如:1>-1,而/⑴>/(T),不具有單調(diào)遞減的性質(zhì),故錯(cuò)誤;
②已知函數(shù)/(xT)=/-2x+l,則/?(5)=/(6-1)=6-2X6+1=25,故②錯(cuò)誤;
③當(dāng)x=-l時(shí),丫=2,所以函數(shù)y=a"'+is>i)的圖象過定點(diǎn)(T,2),故正確;
2k』n2,og3'v=2T=log,x=-2=>x=-
(4)4囪9,
故正確.
故答案為:③④.
_J_-1
14、答案:3##3
12
解析:
cosf--2crl
先利用誘導(dǎo)公式對(duì)(6J變形,再以二倍角公式進(jìn)行代換求值即可解決.
(5乃、「(乃cYl(乃of71)
cos----2a=cos7:-\—+2a=-cos—+2a=-cos2——+a
(6JL16J|16)112)
=-l-2sin2(—+a)=-
L12J
故答案為:一§
15、答案:0
解析:
把1+,代入方程得x2+px+q=°,再化簡(jiǎn)方程利用復(fù)數(shù)相等的概念得到的值,即得"+夕的值.
由復(fù)數(shù)z=l+iQ,為虛數(shù)單位)是關(guān)于x的方程/+內(nèi)+〃=°(夕,q為實(shí)數(shù))的一個(gè)根
所以(l+iy+P(l+i)+4=0,即(p+4)+(2+0i=O
Jp+<7=0
由復(fù)數(shù)相等可得12+4=°,故p+g=°
故答案為:0
16、答案:證明見解析
解析:
利用定義法證明函數(shù)單調(diào)性.
證明:任取不超武—⑼,且王<—?jiǎng)t
/(%)-/(%)=片Y
=(xl-x2)(xl+x2)
-x2<0x,+x2<0
13
所以/(%)-/(々)>0,即〃%)>/(々),
所以“引=丁+1在(-?,0)上是減函數(shù).
小提示:
此題考查利用定義法證明函數(shù)的單調(diào)性,關(guān)鍵在于任取且占<與,通過作差法比較
函數(shù)值的大小.
——I—
DF=2AD+-AB
17、答案:⑴2
(2)AC=-BG+DF
解析:
(1)平面向量基本定理,利用向量的加減與數(shù)乘運(yùn)算法則進(jìn)行求解;(2)建立平面直角坐標(biāo)系,
利用坐標(biāo)運(yùn)算進(jìn)行解答.
⑴
DF=DE+EF=2AD+DG=2AD+-AB
2.
(2)
以4為坐標(biāo)原點(diǎn),4?所在直線為x軸,48所在直線為y軸建立如圖所示的平面直角坐標(biāo)系域九
設(shè)AD=1,因?yàn)榫匦蜛BCO與矩形DEFG全等,且且=話,
所以A3=2,則”,2),B(0,2),G(l,l),。(1,0),E(3,l),
所以〃=0⑵,筋=(1),麗=(2,1),故前=-旃+前,
14
18、答案:(1)5.4(天);(2)列聯(lián)表答案見解析,沒有95%的把握認(rèn)為潛伏期與患者年齡有關(guān);
7
(3)10.
解析:
(1)由已知數(shù)據(jù),根據(jù)平均數(shù)公式可求得答案;
(2)先完善列聯(lián)表,再由六公式計(jì)算可得結(jié)論;
(3)運(yùn)用列舉法和古典概率公式計(jì)算可得答案.
x=—x(lxl7+3x41+5x62+7x50+9x26+11x3+13x1)
解:(1)200=5.4(天)
4°><120=24
(2)用分層抽樣,應(yīng)該抽到潛伏期46天的人數(shù)為200,
根據(jù)題意,補(bǔ)充完整的列聯(lián)表如下:
潛伏期小于或等于6天潛伏期大于6天總計(jì)
50歲以上(含50歲)15520
50歲以下91120
總計(jì)241640
.240x(15x11-9x5產(chǎn)
則24x16x20x20
經(jīng)查表,得K?=3.75<3.841,所以沒有95%的把握認(rèn)為潛伏期與患者年齡有關(guān)
_x5=3
(3)因?yàn)?0,所以由分層抽樣知,5人中有潛伏期小于或等于6天的3人,潛伏期40大
15
于6天的2人.潛伏期大于6天的2人記為48,潛伏期小于或等于6天的3人記為a,b,c.從這
5人中抽取2人的情況分別是力反Aa,Ab,Ac,Ba,Bb,Be,ab,ac,be,共有10種,
其中至少有一人是潛伏期大于6天的種數(shù)是7種,分別是46,Aa,Ab,Ac,Ba,Bb,Be.
7
故至少有1人是潛伏期大于6天的概率是10.
19、答案:(1)證明見解析;(2)60°.
解析:
(1)取中點(diǎn)。,連結(jié)A。、DF,推導(dǎo)出四邊形DFEA是平行四邊形,從而皿值,由此能
證明)〃平面A4山8.
(2)取4c中點(diǎn)"連結(jié)",則NEF"為EF與面ABC所成角,由此能求出EF與平面A8C所
成的角.
(1)取AB中點(diǎn)£),連結(jié)A。、DF,
在AA3C中,D、/為中點(diǎn),=2,
又AG//AC,目AE=gAG,.-.DF//A.E
二四邊形。尸噲是平行四邊形,MDUEF,
二ADu平面刈瓦8,EFU平面的818,
,E/〃平面A4山8.
(2)取AC中點(diǎn)“,連結(jié)“尸,
5FH為所與面A3C所成角,
在RtAEHF中,FH=6,EH=AA,=3,
16
tanNHFE=5=g=tan600
:.ZHFE=60°,
.?.EF與平面ABC所成的角為60。.
小提示:
本題考查線面平行的證明,考查線面角的求法,考查空間中線線、線面、面面間的位置關(guān)系等基
礎(chǔ)知識(shí),考查運(yùn)算求解能力、空間想象能力、數(shù)形結(jié)合思想,是中檔題.
20、答案:⑴6-2#
⑵6
解析:
(1)盡量將底數(shù)改寫成幕的形式,根據(jù)分?jǐn)?shù)指數(shù)毒運(yùn)算可得;
(2)根據(jù)對(duì)數(shù)的運(yùn)算及恒等式直接計(jì)算可得.
⑴
=5-9x(S]+l=5-9x—+1=6-2>/6
原式9
⑵
-3ln8
=log6(2x3)+lgl0+e=l-3+8=6
21、答案:(1)證明見解析;(2)3.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版場(chǎng)監(jiān)督管理局合同示范文本(公共安全監(jiān)控)4篇
- 專業(yè)化苗木搬運(yùn)合作合同范本版B版
- 2025年度草花種植基地農(nóng)業(yè)廢棄物處理合同4篇
- 2024離婚雙方的社會(huì)關(guān)系及人際網(wǎng)絡(luò)處理合同
- 2024年04月華夏銀行總行社會(huì)招考筆試歷年參考題庫(kù)附帶答案詳解
- 2025年度電子商務(wù)策劃與運(yùn)營(yíng)合同范本4篇
- 2024院長(zhǎng)任期內(nèi)薪酬福利與教育教學(xué)改革合同范本3篇
- 專用場(chǎng)地四年承包合同樣本版B版
- 2024年鋼筋結(jié)構(gòu)施工合同
- 2025年度拆除工程安全防護(hù)材料供應(yīng)協(xié)議3篇
- 公路工程施工現(xiàn)場(chǎng)安全檢查手冊(cè)
- 公司組織架構(gòu)圖(可編輯模版)
- 1汽輪機(jī)跳閘事故演練
- 陜西省銅川市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會(huì)明細(xì)
- 禮品(禮金)上交登記臺(tái)賬
- 北師大版七年級(jí)數(shù)學(xué)上冊(cè)教案(全冊(cè)完整版)教學(xué)設(shè)計(jì)含教學(xué)反思
- 2023高中物理步步高大一輪 第五章 第1講 萬有引力定律及應(yīng)用
- 青少年軟件編程(Scratch)練習(xí)題及答案
- 浙江省公務(wù)員考試面試真題答案及解析精選
- 系統(tǒng)性紅斑狼瘡-第九版內(nèi)科學(xué)
- 全統(tǒng)定額工程量計(jì)算規(guī)則1994
評(píng)論
0/150
提交評(píng)論