




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
[名校]初中數學-輔助線6種典型問題例題詳解01、如圖,∠E=∠B+∠D,猜想AB與CD有怎樣的位置關系,并說明理由.【分析】延長BE交CD于F,通過三角形外角的性質可證明∠B=∠EFD,則能證明AB∥CD.【解答】解:延長BE交CD于F.∵∠BED=∠B+∠D,∠BED=∠EFD+∠D,∴∠B=∠EFD,∴AB∥CD.解法二:如圖,過點E作∠BEF=∠B(EF在∠BED內),所以AB∥EF(內錯角相等,兩直線平行),因為∠BED=∠BEF+∠FED=∠B+∠D(已知),∠BEF=∠B(已作),所以∠FED=∠D,所以CD∥EF(內錯角相等,兩直線平行)所以AB∥CD(如果兩條直線都和第三條直線平行,那么這兩條直線平行).02(2016?十堰)如圖,AB∥EF,CD⊥EF于點D,若∠ABC=40°,則∠BCD=()A.140°B.130°C.120°D.110°【分析】直接利用平行線的性質得出∠B=∠BCG,∠GCD=90°,進而得出答案.【解答】解:過點C作CG∥AB,由題意可得:AB∥EF∥CG,故∠B=∠BCG,∠GCD=90°,則∠BCD=40°+90°=130°.故選:B.03、如圖,AB∥CD,P為AB,CD之間的一點,已知∠2=28°,∠BPC=58°,求∠1的度數。【解答】解:過點P作射線PN∥AB,如圖1所示因為PN∥AB,AB∥CD,所以PN∥CD所以∠4=∠2=28°因為PN∥AB,所以∠3=∠1因為∠3=∠BPC-∠4=58°-28°=30°所以∠1=30°04(1)如圖1,若AB∥DE,∠B=135°,∠D=145°,求∠BCD的度數.(2)如圖1,在AB∥DE的條件下,你能得出∠B、∠BCD、∠D之間的數量關系嗎?并說明理由.(3)如圖2,AB∥EF,根據(2)中的猜想,直接寫出∠B+∠C+∠D+∠E的度數【解答】解:(1)如圖,過C點作CF∥AB,所以∠B+∠BCF=180°因為AB∥DE,所以CF∥DE所以∠FCD+∠D=180°所以∠B+∠BCF+∠FCD+∠D=180°+180°即∠B+∠BCD+∠D=360°所以∠BCD=360°-∠B-∠D=360°-135°-145°=80°(2)∠B+∠BCD+∠D=360°,理由:如圖,因為CF∥AB又因為AB∥DE,所以CF∥DE所以∠B+∠BCF=180°所以∠B+∠BCF+∠FCD+∠D=180°+180°即∠B+∠BCD+∠D=360°(3)∠B+∠C+∠D+∠E=540°05、如圖,∠BEC=95°,∠ABE=120°,∠DCE=35°,則AB與CD平行嗎?請說明理由.【分析】過點E作EF∥AB,根據∠ABE=125°可求出∠BEF的度數,進而得出∠FEC的度數,由此可得出EF∥CD,故可得出結論.【解答】解:AB∥CD.理由:過點E作EF∥CD,所以∠FEC=∠DCE=35°.因為∠BEC=95°所以∠BEF=95°-35°=60°又因為∠ABE=120°所以∠ABE+∠BEF=180°所以AB∥EF又因為EF∥CD,所以AB∥CD.06、如圖,AB∥CD,BE平分∠ABF,DE平分∠CDF,∠BFD=120°,求∠BED.【分析】連接BD,過F作FG∥AB,由AB∥CD,得到FG∥CD,利用兩直線平行內錯角相等,得到兩對角相等,進而求出∠ABF+∠CDF的度數,由BE平分∠ABF,DE平分∠CDF,利用角平分線定義得到∠EBF+∠EFF的度數,在三角形BFD中,利用內角和定理得到∠FBD+∠FDB的度數,進而求出∠EBD+∠EDB的度數,求出∠BED度數即可.【解答】解:連接BD,過F作FG∥AB,由AB∥CD,得到FG∥CD,∴∠ABF=∠BFG,∠CDF=∠DFG,∴∠BFD=∠ABF+∠CDF=120°,∠FBD+∠FDB=60°,∵BE平分∠AB
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 七年級人教版上冊教學設計第四單元第四課 汽車城蔚山教學設計
- 河北2025年河北醫(yī)科大學第二醫(yī)院招聘醫(yī)學及相關專業(yè)博士研究生筆試歷年參考題庫附帶答案詳解
- 沈陽2024年遼寧沈陽職業(yè)技術學院招聘高技能人才筆試歷年參考題庫附帶答案詳解
- 房子包租 合同范本
- Unit2 An Accident(教學設計)-2024-2025學年北師大版(三起)英語六年級上冊
- 《Unit 5 School things》(教學設計)-2024-2025學年新交際英語(2024)一年級上冊
- 第16課 獨立自主的和平外交(教學設計)八年級歷史下冊同步備課系列(統(tǒng)編版)
- Lesson 4 Put up your left hand. Period 1 (教學設計)-2024-2025學年接力版英語四年級上冊
- 杭州2025年共青團浙江杭州市臨安區(qū)委招聘編外聘用人員筆試歷年參考題庫附帶答案詳解
- 依依惜別 教學設計-2023-2024學年語文六年級下冊統(tǒng)編版
- 出版物網絡零售備案表
- 云南省昭通市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會明細
- 國家留學基金委國外大學邀請函
- QES三體系內審檢查表 含審核記錄
- 信息論與編碼 自學報告
- 二年級乘除法口訣專項練習1000題-推薦
- 貸款項目資金平衡表
- 唯美動畫生日快樂電子相冊視頻動態(tài)PPT模板
- 設計文件簽收表(一)
- 義務教育語文課程標準2022年版
- 公務員入職登記表
評論
0/150
提交評論