2024屆湖南省長沙瀏陽市中考數(shù)學(xué)最后沖刺模擬試卷含解析_第1頁
2024屆湖南省長沙瀏陽市中考數(shù)學(xué)最后沖刺模擬試卷含解析_第2頁
2024屆湖南省長沙瀏陽市中考數(shù)學(xué)最后沖刺模擬試卷含解析_第3頁
2024屆湖南省長沙瀏陽市中考數(shù)學(xué)最后沖刺模擬試卷含解析_第4頁
2024屆湖南省長沙瀏陽市中考數(shù)學(xué)最后沖刺模擬試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆湖南省長沙瀏陽市中考數(shù)學(xué)最后沖刺模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖是二次函數(shù)y=ax2+bx+c的圖象,其對稱軸為x=1,下列結(jié)論:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-32,y1),(103,y2)是拋物線上兩點,則y1<yA.①② B.②③ C.②④ D.①③④2.如圖,在平面直角坐標系xOy中,點C,B,E在y軸上,Rt△ABC經(jīng)過變化得到Rt△EDO,若點B的坐標為(0,1),OD=2,則這種變化可以是()A.△ABC繞點C順時針旋轉(zhuǎn)90°,再向下平移5個單位長度B.△ABC繞點C逆時針旋轉(zhuǎn)90°,再向下平移5個單位長度C.△ABC繞點O順時針旋轉(zhuǎn)90°,再向左平移3個單位長度D.△ABC繞點O逆時針旋轉(zhuǎn)90°,再向右平移1個單位長度3.如圖,△ABC中,AB=2,AC=3,1<BC<5,分別以AB、BC、AC為邊向外作正方形ABIH、BCDE和正方形ACFG,則圖中陰影部分的最大面積為()A.6 B.9 C.11 D.無法計算4.一元一次不等式2(1+x)>1+3x的解集在數(shù)軸上表示為()A. B. C. D.5.若關(guān)于x的一元二次方程(k﹣1)x2+2x﹣2=0有兩個不相等的實數(shù)根,則k的取值范圍是()A.k> B.k≥ C.k>且k≠1 D.k≥且k≠16.如圖,△ABC是⊙O的內(nèi)接三角形,AD⊥BC于D點,且AC=5,CD=3,BD=4,則⊙O的直徑等于()A.52 B.32 C.57.如圖,AB為⊙O的直徑,C、D為⊙O上的點,若AC=CD=DB,則cos∠CAD=()A. B. C. D.8.tan60°的值是()A. B. C. D.9.已知,則的值為A. B. C. D.10.方程組的解x、y滿足不等式2x﹣y>1,則a的取值范圍為()A.a(chǎn)≥ B.a(chǎn)> C.a(chǎn)≤ D.a(chǎn)>11.如圖,直線m⊥n,在某平面直角坐標系中,x軸∥m,y軸∥n,點A的坐標為(-4,2),點B的坐標為(2,-4),則坐標原點為()A.O1 B.O2 C.O3 D.O412.某班

30名學(xué)生的身高情況如下表:身高人數(shù)134787則這

30

名學(xué)生身高的眾數(shù)和中位數(shù)分別是A., B.,C., D.,二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,將矩形ABCD沿GH對折,點C落在Q處,點D落在E處,EQ與BC相交于F.若AD=8cm,AB=6cm,AE=4cm.則△EBF的周長是_____cm.14.計算(+)(-)的結(jié)果等于________.15.如圖,矩形ABCD中,AB=8,BC=6,P為AD上一點,將△ABP沿BP翻折至△EBP,PE與CD相交于點O,BE與CD相交于點G,且OE=OD,則AP的長為__________.16.如圖,動點P在平面直角坐標系中按圖中箭頭所示方向運動,第1次從原點運動到點(1,1),第2次接著運動到點(2,0),第3次接著運動到點(3,2),…,按這樣的運動規(guī)律,經(jīng)過第2019次運動后,動點P的坐標是_______.17.如圖,小陽發(fā)現(xiàn)電線桿的影子落在土坡的坡面和地面上,量得,米,與地面成角,且此時測得米的影長為米,則電線桿的高度為__________米.18.函數(shù)中,自變量的取值范圍是_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)中央電視臺的“中國詩詞大賽”節(jié)目文化品位高,內(nèi)容豐富.某班模擬開展“中國詩詞大賽”比賽,對全班同學(xué)成績進行統(tǒng)計后分為“A優(yōu)秀”、“B一般”、“C較差”、“D良好”四個等級,并根據(jù)成績繪制成如下兩幅不完整的統(tǒng)計圖.請結(jié)合統(tǒng)計圖中的信息,回答下列問題:(1)本班有多少同學(xué)優(yōu)秀?(2)通過計算補全條形統(tǒng)計圖.(3)學(xué)校預(yù)全面推廣這個比賽提升學(xué)生的文化素養(yǎng),估計該校3000人有多少人成績良好?20.(6分)在學(xué)習(xí)了矩形這節(jié)內(nèi)容之后,明明同學(xué)發(fā)現(xiàn)生活中的很多矩形都很特殊,如我們的課本封面、A4的打印紙等,這些矩形的長與寬之比都為:1,我們將具有這類特征的矩形稱為“完美矩形”如圖(1),在“完美矩形”ABCD中,點P為AB邊上的定點,且AP=AD.求證:PD=AB.如圖(2),若在“完美矩形“ABCD的邊BC上有一動點E,當?shù)闹凳嵌嗌贂r,△PDE的周長最小?如圖(3),點Q是邊AB上的定點,且BQ=BC.已知AD=1,在(2)的條件下連接DE并延長交AB的延長線于點F,連接CF,G為CF的中點,M、N分別為線段QF和CD上的動點,且始終保持QM=CN,MN與DF相交于點H,請問GH的長度是定值嗎?若是,請求出它的值,若不是,請說明理由.21.(6分)在Rt△ABC中,∠C=90°,∠B=30°,AB=10,點D是射線CB上的一個動點,△ADE是等邊三角形,點F是AB的中點,連接EF.(1)如圖,點D在線段CB上時,①求證:△AEF≌△ADC;②連接BE,設(shè)線段CD=x,BE=y,求y2﹣x2的值;(2)當∠DAB=15°時,求△ADE的面積.22.(8分)“十九大”報告提出了我國將加大治理環(huán)境污染的力度,還我青山綠水,其中霧霾天氣讓環(huán)保和健康問題成為焦點,為了調(diào)查學(xué)生對霧霾天氣知識的了解程度,某校在全校學(xué)生中抽取400名同學(xué)做了一次調(diào)查,根據(jù)調(diào)查統(tǒng)計結(jié)果,繪制了不完整的一種統(tǒng)計圖表.對霧霾了解程度的統(tǒng)計表對霧霾的了解程度百分比A.非常了解5%B.比較了解mC.基本了解45%D.不了解n請結(jié)合統(tǒng)計圖表,回答下列問題:統(tǒng)計表中:m=,n=;請在圖1中補全條形統(tǒng)計圖;請問在圖2所示的扇形統(tǒng)計圖中,D部分扇形所對應(yīng)的圓心角是多少度?23.(8分)數(shù)學(xué)興趣小組為了研究中小學(xué)男生身高y(cm)和年齡x(歲)的關(guān)系,從某市官網(wǎng)上得到了該市2017年統(tǒng)計的中小學(xué)男生各年齡組的平均身高,見下表:如圖已經(jīng)在直角坐標系中描出了表中數(shù)據(jù)對應(yīng)的點,并發(fā)現(xiàn)前5個點大致位于直線AB上,后7個點大致位于直線CD上.年齡組x7891011121314151617男生平均身高y115.2118.3122.2126.5129.6135.6140.4146.1154.8162.9168.2(1)該市男學(xué)生的平均身高從歲開始增加特別迅速.(2)求直線AB所對應(yīng)的函數(shù)表達式.(3)直接寫出直線CD所對應(yīng)的函數(shù)表達式,假設(shè)17歲后該市男生身高增長速度大致符合直線CD所對應(yīng)的函數(shù)關(guān)系,請你預(yù)測該市18歲男生年齡組的平均身高大約是多少?24.(10分)一天晚上,李明利用燈光下的影子長來測量一路燈D的高度.如圖,當在點A處放置標桿時,李明測得直立的標桿高AM與影子長AE正好相等,接著李明沿AC方向繼續(xù)向前走,走到點B處放置同一個標桿,測得直立標桿高BN的影子恰好是線段AB,并測得AB=1.2m,已知標桿直立時的高為1.8m,求路燈的高CD的長.25.(10分)如圖,在△ABC中,點D、E分別在邊AB、AC上,DE∥BC,且DE=BC.如果AC=6,求AE的長;設(shè),,求向量(用向量、表示).26.(12分)我們常用的數(shù)是十進制數(shù),如,數(shù)要用10個數(shù)碼(又叫數(shù)字):0、1、2、3、4、5、6、7、8、9,在電子計算機中用的二進制,只要兩個數(shù)碼:0和1,如二進制中等于十進制的數(shù)6,等于十進制的數(shù)53.那么二進制中的數(shù)101011等于十進制中的哪個數(shù)?27.(12分)如圖,在平面直角坐標系xOy中,一次函數(shù)y=x與反比例函數(shù)的圖象相交于點.(1)求a、k的值;(2)直線x=b()分別與一次函數(shù)y=x、反比例函數(shù)的圖象相交于點M、N,當MN=2時,畫出示意圖并直接寫出b的值.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解題分析】試題分析:根據(jù)題意可得:a<0,b>0,c>0,則abc<0,則①錯誤;根據(jù)對稱軸為x=1可得:-b2a=1,則-b=2a,即2a+b=0,則②正確;根據(jù)函數(shù)的軸對稱可得:當x=2時,y>0,即4a+2b+c>0,則③錯誤;對于開口向下的函數(shù),離對稱軸越近則函數(shù)值越大,則點睛:本題主要考查的就是二次函數(shù)的性質(zhì),屬于中等題.如果開口向上,則a>0,如果開口向下,則a<0;如果對稱軸在y軸左邊,則b的符號與a相同,如果對稱軸在y軸右邊,則b的符號與a相反;如果題目中出現(xiàn)2a+b和2a-b的時候,我們要看對稱軸與1或者-1的大小關(guān)系再進行判定;如果出現(xiàn)a+b+c,則看x=1時y的值;如果出現(xiàn)a-b+c,則看x=-1時y的值;如果出現(xiàn)4a+2b+c,則看x=2時y的值,以此類推;對于開口向上的函數(shù),離對稱軸越遠則函數(shù)值越大,對于開口向下的函數(shù),離對稱軸越近則函數(shù)值越大.2、C【解題分析】

Rt△ABC通過變換得到Rt△ODE,應(yīng)先旋轉(zhuǎn)然后平移即可【題目詳解】∵Rt△ABC經(jīng)過變化得到Rt△EDO,點B的坐標為(0,1),OD=2,∴DO=BC=2,CO=3,∴將△ABC繞點C順時針旋轉(zhuǎn)90°,再向下平移3個單位長度,即可得到△DOE;或?qū)ⅰ鰽BC繞點O順時針旋轉(zhuǎn)90°,再向左平移3個單位長度,即可得到△DOE;故選:C.【題目點撥】本題考查的是坐標與圖形變化旋轉(zhuǎn)和平移的知識,解題的關(guān)鍵在于利用旋轉(zhuǎn)和平移的概念和性質(zhì)求坐標的變化3、B【解題分析】

有旋轉(zhuǎn)的性質(zhì)得到CB=BE=BH′,推出C、B、H'在一直線上,且AB為△ACH'的中線,得到S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當∠BAC=90°時,S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,推出S△GBI=S△ABC,于是得到陰影部分面積之和為S△ABC的3倍,于是得到結(jié)論.【題目詳解】把△IBE繞B順時針旋轉(zhuǎn)90°,使BI與AB重合,E旋轉(zhuǎn)到H'的位置,∵四邊形BCDE為正方形,∠CBE=90°,CB=BE=BH′,∴C、B、H'在一直線上,且AB為△ACH'的中線,∴S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當∠BAC=90°時,S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,∵∠ABC=∠CBG=∠ABI=90°,∴∠GBE=90°,∴S△GBI=S△ABC,所以陰影部分面積之和為S△ABC的3倍,又∵AB=2,AC=3,∴圖中陰影部分的最大面積為3××2×3=9,故選B.【題目點撥】本題考查了勾股定理,利用了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后圖形全等得出圖中陰影部分的最大面積是S△ABC的3倍是解題的關(guān)鍵.4、B【解題分析】

按照解一元一次不等式的步驟求解即可.【題目詳解】去括號,得2+2x>1+3x;移項合并同類項,得x<1,所以選B.【題目點撥】數(shù)形結(jié)合思想是初中常用的方法之一.5、C【解題分析】

根據(jù)題意得k-1≠0且△=22-4(k-1)×(-2)>0,解得:k>且k≠1.故選C【題目點撥】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac,關(guān)鍵是熟練掌握:當△>0,方程有兩個不相等的實數(shù)根;當△=0,方程有兩個相等的實數(shù)根;當△<0,方程沒有實數(shù)根.6、A【解題分析】

連接AO并延長到E,連接BE.設(shè)AE=2R,則∠ABE=90°,∠AEB=∠ACB,∠ADC=90°,利用勾股定理求得AD=AC2-DC2=52-【題目詳解】解:如圖,連接AO并延長到E,連接BE.設(shè)AE=2R,則∠ABE=90°,∠AEB=∠ACB;∵AD⊥BC于D點,AC=5,DC=3,∴∠ADC=90°,∴AD=AC∴AB=在Rt△ABE與Rt△ADC中,∠ABE=∠ADC=90°,∠AEB=∠ACB,∴Rt△ABE∽Rt△ADC,∴ABAD即2R=AB?ACAD=4∴⊙O的直徑等于52故答案選:A.【題目點撥】本題主要考查了圓周角定理、勾股定理,解題的關(guān)鍵是掌握輔助線的作法.7、D【解題分析】

根據(jù)圓心角,弧,弦的關(guān)系定理可以得出===,根據(jù)圓心角和圓周角的關(guān)鍵即可求出的度數(shù),進而求出它的余弦值.【題目詳解】解:===,故選D.【題目點撥】本題考查圓心角,弧,弦,圓周角的關(guān)系,熟記特殊角的三角函數(shù)值是解題的關(guān)鍵.8、A【解題分析】

根據(jù)特殊角三角函數(shù)值,可得答案.【題目詳解】tan60°=故選:A.【題目點撥】本題考查了特殊角三角函數(shù)值,熟記特殊角三角函數(shù)值是解題關(guān)鍵.9、C【解題分析】由題意得,4?x?0,x?4?0,解得x=4,則y=3,則=,故選:C.10、B【解題分析】

方程組兩方程相加表示出2x﹣y,代入已知不等式即可求出a的范圍.【題目詳解】①+②得:解得:故選:B.【題目點撥】此題考查了二元一次方程組的解,方程組的解即為能使方程組中兩方程成立的未知數(shù)的值.11、A【解題分析】試題分析:因為A點坐標為(-4,2),所以,原點在點A的右邊,也在點A的下邊2個單位處,從點B來看,B(2,-4),所以,原點在點B的左邊,且在點B的上邊4個單位處.如下圖,O1符合.考點:平面直角坐標系.12、A【解題分析】

找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)或兩個數(shù)的平均數(shù)為中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù).【題目詳解】解:這組數(shù)據(jù)中,出現(xiàn)的次數(shù)最多,故眾數(shù)為,

共有30人,

第15和16人身高的平均數(shù)為中位數(shù),

即中位數(shù)為:,

故選:A.【題目點撥】本題考查了眾數(shù)和中位數(shù)的知識,一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù);將一組數(shù)據(jù)按照從小到大或從大到小的順序排列,如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2【解題分析】試題分析:BE=AB-AE=2.設(shè)AH=x,則DH=AD﹣AH=2﹣x,在Rt△AEH中,∠EAH=90°,AE=4,AH=x,EH=DH=2﹣x,∴EH2=AE2+AH2,即(2﹣x)2=42+x2,解得:x=1.∴AH=1,EH=5.∴C△AEH=12.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH.又∵∠EAH=∠FBE=90°,∴△EBF∽△HAE,∴.∴C△EBF==C△HAE=2.考點:1折疊問題;2勾股定理;1相似三角形.14、2【解題分析】

利用平方差公式進行計算即可得.【題目詳解】原式==5-3=2,故答案為:2.【題目點撥】本題考查了二次根式的混合運算,掌握平方差公式結(jié)構(gòu)特征是解本題的關(guān)鍵.15、4.1【解題分析】解:如圖所示:∵四邊形ABCD是矩形,∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=1,根據(jù)題意得:△ABP≌△EBP,∴EP=AP,∠E=∠A=90°,BE=AB=1,在△ODP和△OEG中,,∴△ODP≌△OEG(ASA),∴OP=OG,PD=GE,∴DG=EP,設(shè)AP=EP=x,則PD=GE=6﹣x,DG=x,∴CG=1﹣x,BG=1﹣(6﹣x)=2+x,根據(jù)勾股定理得:BC2+CG2=BG2,即62+(1﹣x)2=(x+2)2,解得:x=4.1,∴AP=4.1;故答案為4.1.16、(2019,2)【解題分析】

分析點P的運動規(guī)律,找到循環(huán)次數(shù)即可.【題目詳解】分析圖象可以發(fā)現(xiàn),點P的運動每4次位置循環(huán)一次.每循環(huán)一次向右移動四個單位.∴2019=4×504+3當?shù)?04循環(huán)結(jié)束時,點P位置在(2016,0),在此基礎(chǔ)之上運動三次到(2019,2)故答案為(2019,2).【題目點撥】本題是規(guī)律探究題,解題關(guān)鍵是找到動點運動過程中,每運動多少次形成一個循環(huán).17、(14+2)米【解題分析】

過D作DE⊥BC的延長線于E,連接AD并延長交BC的延長線于F,根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半求出DE,再根據(jù)勾股定理求出CE,然后根據(jù)同時同地物高與影長成正比列式求出EF,再求出BF,再次利用同時同地物高與影長成正比列式求解即可.【題目詳解】如圖,過D作DE⊥BC的延長線于E,連接AD并延長交BC的延長線于F.∵CD=8,CD與地面成30°角,∴DE=CD=×8=4,根據(jù)勾股定理得:CE===4.∵1m桿的影長為2m,∴=,∴EF=2DE=2×4=8,∴BF=BC+CE+EF=20+4+8=(28+4).∵=,∴AB=(28+4)=14+2.故答案為(14+2).【題目點撥】本題考查了相似三角形的應(yīng)用,主要利用了同時同地物高與影長成正比的性質(zhì),作輔助線求出AB的影長若全在水平地面上的長BF是解題的關(guān)鍵.18、【解題分析】

根據(jù)被開方式是非負數(shù)列式求解即可.【題目詳解】依題意,得,解得:,故答案為:.【題目點撥】本題考查了函數(shù)自變量的取值范圍,函數(shù)有意義時字母的取值范圍一般從幾個方面考慮:①當函數(shù)解析式是整式時,字母可取全體實數(shù);②當函數(shù)解析式是分式時,考慮分式的分母不能為0;③當函數(shù)解析式是二次根式時,被開方數(shù)為非負數(shù).④對于實際問題中的函數(shù)關(guān)系式,自變量的取值除必須使表達式有意義外,還要保證實際問題有意義.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)本班有4名同學(xué)優(yōu)秀;(2)補圖見解析;(3)1500人.【解題分析】

(1)根據(jù)統(tǒng)計圖即可得出結(jié)論;(2)先計算出優(yōu)秀的學(xué)生,再補齊統(tǒng)計圖即可;(3)根據(jù)圖2的數(shù)值計算即可得出結(jié)論.【題目詳解】(1)本班有學(xué)生:20÷50%=40(名),本班優(yōu)秀的學(xué)生有:40﹣40×30%﹣20﹣4=4(名),答:本班有4名同學(xué)優(yōu)秀;(2)成績一般的學(xué)生有:40×30%=12(名),成績優(yōu)秀的有4名同學(xué),補全的條形統(tǒng)計圖,如圖所示;(3)3000×50%=1500(名),答:該校3000人有1500人成績良好.【題目點撥】本題考查了條形統(tǒng)計圖與扇形統(tǒng)計圖,解題的關(guān)鍵是熟練的掌握條形統(tǒng)計圖與扇形統(tǒng)計圖的知識點.20、(1)證明見解析(2)(3)【解題分析】

(1)根據(jù)題中“完美矩形”的定義設(shè)出AD與AB,根據(jù)AP=AD,利用勾股定理表示出PD,即可得證;(2)如圖,作點P關(guān)于BC的對稱點P′,連接DP′交BC于點E,此時△PDE的周長最小,設(shè)AD=PA=BC=a,表示出AB與CD,由AB-AP表示出BP,由對稱的性質(zhì)得到BP=BP′,由平行得比例,求出所求比值即可;(3)GH=,理由為:由(2)可知BF=BP=AB-AP,由等式的性質(zhì)得到MF=DN,利用AAS得到△MFH≌△NDH,利用全等三角形對應(yīng)邊相等得到FH=DH,再由G為CF中點,得到HG為中位線,利用中位線性質(zhì)求出GH的長即可.【題目詳解】(1)在圖1中,設(shè)AD=BC=a,則有AB=CD=a,∵四邊形ABCD是矩形,∴∠A=90°,∵PA=AD=BC=a,∴PD==a,∵AB=a,∴PD=AB;(2)如圖,作點P關(guān)于BC的對稱點P′,連接DP′交BC于點E,此時△PDE的周長最小,設(shè)AD=PA=BC=a,則有AB=CD=a,∵BP=AB-PA,∴BP′=BP=a-a,∵BP′∥CD,∴;(3)GH=,理由為:由(2)可知BF=BP=AB-AP,∵AP=AD,∴BF=AB-AD,∵BQ=BC,∴AQ=AB-BQ=AB-BC,∵BC=AD,∴AQ=AB-AD,∴BF=AQ,∴QF=BQ+BF=BQ+AQ=AB,∵AB=CD,∴QF=CD,∵QM=CN,∴QF-QM=CD-CN,即MF=DN,∵MF∥DN,∴∠NFH=∠NDH,在△MFH和△NDH中,,∴△MFH≌△NDH(AAS),∴FH=DH,∵G為CF的中點,∴GH是△CFD的中位線,∴GH=CD=×2=.【題目點撥】此題屬于相似綜合題,涉及的知識有:相似三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),勾股定理,三角形中位線性質(zhì),平行線的判定與性質(zhì),熟練掌握相似三角形的性質(zhì)是解本題的關(guān)鍵.21、(1)①證明見解析;②25;(2)為或50+1.【解題分析】

(1)①在直角三角形ABC中,由30°所對的直角邊等于斜邊的一半求出AC的長,再由F為AB中點,得到AC=AF=5,確定出三角形ADE為等邊三角形,利用等式的性質(zhì)得到一對角相等,再由AD=AE,利用SAS即可得證;②由全等三角形對應(yīng)角相等得到∠AEF為直角,EF=CD=x,在三角形AEF中,利用勾股定理即可列出y關(guān)于x的函數(shù)解析式;(2)分兩種情況考慮:①當點在線段CB上時;②當點在線段CB的延長線上時,分別求出三角形ADE面積即可.【題目詳解】(1)、①證明:在Rt△ABC中,∵∠B=30°,AB=10,∴∠CAB=60°,AC=AB=5,∵點F是AB的中點,∴AF=AB=5,∴AC=AF,∵△ADE是等邊三角形,∴AD=AE,∠EAD=60°,∵∠CAB=∠EAD,即∠CAD+∠DAB=∠FAE+∠DAB,∴∠CAD=∠FAE,∴△AEF≌△ADC(SAS);②∵△AEF≌△ADC,∴∠AEF=∠C=90°,EF=CD=x,又∵點F是AB的中點,∴AE=BE=y,在Rt△AEF中,勾股定理可得:y2=25+x2,∴y2﹣x2=25.(2)①當點在線段CB上時,由∠DAB=15°,可得∠CAD=45°,△ADC是等腰直角三角形,∴AD2=50,△ADE的面積為;②當點在線段CB的延長線上時,由∠DAB=15°,可得∠ADB=15°,BD=BA=10,∴在Rt△ACD中,勾股定理可得AD2=200+100,綜上所述,△ADE的面積為或.【題目點撥】此題考查了勾股定理,全等三角形的判定與性質(zhì),以及等邊三角形的性質(zhì),熟練掌握勾股定理是解本題的關(guān)鍵.22、(1)20;15%;35%;(2)見解析;(3)126°.【解題分析】

(1)根據(jù)被調(diào)查學(xué)生總?cè)藬?shù),用B的人數(shù)除以被調(diào)查的學(xué)生總?cè)藬?shù)計算即可求出m,再根據(jù)各部分的百分比的和等于1計算即可求出n;(2)求出D的學(xué)生人數(shù),然后補全統(tǒng)計圖即可;(3)用D的百分比乘360°計算即可得解.【題目詳解】解:(1)非常了解的人數(shù)為20,60÷400×100%=15%,1﹣5%﹣15%﹣45%=35%,故答案為20;15%;35%;(2)∵D等級的人數(shù)為:400×35%=140,∴補全條形統(tǒng)計圖如圖所示:(3)D部分扇形所對應(yīng)的圓心角:360°×35%=126°.【題目點撥】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大小23、(1)11;(2)y=3.6x+90;(3)該市18歲男生年齡組的平均身高大約是174cm左右.【解題分析】

(1)根據(jù)統(tǒng)計圖仔細觀察即可得出結(jié)果(2)先設(shè)函數(shù)表達式,選取兩個點帶入求值即可(3)先設(shè)函數(shù)表達式,選取兩個點帶入求值,把帶入預(yù)測即可.【題目詳解】解:(1)由統(tǒng)計圖可得,該市男學(xué)生的平均身高從11歲開始增加特別迅速,故答案為:11;(2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論