2024屆浙江省金華市六校聯(lián)誼初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第1頁
2024屆浙江省金華市六校聯(lián)誼初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第2頁
2024屆浙江省金華市六校聯(lián)誼初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第3頁
2024屆浙江省金華市六校聯(lián)誼初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第4頁
2024屆浙江省金華市六校聯(lián)誼初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2024屆浙江省金華市六校聯(lián)誼初中數(shù)學畢業(yè)考試模擬沖刺卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖是某個幾何體的三視圖,該幾何體是()A.三棱柱 B.三棱錐 C.圓柱 D.圓錐2.下列二次根式中,為最簡二次根式的是()A. B. C. D.3.解分式方程,分以下四步,其中,錯誤的一步是()A.方程兩邊分式的最簡公分母是(x﹣1)(x+1)B.方程兩邊都乘以(x﹣1)(x+1),得整式方程2(x﹣1)+3(x+1)=6C.解這個整式方程,得x=1D.原方程的解為x=14.如圖所示,某公司有三個住宅區(qū),A、B、C各區(qū)分別住有職工30人,15人,10人,且這三點在一條大道上(A,B,C三點共線),已知AB=100米,BC=200米.為了方便職工上下班,該公司的接送車打算在此間只設一個??奎c,為使所有的人步行到??奎c的路程之和最小,那么該??奎c的位置應設在()A.點A B.點B C.A,B之間 D.B,C之間5.如圖所示,點E是正方形ABCD內(nèi)一點,把△BEC繞點C旋轉(zhuǎn)至△DFC位置,則∠EFC的度數(shù)是()A.90° B.30° C.45° D.60°6.如圖分別是某班全體學生上學時乘車、步行、騎車人數(shù)的分布直方圖和扇形統(tǒng)計圖(兩圖都不完整),下列結(jié)論錯誤的是()A.該班總?cè)藬?shù)為50 B.步行人數(shù)為30C.乘車人數(shù)是騎車人數(shù)的2.5倍 D.騎車人數(shù)占20%7.下列汽車標志中,不是軸對稱圖形的是()A. B. C. D.8.已知二次函數(shù)y=x2+bx+c的圖象與x軸相交于A、B兩點,其頂點為P,若S△APB=1,則b與c滿足的關系是()A.b2-4c+1=0 B.b2-4c-1=0 C.b2-4c+4=0 D.b2-4c-4=09.一元二次方程x2﹣2x=0的根是()A.x=2 B.x=0 C.x1=0,x2=2 D.x1=0,x2=﹣210.一個不透明的布袋里裝有5個只有顏色不同的球,其中2個紅球、3個白球.從布袋中一次性摸出兩個球,則摸出的兩個球中至少有一個紅球的概率是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.有一個計算程序,每次運算都是把一個數(shù)先乘2,再除以它與1的和,多次重復進行這種運算的過程如下:則第n次的運算結(jié)果是____________(用含字母x和n的代數(shù)式表示).12.把兩個同樣大小的含45°角的三角尺按如圖所示的方式放置,其中一個三角尺的銳角頂點與另一個的直角頂點重合于點A,且另三個銳角頂點B,C,D在同一直線上.若AB=,則CD=_____.13.若兩個關于x,y的二元一次方程組與有相同的解,則mn的值為_____.14.自2008年9月南水北調(diào)中線京石段應急供水工程通水以來,截至2018年5月8日5時52分,北京市累計接收河北四庫來水和丹江口水庫來水達50億立方米.已知丹江口水庫來水量比河北四庫來水量的2倍多1.82億立方米,求河北四庫來水量.設河北四庫來水量為x億立方米,依題意,可列一元一次方程為_____.15.若一段弧的半徑為24,所對圓心角為60°,則這段弧長為____.16.如圖,菱形的邊,,是上一點,,是邊上一動點,將梯形沿直線折疊,的對應點為,當?shù)拈L度最小時,的長為__________.17.如圖,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=4,點D是AC邊上一動點,連接BD,以AD為直徑的圓交BD于點E,則線段CE長度的最小值為___.三、解答題(共7小題,滿分69分)18.(10分)如圖,河的兩岸MN與PQ相互平行,點A,B是PQ上的兩點,C是MN上的點,某人在點A處測得∠CAQ=30°,再沿AQ方向前進20米到達點B,某人在點A處測得∠CAQ=30°,再沿AQ方向前進20米到達點B,測得∠CBQ=60°,求這條河的寬是多少米?(結(jié)果精確到0.1米,參考數(shù)據(jù)≈1.414,≈1.732)19.(5分)A、B、C三人玩籃球傳球游戲,游戲規(guī)則是:第一次傳球由A將球隨機地傳給B、C兩人中的某一人,以后的每一次傳球都是由上次的傳球者隨機地傳給其他兩人中的某一人.(1)求兩次傳球后,球恰在B手中的概率;(2)求三次傳球后,球恰在A手中的概率.20.(8分)解不等式組:,并求出該不等式組所有整數(shù)解的和.21.(10分)已知:如圖,在半徑是4的⊙O中,AB、CD是兩條直徑,M是OB的中點,CM的延長線交⊙O于點E,且EM>MC,連接DE,DE=.(1)求證:△AMC∽△EMB;(2)求EM的長;(3)求sin∠EOB的值.22.(10分)如圖,∠BAC的平分線交△ABC的外接圓于點D,交BC于點F,∠ABC的平分線交AD于點E.(1)求證:DE=DB:(2)若∠BAC=90°,BD=4,求△ABC外接圓的半徑;(3)若BD=6,DF=4,求AD的長23.(12分)重百江津商場銷售AB兩種商品,售出1件A種商品和4件B種商品所得利潤為600元,售出3件A商品和5件B種商品所得利潤為1100元.求每件A種商品和每件B種商品售出后所得利潤分別為多少元?由于需求量大A、B兩種商品很快售完,重百商場決定再次購進A、B兩種商品共34件,如果將這34件商品全部售完后所得利潤不低于4000元,那么重百商場至少購進多少件A種商品?24.(14分)如圖,Rt△ABC中,∠C=90°,∠A=30°,BC=1.(1)實踐操作:尺規(guī)作圖,不寫作法,保留作圖痕跡.①作∠ABC的角平分線交AC于點D.②作線段BD的垂直平分線,交AB于點E,交BC于點F,連接DE、DF.(2)推理計算:四邊形BFDE的面積為.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解題分析】試題分析:觀察可得,主視圖是三角形,俯視圖是兩個矩形,左視圖是矩形,所以這個幾何體是三棱柱,故選A.考點:由三視圖判定幾何體.2、B【解題分析】

最簡二次根式必須滿足以下兩個條件:1.被開方數(shù)的因數(shù)是(整數(shù)),因式是(整式)(分母中不含根號)2.被開方數(shù)中不含能開提盡方的(因數(shù))或(因式).【題目詳解】A.=3,不是最簡二次根式;B.,最簡二次根式;C.=,不是最簡二次根式;D.=,不是最簡二次根式.故選:B【題目點撥】本題考核知識點:最簡二次根式.解題關鍵點:理解最簡二次根式條件.3、D【解題分析】

先去分母解方程,再檢驗即可得出.【題目詳解】方程無解,雖然化簡求得,但是將代入原方程中,可發(fā)現(xiàn)和的分母都為零,即無意義,所以,即方程無解【題目點撥】本題考查了分式方程的求解與檢驗,在分式方程中,一般求得的x值都需要進行檢驗4、A【解題分析】

此題為數(shù)學知識的應用,由題意設一個??奎c,為使所有的人步行到??奎c的路程之和最小,肯定要盡量縮短兩地之間的里程,就用到兩點間線段最短定理.【題目詳解】解:①以點A為停靠點,則所有人的路程的和=15×100+10×300=1(米),②以點B為停靠點,則所有人的路程的和=30×100+10×200=5000(米),③以點C為??奎c,則所有人的路程的和=30×300+15×200=12000(米),④當在AB之間停靠時,設??奎c到A的距離是m,則(0<m<100),則所有人的路程的和是:30m+15(100﹣m)+10(300﹣m)=1+5m>1,⑤當在BC之間??繒r,設??奎c到B的距離為n,則(0<n<200),則總路程為30(100+n)+15n+10(200﹣n)=5000+35n>1.∴該停靠點的位置應設在點A;故選A.【題目點撥】此題為數(shù)學知識的應用,考查知識點為兩點之間線段最短.5、C【解題分析】

根據(jù)正方形的每一個角都是直角可得∠BCD=90°,再根據(jù)旋轉(zhuǎn)的性質(zhì)求出∠ECF=∠BCD=90°,CE=CF,然后求出△CEF是等腰直角三角形,然后根據(jù)等腰直角三角形的性質(zhì)解答.【題目詳解】∵四邊形ABCD是正方形,∴∠BCD=90°,∵△BEC繞點C旋轉(zhuǎn)至△DFC的位置,∴∠ECF=∠BCD=90°,CE=CF,∴△CEF是等腰直角三角形,∴∠EFC=45°.故選:C.【題目點撥】本題目是一道考查旋轉(zhuǎn)的性質(zhì)問題——每對對應點到旋轉(zhuǎn)中心的連線的夾角都等于旋轉(zhuǎn)角度,每對對應邊相等,故為等腰直角三角形.6、B【解題分析】

根據(jù)乘車人數(shù)是25人,而乘車人數(shù)所占的比例是50%,即可求得總?cè)藬?shù),然后根據(jù)百分比的含義即可求得步行的人數(shù),以及騎車人數(shù)所占的比例.【題目詳解】A、總?cè)藬?shù)是:25÷50%=50(人),故A正確;B、步行的人數(shù)是:50×30%=15(人),故B錯誤;C、乘車人數(shù)是騎車人數(shù)倍數(shù)是:50%÷20%=2.5,故C正確;D、騎車人數(shù)所占的比例是:1-50%-30%=20%,故D正確.由于該題選擇錯誤的,故選B.【題目點撥】本題考查讀頻數(shù)分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力;利用統(tǒng)計圖獲取信息時,必須認真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解決問題.7、C【解題分析】

根據(jù)軸對稱圖形的概念求解.【題目詳解】A、是軸對稱圖形,故錯誤;B、是軸對稱圖形,故錯誤;C、不是軸對稱圖形,故正確;D、是軸對稱圖形,故錯誤.故選C.【題目點撥】本題考查了軸對稱圖形的概念:軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合.8、D【解題分析】

拋物線的頂點坐標為P(?,),設A、B兩點的坐標為A(,0)、B(,0)則AB=,根據(jù)根與系數(shù)的關系把AB的長度用b、c表示,而S△APB=1,然后根據(jù)三角形的面積公式就可以建立關于b、c的等式.【題目詳解】解:∵,∴AB==,∵若S△APB=1∴S△APB=×AB×=1,∴?××,∴,設=s,則,故s=2,∴=2,∴.故選D.【題目點撥】本題主要考查了拋物線與x軸的交點情況與判別式的關系、拋物線頂點坐標公式、三角形的面積公式等知識,綜合性比較強.9、C【解題分析】

方程左邊分解因式后,利用兩數(shù)相乘積為0,兩因式中至少有一個為0轉(zhuǎn)化為兩個一元一次方程來求解.【題目詳解】方程變形得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x1=1.故選C.【題目點撥】考查了解一元二次方程﹣因式分解法,熟練掌握因式分解的方法是解本題的關鍵.10、D【解題分析】

畫出樹狀圖得出所有等可能的情況數(shù),找出恰好是兩個紅球的情況數(shù),即可求出所求的概率.【題目詳解】畫樹狀圖如下:一共有20種情況,其中兩個球中至少有一個紅球的有14種情況,因此兩個球中至少有一個紅球的概率是:.故選:D.【題目點撥】此題考查了列表法與樹狀圖法,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.二、填空題(共7小題,每小題3分,滿分21分)11、【解題分析】試題分析:根據(jù)題意得;;;根據(jù)以上規(guī)律可得:=.考點:規(guī)律題.12、【解題分析】

先利用等腰直角三角形的性質(zhì)求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出結(jié)論.【題目詳解】如圖,過點A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵兩個同樣大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根據(jù)勾股定理得,DF==∴CD=BF+DF-BC=1+-2=-1,故答案為-1.【題目點撥】此題主要考查了勾股定理,等腰直角三角形的性質(zhì),正確作出輔助線是解本題的關鍵.13、1【解題分析】

聯(lián)立不含m、n的方程求出x與y的值,代入求出m、n的值,即可求出所求式子的值.【題目詳解】聯(lián)立得:,①×2+②,得:10x=20,解得:x=2,將x=2代入①,得:1-y=1,解得:y=0,則,將x=2、y=0代入,得:,解得:,則mn=1,故答案為1.【題目點撥】此題考查了二元一次方程組的解,方程組的解即為能使方程組中兩方程都成立的未知數(shù)的值.14、【解題分析】【分析】河北四庫來水量為x億立方米,根據(jù)等量關系:河北四庫來水和丹江口水庫來水達50億立方米,列方程即可得.【題目詳解】河北四庫來水量為x億立方米,則丹江口水庫來水量為(2x+1.82)億立方米,由題意得:x+(2x+1.82)=50,故答案為x+(2x+1.82)=50.【題目點撥】本題考查了一元一次方程的應用,弄清題意,找出等量關系列出方程是關鍵.15、8π【解題分析】試題分析:∵弧的半徑為24,所對圓心角為60°,∴弧長為l==8π.故答案為8π.【考點】弧長的計算.16、【解題分析】如圖所示,過點作,交于點.在菱形中,∵,且,所以為等邊三角形,.根據(jù)“等腰三角形三線合一”可得,因為,所以.在中,根據(jù)勾股定理可得,.因為梯形沿直線折疊,點的對應點為,根據(jù)翻折的性質(zhì)可得,點在以點為圓心,為半徑的弧上,則點在上時,的長度最小,此時,因為.所以,所以,所以.點睛:A′為四邊形ADQP沿PQ翻折得到,由題目中可知AP長為定值,即A′點在以P為圓心、AP為半徑的圓上,當C、A′、P在同一條直線時CA′取最值,由此結(jié)合直角三角形勾股定理、等邊三角形性質(zhì)求得此時CQ的長度即可.17、﹣2【解題分析】

連結(jié)AE,如圖1,先根據(jù)等腰直角三角形的性質(zhì)得到AB=AC=4,再根據(jù)圓周角定理,由AD為直徑得到∠AED=90°,接著由∠AEB=90°得到點E在以AB為直徑的O上,于是當點O、E、C共線時,CE最小,如圖2,在Rt△AOC中利用勾股定理計算出OC=2,從而得到CE的最小值為2﹣2.【題目詳解】連結(jié)AE,如圖1,∵∠BAC=90°,AB=AC,BC=,∴AB=AC=4,∵AD為直徑,∴∠AED=90°,∴∠AEB=90°,∴點E在以AB為直徑的O上,∵O的半徑為2,∴當點O、E.C共線時,CE最小,如圖2在Rt△AOC中,∵OA=2,AC=4,∴OC=,∴CE=OC?OE=2﹣2,即線段CE長度的最小值為2﹣2.故答案為:2﹣2.【題目點撥】此題考查等腰直角三角形的性質(zhì),圓周角定理,勾股定理,解題關鍵在于結(jié)合實際運用圓的相關性質(zhì).三、解答題(共7小題,滿分69分)18、17.3米.【解題分析】分析:過點C作于D,根據(jù),得到,在中,解三角形即可得到河的寬度.詳解:過點C作于D,∵∴∴米,在中,∵∴∴∴米,∴米.答:這條河的寬是米.點睛:考查解直角三角形的應用,作出輔助線,構(gòu)造直角三角形是解題的關鍵.19、(1);(2).【解題分析】試題分析:(1)直接列舉出兩次傳球的所有結(jié)果,球球恰在B手中的結(jié)果只有一種即可求概率;(2)畫出樹狀圖,表示出三次傳球的所有結(jié)果,三次傳球后,球恰在A手中的結(jié)果有2種,即可求出三次傳球后,球恰在A手中的概率.試題解析:解:(1)兩次傳球的所有結(jié)果有4種,分別是A→B→C,A→B→A,A→C→B,A→C→A.每種結(jié)果發(fā)生的可能性相等,球球恰在B手中的結(jié)果只有一種,所以兩次傳球后,球恰在B手中的概率是;(2)樹狀圖如下,由樹狀圖可知,三次傳球的所有結(jié)果有8種,每種結(jié)果發(fā)生的可能性相等.其中,三次傳球后,球恰在A手中的結(jié)果有A→B→C→A,A→C→B→A這兩種,所以三次傳球后,球恰在A手中的概率是.考點:用列舉法求概率.20、1【解題分析】

分別求出每一個不等式的解集,根據(jù)口訣:同大取大、同小取小、大小小大中間找、大大小小無解了確定不等式組的解集.【題目詳解】解:,解不等式①得:x≤3,解不等式②得:x>﹣2,所以不等式組的解集為:﹣2<x≤3,所以所有整數(shù)解的和為:﹣1+0+1+2+3=1.【題目點撥】本題考查的是解一元一次不等式組,正確求出每一個不等式解集是基礎,熟知“同大取大;同小取?。淮笮⌒〈笾虚g找;大大小小找不到”的原則是解答此題的關鍵.21、(1)證明見解析;(2)EM=4;(3)sin∠EOB=.【解題分析】

(1)連接A、C,E、B點,那么只需要求出△AMC和△EMB相似,即可求出結(jié)論,根據(jù)圓周角定理可推出它們的對應角相等,即可得△AMC∽△EMB;

(2)根據(jù)圓周角定理,結(jié)合勾股定理,可以推出EC的長度,根據(jù)已知條件推出AM、BM的長度,然后結(jié)合(1)的結(jié)論,很容易就可求出EM的長度;

(3)過點E作EF⊥AB,垂足為點F,通過作輔助線,解直角三角形,結(jié)合已知條件和(1)(2)所求的值,可推出Rt△EOF各邊的長度,根據(jù)銳角三角函數(shù)的定義,便可求得sin∠EOB的值.【題目詳解】(1)證明:連接AC、EB,如圖1,∵∠A=∠BEC,∠B=∠ACM,∴△AMC∽△EMB;(2)解:∵DC是⊙O的直徑,∴∠DEC=90°,∴DE2+EC2=DC2,∵DE=,CD=8,且EC為正數(shù),∴EC=7,∵M為OB的中點,∴BM=2,AM=6,∵AM?BM=EM?CM=EM(EC﹣EM)=EM(7﹣EM)=12,且EM>MC,∴EM=4;(3)解:過點E作EF⊥AB,垂足為點F,如圖2,∵OE=4,EM=4,∴OE=EM,∴OF=FM=1,∴EF=,∴sin∠EOB=.【題目點撥】本題考查了圓心角、弧、弦、弦心距的關系與相似三角形的判定與性質(zhì),解題的關鍵是熟練的掌握圓心角、弧、弦、弦心距的關系與相似三角形的判定與性質(zhì).22、(1)見解析;(2)2(3)1【解題分析】

(1)通過證明∠BED=∠DBE得到DB=DE;

(2)連接CD,如圖,證明△DBC為等腰直角三角形得到BC=BD=4,從而得到△ABC外接圓的半徑;

(3)證明△DBF∽△ADB,然后利用相似比求AD的長.【題目詳解】(1)證明:∵AD平分∠BAC,BE平分∠ABD,∴∠1=∠2,∠3=∠4,∴∠BED=∠1+∠3=∠2+∠4=∠5+∠4=∠DBE,∴DB=DE;(2)解:連接CD,如圖,∵∠BAC=10°,∴BC為直徑,∴∠BDC=10°,∵∠1=∠2,∴DB=BC,∴△DBC為等腰直角三角形,∴BC=BD=4,∴△ABC外接圓的半徑為2;(3)解:∵∠5=∠2=∠1,∠FDB=∠BDA,∴△DBF∽△ADB,∴=,即=,∴AD=1.【題目點撥】本題考查了三角形的外接圓與外心:三角形外接圓的圓心是三角形三條邊垂直平分線的交點,叫做三角形的外心.也考查了圓周角定理和相似三角形的判定與性質(zhì).23、(1)200元和100元(2)至少6件【

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論