2024屆江蘇省濱??h市級名校中考數(shù)學(xué)考試模擬沖刺卷含解析_第1頁
2024屆江蘇省濱??h市級名校中考數(shù)學(xué)考試模擬沖刺卷含解析_第2頁
2024屆江蘇省濱??h市級名校中考數(shù)學(xué)考試模擬沖刺卷含解析_第3頁
2024屆江蘇省濱海縣市級名校中考數(shù)學(xué)考試模擬沖刺卷含解析_第4頁
2024屆江蘇省濱??h市級名校中考數(shù)學(xué)考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆江蘇省濱??h市級名校中考數(shù)學(xué)考試模擬沖刺卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.由一些相同的小立方塊搭成的幾何體的三視圖如圖所示,則搭成該幾何體的小立方塊有()A.3塊 B.4塊 C.6塊 D.9塊2.已知二次函數(shù)y=ax2+bx+c(a≠1)的圖象如圖所示,給出以下結(jié)論:①a+b+c<1;②a﹣b+c<1;③b+2a<1;④abc>1.其中所有正確結(jié)論的序號是()A.③④ B.②③ C.①④ D.①②③3.如圖,在射線OA,OB上分別截取OA1=OB1,連接A1B1,在B1A1,B1B上分別截取B1A2=B1B2,連接A2B2,…按此規(guī)律作下去,若∠A1B1O=α,則∠A10B10O=()A. B. C. D.4.中國傳統(tǒng)扇文化有著深厚的底蘊,下列扇面圖形是中心對稱圖形的是()A. B. C. D.5.某機構(gòu)調(diào)查顯示,深圳市20萬初中生中,沉迷于手機上網(wǎng)的初中生約有16000人,則這部分沉迷于手機上網(wǎng)的初中生數(shù)量,用科學(xué)記數(shù)法可表示為()A.1.6×104人 B.1.6×105人 C.0.16×105人 D.16×103人6.自1993年起,聯(lián)合國將每年的3月11日定為“世界水日”,宗旨是喚起公眾的節(jié)水意識,加強水資源保護.某校在開展“節(jié)約每一滴水”的活動中,從初三年級隨機選出10名學(xué)生統(tǒng)計出各自家庭一個月的節(jié)約用水量,有關(guān)數(shù)據(jù)整理如下表.節(jié)約用水量(單位:噸)11.11.411.5家庭數(shù)46531這組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是()A.1.1,1.1; B.1.4,1.1; C.1.3,1.4; D.1.3,1.1.7.一元二次方程4x2﹣2x+=0的根的情況是()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.沒有實數(shù)根 D.無法判斷8.如右圖是用八塊完全相同的小正方體搭成的幾何體,從正面看幾何體得到的圖形是()A. B.C. D.9.如圖,在△ABC中,∠ACB=90°,沿CD折疊△CBD,使點B恰好落在AC邊上的點E處.若∠A=24°,則∠BDC的度數(shù)為()A.42° B.66° C.69° D.77°10.若關(guān)于x的一元二次方程(k-1)x2+4x+1=0有兩個不相等的實數(shù)根,則k的取值范圍是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>5二、填空題(本大題共6個小題,每小題3分,共18分)11.因式分解:x2﹣10x+24=_____.12.已知一組數(shù)據(jù)1,2,x,2,3,3,5,7的眾數(shù)是2,則這組數(shù)據(jù)的中位數(shù)是.13.定義:在平面直角坐標(biāo)系xOy中,把從點P出發(fā)沿縱或橫方向到達(dá)點Q(至多拐一次彎)的路徑長稱為P,Q的“實際距離”.如圖,若P(﹣1,1),Q(2,3),則P,Q的“實際距離”為1,即PS+SQ=1或PT+TQ=1.環(huán)保低碳的共享單車,正式成為市民出行喜歡的交通工具.設(shè)A,B,C三個小區(qū)的坐標(biāo)分別為A(3,1),B(1,﹣3),C(﹣1,﹣1),若點M表示單車停放點,且滿足M到A,B,C的“實際距離”相等,則點M的坐標(biāo)為_____.14.如圖,正方形ABCD內(nèi)有兩點E、F滿足AE=1,EF=FC=3,AE⊥EF,CF⊥EF,則正方形ABCD的邊長為_____.15.將一次函數(shù)的圖象平移,使其經(jīng)過點(2,3),則所得直線的函數(shù)解析式是______.16.已知一組數(shù)據(jù)-3,x,-2,3,1,6的眾數(shù)為3,則這組數(shù)據(jù)的中位數(shù)為______.三、解答題(共8題,共72分)17.(8分)在平面直角坐標(biāo)系中,拋物線y=(x﹣h)2+k的對稱軸是直線x=1.若拋物線與x軸交于原點,求k的值;當(dāng)﹣1<x<0時,拋物線與x軸有且只有一個公共點,求k的取值范圍.18.(8分)對于某一函數(shù)給出如下定義:若存在實數(shù)m,當(dāng)其自變量的值為m時,其函數(shù)值等于﹣m,則稱﹣m為這個函數(shù)的反向值.在函數(shù)存在反向值時,該函數(shù)的最大反向值與最小反向值之差n稱為這個函數(shù)的反向距離.特別地,當(dāng)函數(shù)只有一個反向值時,其反向距離n為零.例如,圖中的函數(shù)有4,﹣1兩個反向值,其反向距離n等于1.(1)分別判斷函數(shù)y=﹣x+1,y=,y=x2有沒有反向值?如果有,直接寫出其反向距離;(2)對于函數(shù)y=x2﹣b2x,①若其反向距離為零,求b的值;②若﹣1≤b≤3,求其反向距離n的取值范圍;(3)若函數(shù)y=請直接寫出這個函數(shù)的反向距離的所有可能值,并寫出相應(yīng)m的取值范圍.19.(8分)如圖,∠BCD=90°,且BC=DC,直線PQ經(jīng)過點D.設(shè)∠PDC=α(45°<α<135°),BA⊥PQ于點A,將射線CA繞點C按逆時針方向旋轉(zhuǎn)90°,與直線PQ交于點E.當(dāng)α=125°時,∠ABC=°;求證:AC=CE;若△ABC的外心在其內(nèi)部,直接寫出α的取值范圍.20.(8分)Rt△ABC中,∠ABC=90°,以AB為直徑作⊙O交AC邊于點D,E是邊BC的中點,連接DE,OD.(1)如圖①,求∠ODE的大?。唬?)如圖②,連接OC交DE于點F,若OF=CF,求∠A的大?。?1.(8分)如圖,矩形ABCD的對角線AC、BD交于點O,且DE∥AC,CE∥BD.(1)求證:四邊形OCED是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED的面積.22.(10分)如圖,甲、乙為兩座建筑物,它們之間的水平距離BC為30m,在A點測得D點的仰角∠EAD為45°,在B點測得D點的仰角∠CBD為60°.求這兩座建筑物的高度(結(jié)果保留根號).23.(12分)如圖,某反比例函數(shù)圖象的一支經(jīng)過點A(2,3)和點B(點B在點A的右側(cè)),作BC⊥y軸,垂足為點C,連結(jié)AB,AC.求該反比例函數(shù)的解析式;若△ABC的面積為6,求直線AB的表達(dá)式.24.如圖1,B(2m,0),C(3m,0)是平面直角坐標(biāo)系中兩點,其中m為常數(shù),且m>0,E(0,n)為y軸上一動點,以BC為邊在x軸上方作矩形ABCD,使AB=2BC,畫射線OA,把△ADC繞點C逆時針旋轉(zhuǎn)90°得△A′D′C′,連接ED′,拋物線()過E,A′兩點.(1)填空:∠AOB=°,用m表示點A′的坐標(biāo):A′(,);(2)當(dāng)拋物線的頂點為A′,拋物線與線段AB交于點P,且時,△D′OE與△ABC是否相似?說明理由;(3)若E與原點O重合,拋物線與射線OA的另一個交點為點M,過M作MN⊥y軸,垂足為N:①求a,b,m滿足的關(guān)系式;②當(dāng)m為定值,拋物線與四邊形ABCD有公共點,線段MN的最大值為10,請你探究a的取值范圍.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解題分析】分析:從俯視圖中可以看出最底層小正方體的個數(shù)及形狀,從主視圖和左視圖可以看出每一層小正方體的層數(shù)和個數(shù),從而算出總的個數(shù).解答:解:從俯視圖可得最底層有3個小正方體,由主視圖可得有2層上面一層是1個小正方體,下面有2個小正方體,從左視圖上看,后面一層是2個小正方體,前面有1個小正方體,所以此幾何體共有四個正方體.故選B.2、C【解題分析】試題分析:由拋物線的開口方向判斷a的符號,由拋物線與y軸的交點判斷c的符號,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結(jié)論進行判斷.解:①當(dāng)x=1時,y=a+b+c=1,故本選項錯誤;②當(dāng)x=﹣1時,圖象與x軸交點負(fù)半軸明顯大于﹣1,∴y=a﹣b+c<1,故本選項正確;③由拋物線的開口向下知a<1,∵對稱軸為1>x=﹣>1,∴2a+b<1,故本選項正確;④對稱軸為x=﹣>1,∴a、b異號,即b>1,∴abc<1,故本選項錯誤;∴正確結(jié)論的序號為②③.故選B.點評:二次函數(shù)y=ax2+bx+c系數(shù)符號的確定:(1)a由拋物線開口方向確定:開口方向向上,則a>1;否則a<1;(2)b由對稱軸和a的符號確定:由對稱軸公式x=﹣b2a判斷符號;(3)c由拋物線與y軸的交點確定:交點在y軸正半軸,則c>1;否則c<1;(4)當(dāng)x=1時,可以確定y=a+b+C的值;當(dāng)x=﹣1時,可以確定y=a﹣b+c的值.3、B【解題分析】

根據(jù)等腰三角形兩底角相等用α表示出∠A2B2O,依此類推即可得到結(jié)論.【題目詳解】∵B1A2=B1B2,∠A1B1O=α,∴∠A2B2O=α,同理∠A3B3O=×α=α,∠A4B4O=α,∴∠AnBnO=α,∴∠A10B10O=,故選B.【題目點撥】本題考查了等腰三角形兩底角相等的性質(zhì),圖形的變化規(guī)律,依次求出相鄰的兩個角的差,得到分母成2的指數(shù)次冪變化,分子不變的規(guī)律是解題的關(guān)鍵.4、C【解題分析】

根據(jù)中心對稱圖形的概念進行分析.【題目詳解】A、不是中心對稱圖形,故此選項錯誤;

B、不是中心對稱圖形,故此選項錯誤;

C、是中心對稱圖形,故此選項正確;

D、不是中心對稱圖形,故此選項錯誤;

故選:C.【題目點撥】考查了中心對稱圖形的概念.中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.5、A【解題分析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>10時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【題目詳解】用科學(xué)記數(shù)法表示16000,應(yīng)記作1.6×104,故選A.【題目點撥】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.6、D【解題分析】分析:中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)或兩個數(shù)的平均數(shù)為中位數(shù),眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個.詳解:這組數(shù)據(jù)的中位數(shù)是;這組數(shù)據(jù)的眾數(shù)是1.1.故選D.點睛:本題屬于基礎(chǔ)題,考查了確定一組數(shù)據(jù)的中位數(shù)和眾數(shù)的能力,要明確定義,一些學(xué)生往往對這個概念掌握不清楚,計算方法不明確而誤選其它選項,注意找中位數(shù)的時候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個來確定中位數(shù),如果數(shù)據(jù)有奇數(shù)個,則正中間的數(shù)字即為所求,如果是偶數(shù)個則找中間兩位數(shù)的平均數(shù).7、B【解題分析】

試題解析:在方程4x2﹣2x+=0中,△=(﹣2)2﹣4×4×=0,∴一元二次方程4x2﹣2x+=0有兩個相等的實數(shù)根.故選B.考點:根的判別式.8、B【解題分析】

找到從正面看所得到的圖形即可,注意所有從正面看到的棱都應(yīng)表現(xiàn)在主視圖中.【題目詳解】解:從正面看該幾何體,有3列正方形,分別有:2個,2個,2個,如圖.故選B.【題目點撥】本題考查了三視圖的知識,主視圖是從物體的正面看到的視圖,屬于基礎(chǔ)題型.9、C【解題分析】在△ABC中,∠ACB=90°,∠A=24°,∴∠B=90°-∠A=66°.由折疊的性質(zhì)可得:∠BCD=∠ACB=45°,∴∠BDC=180°-∠BCD-∠B=69°.故選C.10、B【解題分析】試題解析:∵關(guān)于x的一元二次方程方程有兩個不相等的實數(shù)根,∴,即,解得:k<5且k≠1.故選B.二、填空題(本大題共6個小題,每小題3分,共18分)11、(x﹣4)(x﹣6)【解題分析】

因為(-4)×(-6)=24,(-4)+(-6)=-10,所以利用十字相乘法分解因式即可.【題目詳解】x2﹣10x+24=x2﹣10x+(-4)×(-6)=(x﹣4)(x﹣6)【題目點撥】本題考查的是因式分解,熟練掌握因式分解的方法是解題的關(guān)鍵.12、2.1【解題分析】試題分析:∵數(shù)據(jù)1,2,x,2,3,3,1,7的眾數(shù)是2,∴x=2,∴這組數(shù)據(jù)的中位數(shù)是(2+3)÷2=2.1;故答案為2.1.考點:1、眾數(shù);2、中位數(shù)13、(1,﹣2).【解題分析】

若設(shè)M(x,y),則由題目中對“實際距離”的定義可得方程組:3-x+1-y=y+1+x+1=1-x+3+y,解得:x=1,y=-2,則M(1,-2).故答案為(1,-2).14、【解題分析】分析:連接AC,交EF于點M,可證明△AEM∽△CMF,根據(jù)條件可求得AE、EM、FM、CF,再結(jié)合勾股定理可求得AB.詳解:連接AC,交EF于點M,∵AE丄EF,EF丄FC,∴∠E=∠F=90°,∵∠AME=∠CMF,∴△AEM∽△CFM,∴,∵AE=1,EF=FC=3,∴,∴EM=,F(xiàn)M=,在Rt△AEM中,AM2=AE2+EM2=1+=,解得AM=,在Rt△FCM中,CM2=CF2+FM2=9+=,解得CM=,∴AC=AM+CM=5,在Rt△ABC中,AB=BC,AB2+BC2=AC2=25,∴AB=,即正方形的邊長為.故答案為:.點睛:本題主要考查相似三角形的判定和性質(zhì)及正方形的性質(zhì),構(gòu)造三角形相似利用相似三角形的對應(yīng)邊成比例求得AC的長是解題的關(guān)鍵,注意勾股定理的應(yīng)用.15、【解題分析】試題分析:解:設(shè)y=x+b,∴3=2+b,解得:b=1.∴函數(shù)解析式為:y=x+1.故答案為y=x+1.考點:一次函數(shù)點評:本題要注意利用一次函數(shù)的特點,求出未知數(shù)的值從而求得其解析式,求直線平移后的解析式時要注意平移時k的值不變.16、【解題分析】分析:找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不只一個.

詳解:∵-3,x,-1,3,1,6的眾數(shù)是3,

∴x=3,

先對這組數(shù)據(jù)按從小到大的順序重新排序-3、-1、1、3、3、6位于最中間的數(shù)是1,3,

∴這組數(shù)的中位數(shù)是=1.

故答案為:1.點睛:本題屬于基礎(chǔ)題,考查了確定一組數(shù)據(jù)的中位數(shù)和眾數(shù)的能力.一些學(xué)生往往對這個概念掌握不清楚,計算方法不明確而誤選其它選項,注意找中位數(shù)的時候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個來確定中位數(shù),如果數(shù)據(jù)有奇數(shù)個,則正中間的數(shù)字即為所求,如果是偶數(shù)個則找中間兩位數(shù)的平均數(shù).三、解答題(共8題,共72分)17、(1)k=﹣1;(2)當(dāng)﹣4<k<﹣1時,拋物線與x軸有且只有一個公共點.【解題分析】

(1)由拋物線的對稱軸直線可得h,然后再由拋物線交于原點代入求出k即可;(2)先根據(jù)拋物線與x軸有公共點求出k的取值范圍,然后再根據(jù)拋物線的對稱軸及當(dāng)﹣1<x<2時,拋物線與x軸有且只有一個公共點,進一步求出k的取值范圍即可.【題目詳解】解:(1)∵拋物線y=(x﹣h)2+k的對稱軸是直線x=1,∴h=1,把原點坐標(biāo)代入y=(x﹣1)2+k,得,(2﹣1)2+k=2,解得k=﹣1;(2)∵拋物線y=(x﹣1)2+k與x軸有公共點,∴對于方程(x﹣1)2+k=2,判別式b2﹣4ac=﹣4k≥2,∴k≤2.當(dāng)x=﹣1時,y=4+k;當(dāng)x=2時,y=1+k,∵拋物線的對稱軸為x=1,且當(dāng)﹣1<x<2時,拋物線與x軸有且只有一個公共點,∴4+k>2且1+k<2,解得﹣4<k<﹣1,綜上,當(dāng)﹣4<k<﹣1時,拋物線與x軸有且只有一個公共點.【題目點撥】拋物線與一元二次方程的綜合是本題的考點,熟練掌握拋物線的性質(zhì)是解題的關(guān)鍵.18、(1)y=?有反向值,反向距離為2;y=x2有反向值,反向距離是1;(2)①b=±1;②0≤n≤8;(3)當(dāng)m>2或m≤﹣2時,n=2,當(dāng)﹣2<m≤2時,n=2.【解題分析】

(1)根據(jù)題目中的新定義可以分別計算出各個函數(shù)是否有方向值,有反向值的可以求出相應(yīng)的反向距離;(2)①根據(jù)題意可以求得相應(yīng)的b的值;②根據(jù)題意和b的取值范圍可以求得相應(yīng)的n的取值范圍;(3)根據(jù)題目中的函數(shù)解析式和題意可以解答本題.【題目詳解】(1)由題意可得,當(dāng)﹣m=﹣m+1時,該方程無解,故函數(shù)y=﹣x+1沒有反向值,當(dāng)﹣m=時,m=±1,∴n=1﹣(﹣1)=2,故y=有反向值,反向距離為2,當(dāng)﹣m=m2,得m=0或m=﹣1,∴n=0﹣(﹣1)=1,故y=x2有反向值,反向距離是1;(2)①令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∵反向距離為零,∴|b2﹣1﹣0|=0,解得,b=±1;②令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∴n=|b2﹣1﹣0|=|b2﹣1|,∵﹣1≤b≤3,∴0≤n≤8;(3)∵y=,∴當(dāng)x≥m時,﹣m=m2﹣3m,得m=0或m=2,∴n=2﹣0=2,∴m>2或m≤﹣2;當(dāng)x<m時,﹣m=﹣m2﹣3m,解得,m=0或m=﹣2,∴n=0﹣(﹣2)=2,∴﹣2<m≤2,由上可得,當(dāng)m>2或m≤﹣2時,n=2,當(dāng)﹣2<m≤2時,n=2.【題目點撥】本題是一道二次函數(shù)綜合題,解答本題的關(guān)鍵是明確題目中的新定義,找出所求問題需要的條件,利用新定義解答相關(guān)問題.19、(1)125;(2)詳見解析;(3)45°<α<90°.【解題分析】

(1)利用四邊形內(nèi)角和等于360度得:∠B+∠ADC=180°,而∠ADC+∠EDC=180°,即可求解;(2)證明△ABC≌△EDC(AAS)即可求解;(3)當(dāng)∠ABC=α=90°時,△ABC的外心在其直角邊上,∠ABC=α>90°時,△ABC的外心在其外部,即可求解.【題目詳解】(1)在四邊形BADC中,∠B+∠ADC=360°﹣∠BAD﹣∠DCB=180°,而∠ADC+∠EDC=180°,∴∠ABC=∠PDC=α=125°,故答案為125;(2)∠ECD+∠DCA=90°,∠DCA+∠ACB=90°,∴∠ACB=∠ECD,又BC=DC,由(1)知:∠ABC=∠PDC,∴△ABC≌△EDC(AAS),∴AC=CE;(3)當(dāng)∠ABC=α=90°時,△ABC的外心在其斜邊上;∠ABC=α>90°時,△ABC的外心在其外部,而45°<α<135°,故:45°<α<90°.【題目點撥】本題考查圓的綜合運用,解題的關(guān)鍵是掌握三角形全等的判定和性質(zhì)(AAS)、三角形外心.20、(1)∠ODE=90°;(2)∠A=45°.【解題分析】分析:(Ⅰ)連接OE,BD,利用全等三角形的判定和性質(zhì)解答即可;(Ⅱ)利用中位線的判定和定理解答即可.詳解:(Ⅰ)連接OE,BD.∵AB是⊙O的直徑,∴∠ADB=90°,∴∠CDB=90°.∵E點是BC的中點,∴DE=BC=BE.∵OD=OB,OE=OE,∴△ODE≌△OBE,∴∠ODE=∠OBE.∵∠ABC=90°,∴∠ODE=90°;(Ⅱ)∵CF=OF,CE=EB,∴FE是△COB的中位線,∴FE∥OB,∴∠AOD=∠ODE,由(Ⅰ)得∠ODE=90°,∴∠AOD=90°.∵OA=OD,∴∠A=∠ADO=.點睛:本題考查了圓周角定理,關(guān)鍵是根據(jù)學(xué)生對全等三角形的判定方法及切線的判定等知識的掌握情況解答.21、(1)證明見解析;(1).【解題分析】

(1)由平行四邊形的判定得出四邊形OCED是平行四邊形,根據(jù)矩形的性質(zhì)求出OC=OD,根據(jù)菱形的判定得出即可.(1)解直角三角形求出BC=1.AB=DC=1,連接OE,交CD于點F,根據(jù)菱形的性質(zhì)得出F為CD中點,求出OF=BC=1,求出OE=1OF=1,求出菱形的面積即可.【題目詳解】證明:,,四邊形OCED是平行四邊形,矩形ABCD,,,,,四邊形OCED是菱形;在矩形ABCD中,,,,,,連接OE,交CD于點F,四邊形OCED為菱形,為CD中點,為BD中點,,,.【題目點撥】本題主要考查了矩形的性質(zhì)和菱形的性質(zhì)和判定的應(yīng)用,能靈活運用定理進行推理是解此題的關(guān)鍵,注意:菱形的面積等于對角線積的一半.22、甲建筑物的高AB為(30-30)m,乙建筑物的高DC為30m【解題分析】

如圖,過A作AF⊥CD于點F,在Rt△BCD中,∠DBC=60°,BC=30m,∵=tan∠DBC,∴CD=BC?tan60°=30m,∴乙建筑物的高度為30m;在Rt△AFD中,∠DAF=45°,∴DF=AF=BC=30m,∴AB=CF=CD﹣DF=(30﹣30)m,∴甲建筑物的高度為(30﹣30)m.23、(1)y;(2)yx+1.【解題分析】

(1)把A的坐標(biāo)代入反比例函數(shù)的解析式即可求得;(2)作AD⊥BC于D,則D(2,b),即可利用a表示出AD的長,然后利用三角形的面積公式即可得到一個關(guān)于b的方程,求得b的值,進而求得a的值,根據(jù)待定系數(shù)法,可得答案.【題目詳解】(1)由題意得:k=xy=2×3=6,∴反比例函數(shù)的解析式為y;(2)設(shè)B點坐標(biāo)為(a,b),如圖,作AD⊥BC于D,則D(2,b),∵反比例函數(shù)y的圖象經(jīng)過點B(a,b),∴b,∴AD=3,∴S△ABCBC?ADa(3)=6,解得a=6,∴b1,∴B(6,1),設(shè)AB的解析式為y=kx+b,將A(2,3),B(6,1)代入函數(shù)解析式,得,解得:,所以直線AB的解析式為yx+1.【題目點撥】本題考查了利用待定系數(shù)法求反比例函數(shù)以及一次函數(shù)解析式,熟練掌握待定系數(shù)法以及正確表示出BC,AD的長是解題的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論