版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第11講第二章直線和圓的方程章末總結(jié)一、思維導(dǎo)圖二、題型精講題型01直線的傾斜角和斜率【典例1】(2023春·上海黃浦·高二上海市敬業(yè)中學(xué)??计谥校┲本€SKIPIF1<0的傾斜角的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0D.SKIPIF1<0【典例2】(2023秋·安徽六安·高二六安一中校考期末)已知直線SKIPIF1<0和以SKIPIF1<0,SKIPIF1<0為端點的線段相交,則實數(shù)SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0【典例3】(2023·全國·高三專題練習(xí))直線SKIPIF1<0的傾斜角SKIPIF1<0的取值范圍是_______.【變式1】(2023·全國·高三專題練習(xí))若過點SKIPIF1<0的直線與以點SKIPIF1<0為端點的線段相交,則直線的傾斜角取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【變式2】(2023·江蘇·高二假期作業(yè))已知點SKIPIF1<0、SKIPIF1<0,若直線SKIPIF1<0過點SKIPIF1<0且總與線段SKIPIF1<0有交點,求直線SKIPIF1<0的斜率SKIPIF1<0的取值范圍.題型02直線方程【典例1】(2023秋·高二課時練習(xí))過點SKIPIF1<0且在坐標軸上的截距相等的直線一般式方程為__________.【典例2】(2023秋·廣西防城港·高二統(tǒng)考期末)已知直線SKIPIF1<0與SKIPIF1<0軸,SKIPIF1<0軸的交點分別為SKIPIF1<0.直線SKIPIF1<0經(jīng)過SKIPIF1<0點且傾斜角為SKIPIF1<0.(1)求直線SKIPIF1<0的一般方程;(2)求線段SKIPIF1<0的中垂線方程.【典例3】(2023·全國·高三對口高考)過點SKIPIF1<0作直線SKIPIF1<0分別交SKIPIF1<0,SKIPIF1<0的正半軸于SKIPIF1<0,SKIPIF1<0兩點.
(1)求SKIPIF1<0面積的最小值及相應(yīng)的直線SKIPIF1<0的方程;(2)當(dāng)SKIPIF1<0取最小值時,求直線SKIPIF1<0的方程;(3)當(dāng)SKIPIF1<0取最小值時,求直線SKIPIF1<0的方程.【變式1】(2023秋·廣東廣州·高二??计谀┻^點SKIPIF1<0,傾斜角是直線SKIPIF1<0的傾斜角的一半的直線方程為____________.【變式2】(2023·全國·高三專題練習(xí))若過點SKIPIF1<0且互相垂直的兩條直線SKIPIF1<0分別與SKIPIF1<0軸、SKIPIF1<0軸交于SKIPIF1<0、SKIPIF1<0兩點,則SKIPIF1<0中點SKIPIF1<0的軌跡方程為______.【變式31】(2023春·重慶沙坪壩·高一重慶南開中學(xué)??计谀┮阎猄KIPIF1<0、SKIPIF1<0在直線SKIPIF1<0上.(1)求直線SKIPIF1<0的方程;(2)若直線SKIPIF1<0傾斜角是直線SKIPIF1<0傾斜角的2倍,且與SKIPIF1<0的交點在SKIPIF1<0軸上,求直線SKIPIF1<0的方程.【變式4】(2023·江蘇·高二假期作業(yè))已知SKIPIF1<0的三個頂點分別為SKIPIF1<0.(1)求邊SKIPIF1<0和SKIPIF1<0所在直線的方程;(2)求SKIPIF1<0邊上的中線SKIPIF1<0所在直線的方程.題型03兩直線的平行與垂直【典例1】(2023秋·河南平頂山·高二統(tǒng)考期末)已知SKIPIF1<0,“直線SKIPIF1<0與SKIPIF1<0平行”是“SKIPIF1<0”的(
)A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件【典例2】(2023秋·四川涼山·高二寧南中學(xué)??计谀┮阎猄KIPIF1<0,SKIPIF1<0,直線SKIPIF1<0:SKIPIF1<0,SKIPIF1<0:SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.2 B.4 C.8 D.9【典例3】(2023春·浙江溫州·高二??茧A段練習(xí))“SKIPIF1<0”是“直線SKIPIF1<0:SKIPIF1<0與直線SKIPIF1<0:SKIPIF1<0互相垂直”的(
)A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件【變式1】(2023·全國·高三專題練習(xí))已知直線SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式2】(2023·上?!じ叨n}練習(xí))已知直線SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的值是___________.題型04兩直線的交點與距離問題【典例1】(2023春·重慶沙坪壩·高一重慶八中??计谀┮阎本€SKIPIF1<0:SKIPIF1<0,直線SKIPIF1<0過點SKIPIF1<0且與直線SKIPIF1<0垂直.(1)求直線SKIPIF1<0的方程;(2)直線SKIPIF1<0與直線SKIPIF1<0關(guān)于SKIPIF1<0軸對稱,求直線SKIPIF1<0,SKIPIF1<0,SKIPIF1<0所圍成的三角形的面積.【典例2】(2023·高二課時練習(xí))已知點SKIPIF1<0,點P在x軸上使SKIPIF1<0最大,求點P的坐標.【典例3】(2023·高三課時練習(xí))已知點SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0.(1)求直線CD的方程;(2)求點C的坐標,并求四邊形ABCD的面積.【變式1】(2023秋·高二課時練習(xí))求過直線SKIPIF1<0和SKIPIF1<0的交點并且與原點距離為1的直線l的方程.【變式2】(2023秋·青海西寧·高二校聯(lián)考期末)已知SKIPIF1<0的三個頂點分別為SKIPIF1<0.求:(1)邊SKIPIF1<0上的中線所在直線SKIPIF1<0的方程;(2)SKIPIF1<0的面積.【變式3】(2023春·重慶沙坪壩·高一重慶八中??计谀┮阎cSKIPIF1<0,SKIPIF1<0,點SKIPIF1<0在SKIPIF1<0軸上,則SKIPIF1<0的取值范圍是______.
題型05直線中的對稱問題【典例1】(2023秋·吉林白城·高二??计谀cSKIPIF1<0關(guān)于直線SKIPIF1<0的對稱點SKIPIF1<0的坐標為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例2】(2023·全國·高三專題練習(xí))SKIPIF1<0的頂點SKIPIF1<0,SKIPIF1<0邊上的中線所在的直線為SKIPIF1<0,SKIPIF1<0的平分線所在直線方程為SKIPIF1<0,求SKIPIF1<0邊所在直線的方程(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【典例3】(2023·上?!じ叨n}練習(xí))一束光從光源SKIPIF1<0射出,經(jīng)SKIPIF1<0軸反射后(反射點為SKIPIF1<0),射到線段SKIPIF1<0上SKIPIF1<0處.(1)若SKIPIF1<0,求光從SKIPIF1<0出發(fā),到達點SKIPIF1<0時所走過的路程;(2)若SKIPIF1<0,求反射光的斜率的取值范圍;(3)若SKIPIF1<0,求光從SKIPIF1<0出發(fā),到達點SKIPIF1<0時所走過的最短路程.【典例4】(2023秋·江西吉安·高二吉安三中??计谀┮阎本€l:3x-y+3=0,求:(1)點P(4,5)關(guān)于l的對稱點;(2)直線x-y-2=0關(guān)于直線l對稱的直線方程;(3)直線l關(guān)于(1,2)的對稱直線.【變式1】(2023春·上海楊浦·高一上海市楊浦高級中學(xué)??计谀┰O(shè)直線SKIPIF1<0與SKIPIF1<0關(guān)于直線SKIPIF1<0對稱,則直線SKIPIF1<0的方程是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式2】(2023·高二課時練習(xí))已知A(3,1),B(-1,2),若SKIPIF1<0的平分線在SKIPIF1<0上,求AC所在的直線方程.【變式3】(2023·全國·高三專題練習(xí))已知直線SKIPIF1<0,點SKIPIF1<0.求:(1)點SKIPIF1<0關(guān)于直線SKIPIF1<0的對稱點SKIPIF1<0的坐標;(2)直線SKIPIF1<0關(guān)于直線SKIPIF1<0對稱的直線SKIPIF1<0的方程;(3)直線SKIPIF1<0關(guān)于點SKIPIF1<0對稱的直線SKIPIF1<0的方程.【變式4】(2023·全國·高三專題練習(xí))直線SKIPIF1<0關(guān)于直線SKIPIF1<0對稱的直線方程是_______.題型06圓的方程【典例1】(2023春·河南開封·高二統(tǒng)考期末)已知圓心為SKIPIF1<0的圓經(jīng)過SKIPIF1<0,SKIPIF1<0兩點,且圓心SKIPIF1<0在直線SKIPIF1<0上.(1)求圓SKIPIF1<0的標準方程;(2)求與直線SKIPIF1<0平行且與圓SKIPIF1<0相切的直線方程.【典例2】(2023·江蘇·高二假期作業(yè))求經(jīng)過點SKIPIF1<0和坐標原點,并且圓心在直線SKIPIF1<0上的圓的方程.【典例3】(2023春·河南·高二校聯(lián)考階段練習(xí))已知直線SKIPIF1<0過點SKIPIF1<0且與直線SKIPIF1<0垂直,圓SKIPIF1<0的圓心在直線SKIPIF1<0上,且過SKIPIF1<0,SKIPIF1<0兩點.(1)求直線SKIPIF1<0的方程;(2)求圓SKIPIF1<0的標準方程.【變式1】(2023秋·新疆昌吉·高二??计谀┮阎獔AC的圓心在直線2x-y-7=0上,且圓C與y軸交于兩點A(0,-4),B(0,-2),則圓C的標準方程為(
)A.(x-2)2+(y-3)2=5 B.(x-2)2+(y+3)2=5C.(x+2)2+(y+3)2=5 D.(x+2)2+(y-3)2=5【變式2】(2023春·安徽·高二校聯(lián)考開學(xué)考試)已知直線SKIPIF1<0過點SKIPIF1<0,且SKIPIF1<0與SKIPIF1<0軸分別交于點SKIPIF1<0,SKIPIF1<0為等腰直角三角形.(1)求SKIPIF1<0的方程;(2)設(shè)SKIPIF1<0為坐標原點,點SKIPIF1<0在SKIPIF1<0軸負半軸,求過SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三點的圓的一般方程.【變式3】(2023春·安徽·高二合肥市第八中學(xué)校聯(lián)考開學(xué)考試)已知圓SKIPIF1<0的圓心在直線SKIPIF1<0上,且圓SKIPIF1<0過點SKIPIF1<0,SKIPIF1<0.(1)求圓SKIPIF1<0的標準方程;(2)若圓SKIPIF1<0與圓SKIPIF1<0關(guān)于直線SKIPIF1<0對稱,求圓SKIPIF1<0的標準方程.題型07切線和切線長問題【典例1】(2023秋·云南曲靖·高三??计谀┮阎本€SKIPIF1<0經(jīng)過點SKIPIF1<0,且SKIPIF1<0與圓SKIPIF1<0相切,則SKIPIF1<0的方程為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例2】(2023春·北京東城·高三北京市第十一中學(xué)??茧A段練習(xí))已知圓SKIPIF1<0,過直線SKIPIF1<0上的動點SKIPIF1<0作圓SKIPIF1<0的切線,切點為SKIPIF1<0,則SKIPIF1<0的最小值是(
)A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.SKIPIF1<0【典例3】(2023·全國·高三專題練習(xí))已知SKIPIF1<0為圓C:SKIPIF1<0上任意一點,且點SKIPIF1<0.(1)求SKIPIF1<0的最大值和最小值.(2)求SKIPIF1<0的最大值和最小值.(3)求SKIPIF1<0的最大值和最小值.【變式1】(2023·陜西咸陽·武功縣普集高級中學(xué)??寄M預(yù)測)已知圓SKIPIF1<0為圓O上位于第一象限的一點,過點M作圓O的切線l.當(dāng)l的橫縱截距相等時,l的方程為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式2】(2023春·上海楊浦·高二??计谥校┮阎獔A心在SKIPIF1<0軸上的圓SKIPIF1<0經(jīng)過兩點SKIPIF1<0、SKIPIF1<0.(1)求此圓的標準方程;(2)求過點SKIPIF1<0且與此圓相切的直線SKIPIF1<0的一般式方程.【變式3】(2023秋·廣東清遠·高二統(tǒng)考期末)已知SKIPIF1<0的頂點分別為SKIPIF1<0.(1)求SKIPIF1<0外接圓的方程;(2)設(shè)P是直線SKIPIF1<0上一動點,過點P作SKIPIF1<0外接圓的一條切線,切點為Q,求SKIPIF1<0最小值及點P的坐標.題型08弦長問題【典例1】(2023秋·天津紅橋·高三統(tǒng)考期末)若直線SKIPIF1<0被圓SKIPIF1<0截得的弦長為4,則SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例2】(2023·海南·統(tǒng)考模擬預(yù)測)已知直線SKIPIF1<0,直線SKIPIF1<0過點SKIPIF1<0且與直線SKIPIF1<0相互垂直,圓SKIPIF1<0,若直線SKIPIF1<0與圓C交于M,N兩點,則SKIPIF1<0_________.【典例3】(2023·江西·統(tǒng)考模擬預(yù)測)已知直線SKIPIF1<0,圓SKIPIF1<0,SKIPIF1<0,直線SKIPIF1<0和圓SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點.(1)當(dāng)SKIPIF1<0的中點為SKIPIF1<0時,求圓SKIPIF1<0的方程;(2)已知圓SKIPIF1<0的方程與(1)中所求圓SKIPIF1<0的方程相同,若斜率存在且不為0的直線SKIPIF1<0過點SKIPIF1<0,SKIPIF1<0與圓SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點,SKIPIF1<0為SKIPIF1<0軸正半軸上一點,SKIPIF1<0,SKIPIF1<0,且直線SKIPIF1<0與線段SKIPIF1<0相交,求直線SKIPIF1<0的斜率.【變式1】(2023·全國·高三專題練習(xí))以點SKIPIF1<0為圓心,3為半徑的圓與直線SKIPIF1<0相交于A,B兩點,則SKIPIF1<0的取值范圍為________.【變式2】(2023春·河北邯鄲·高三校聯(lián)考開學(xué)考試)若直線SKIPIF1<0與圓SKIPIF1<0相交于A,B兩點,當(dāng)SKIPIF1<0取得最小值時,直線l的斜率為______.【變式3】(2023春·上海浦東新·高二統(tǒng)考期中)已知圓SKIPIF1<0,點SKIPIF1<0.(1)求過點P的圓C的切線l的方程;(2)若直線m過點P且被圓C截得的弦長為8,求直線m的方程.【變式4】(2023春·河南安陽·高二安陽一中校聯(lián)考開學(xué)考試)已知圓SKIPIF1<0過SKIPIF1<0兩點且圓心SKIPIF1<0在直線SKIPIF1<0上.(1)求圓SKIPIF1<0的方程;(2)已知直線SKIPIF1<0被圓SKIPIF1<0截得的弦長為SKIPIF1<0,求實數(shù)SKIPIF1<0的值.題型09三角形面積問題【典例1】(2023秋·高一單元測試)已知圓SKIPIF1<0,M是y軸上的動點,MA、MB分別與圓C相切于A、B兩點,(1)如果點M的坐標為SKIPIF1<0,求直線MA、MB的方程;(2)求SKIPIF1<0面積的最大值.【典例2】(2023春·江西·高二校聯(lián)考開學(xué)考試)已知圓SKIPIF1<0:SKIPIF1<0,SKIPIF1<0為圓SKIPIF1<0上任意一點,SKIPIF1<0(1)求SKIPIF1<0中點SKIPIF1<0的軌跡方程.(2)若經(jīng)過SKIPIF1<0的直線SKIPIF1<0與SKIPIF1<0的軌跡相交于SKIPIF1<0,在下列條件中選一個,求SKIPIF1<0的面積.條件①:直線SKIPIF1<0斜率為SKIPIF1<0;②原點SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0.【典例3】(2023春·上海閔行·高二??茧A段練習(xí))已知直線SKIPIF1<0和SKIPIF1<0的交點為SKIPIF1<0,求:(1)以點SKIPIF1<0為圓心,且與直線SKIPIF1<0相交所得弦長為12的圓的方程;(2)直線SKIPIF1<0過點SKIPIF1<0,且與兩坐標軸的正半軸所圍成的三角形面積為SKIPIF1<0,求直線SKIPIF1<0的方程.【變式1】(2023春·上海楊浦·高一上海市楊浦高級中學(xué)??计谀┮阎本€SKIPIF1<0.(1)若直線不經(jīng)過第四象限,求k的取值范圍;(2)若直線l交x軸負半軸于A,交y軸正半軸于B,SKIPIF1<0的面積為S(O為坐標原點),求S的最小值和此時直線l的方程.【變式2】(2023春·浙江·高二校聯(lián)考階段練習(xí))已知圓SKIPIF1<0經(jīng)過SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三點,且交直線SKIPIF1<0于SKIPIF1<0,SKIPIF1<0兩點.(1)求圓SKIPIF1<0的標準方程;(2)求SKIPIF1<0的面積.題型10圓與圓的位置關(guān)系【典例1】(2023秋·高二課時練習(xí))當(dāng)SKIPIF1<0為何值時,兩圓SKIPIF1<0和SKIPIF1<0.(1)外切;(2)相交;(3)外離.【典例2】(2023秋·河北石家莊·高二石家莊二十三中??计谀┰谄矫嬷苯亲鴺讼抵?,曲線SKIPIF1<0與坐標軸的交點都在圓SKIPIF1<0上.(1)求圓SKIPIF1<0的方程;(2)若圓SKIPIF1<0與圓SKIPIF1<0相交于A、B兩點,求SKIPIF1<0弦長.【變式1】(2023春·上海黃浦·高二上海市大同中學(xué)??计谥校┮阎獔ASKIPIF1<0經(jīng)過SKIPIF1<0,圓SKIPIF1<0.(1)求圓SKIPIF1<0的標準方程;(2)若圓SKIPIF1<0與圓SKIPIF1<0相切,求SKIPIF1<0的值.【變式2】(2023·高二課時練習(xí))已知圓SKIPIF1<0:SKIPIF1<0與圓SKIPIF1<0:SKIPIF1<0,當(dāng)m為何值時,(1)兩圓外切;(2)兩圓內(nèi)含.題型11兩圓公共線方程和公共弦長【典例1】(2023秋·湖南張家界·高二統(tǒng)考期末)已知兩圓SKIPIF1<0,SKIPIF1<0.(1)SKIPIF1<0取何值時兩圓外切?(2)當(dāng)SKIPIF1<0時,求兩圓的公共弦所在直線SKIPIF1<0的方程和公共弦的長.【典例2】(2023·高二課時練習(xí))已知圓SKIPIF1<0與圓SKIPIF1<0.(1)求證:圓SKIPIF1<0與圓SKIPIF1<0相交;(2)求兩圓公共弦所在直線的方程;(3)求經(jīng)過兩圓交點,且圓心在直線SKIPIF1<0上的圓的方程.【典例3】(2023·全國·高三專題練習(xí))已知圓SKIPIF1<0和動圓SKIPIF1<0交于A,B兩點.(1)若直線SKIPIF1<0過原點,求a;(2)若直線SKIPIF1<0交SKIPIF1<0軸于Q,當(dāng)SKIPIF1<0面積最小時,求SKIPIF1<0.【變式1】(2023秋·重慶渝北·高二重慶市兩江育才中學(xué)校??计谀┮阎獔ASKIPIF1<0過點SKIPIF1<0,且圓心在直線SKIPIF1<0,圓SKIPIF1<0.(1)求圓SKIPIF1<0的標準方程;(2)求圓SKIPIF1<0與圓SKIPIF1<0的公共弦所在的直線方程及公共弦長.【變式2】(2023春·甘肅蘭州·高二??奸_學(xué)考試)已知兩圓C1:x2+y2﹣2x﹣6y﹣1=0,C2:x2+y2﹣10x﹣12y+45=0.(1)求證:圓C1和圓C2相交;(2)求圓C1和圓C2的公共弦所在直線方程和公共弦長.【變式3】(2023秋·江西吉安·高二江西省泰和中學(xué)??计谀┮阎獔ASKIPIF1<0和SKIPIF1<0相交于SKIPIF1<0兩點.(1)求直線SKIPIF1<0的方程,(2)求弦長SKIPIF1<0【變式4】(2023春·四川達州·高二??计谥校┮阎獌蓤ASKIPIF1<0.求:(1)它們的公共弦SKIPIF1<0所在直線的方程;(2)公共弦長.題型12與圓有關(guān)的最值問題【典例1】(2023秋·廣西河池·高二統(tǒng)考期末)已知圓SKIPIF1<0與圓SKIPIF1<0關(guān)于直線SKIPIF1<0對稱.(1)求圓SKIPIF1<0的標準方程;(2)直線SKIPIF1<0與圓SKIPIF1<0相交于SKIPIF1<0兩點,且SKIPIF1<0的外接圓的圓心在SKIPIF1<0內(nèi)部,求SKIPIF1<0的取值范圍.
【典例2】(2023春·江蘇南通·高三海安高級中學(xué)校考階段練習(xí))在平面直角坐標系SKIPIF1<0中,過點SKIPIF1<0且互相垂直的兩條直線分別與橢圓SKIPIF1<0交于點SKIPIF1<0,與圓SKIPIF1<0交于點SKIPIF1<0.(1)若SKIPIF1<0,求SKIPIF1<0的斜率;(2)記SKIPIF1<0中點為SKIPIF1<0,求SKIPIF1<0面積的取值范圍.【典例3】(2023秋·福建福州·高二福建省福州第一中學(xué)校考期末)已知圓SKIPIF1<0.(1)設(shè)點SKIPIF1<0,過點M作直線l與圓C交于A,B兩點,若SKIPIF1<0,求直線l的方程;(2)設(shè)P是直線SKIPIF1<0上一點,過P作圓C的切線PE,PF,切點分別為E,F(xiàn),求SKIPIF1<0的最小值.【變式1】(2023春·湖北·高二校聯(lián)考階段練習(xí))已知圓SKIPIF1<0,直線SKIPIF1<0.(1)證明:直線SKIPIF1<0和圓SKIPIF1<0恒有兩個交點;(2)若直線SKIPIF1<0和圓SKIPIF1<0交于SKIPIF1<0兩點,求SKIPIF1<0的最小值及此時直線SKIPIF1<0的方程.【變式2】(2023·全國·高三專題練習(xí))已知圓SKIPIF1<0,SKIPIF1<0,若斜率為SKIPIF1<0的直線l與圓C相交于不同的兩點SKIPIF1<0,求SKIPIF1<0的取值范圍.題型13軌跡方程【典例1】(2023春·河南南陽·高二鎮(zhèn)平縣第一高級中學(xué)校考階段練習(xí))已知圓SKIPIF1<0:SKIPIF1<0.(1)求圓SKIPIF1<0的圓心坐標及半徑;(2)設(shè)直線SKIPIF1<0:SKIPIF1<0①求證:直線SKIPIF1<0與圓SKIPIF1<0恒相交;②若直線SKIPIF1<0與圓SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點,弦SKIPIF1<0的中點為SKIPIF1<0,求點SKIPIF1<0的軌跡方程,并說明它是什么曲線.【典例2】(2023春·上海靜安·高二校考期中)已知圓的方程為SKIPIF1<0,過點SKIPIF1<0作直線l交圓于A、B兩點.(1)當(dāng)直線l的斜率為1時,求弦AB的長;(2)當(dāng)直線l的斜率變化時,求動弦AB的中點Q的軌跡方程.【典例3】(2023春·上海閔行·高二??茧A段練習(xí))已知圓SKIPIF1<0,直線SKIPIF1<0.(1)判斷直線SKIPIF1<0與圓SKIPIF1<0的位置關(guān)系;(2)設(shè)直線SKIPIF1<0與圓SKIPIF1<0相交于SKIPIF1<0,SKIPIF1<0兩點,且SKIPIF1<0,求直線SKIPIF1<0的方程;(3)設(shè)直線SKIPIF1<0與圓SKIPIF1<0相交于SKIPIF1<0,SKIPIF1<0兩點,求弦SKIPIF1<0中點的軌跡方程.【變式1】(2023·全國·高三專題練習(xí))已知圓SKIPIF1<0.過原點的動直線SKIPIF1<0與圓SKIPIF1<0相交于不同的兩點SKIPIF1<0,求線段AB的中點M的軌跡方程.【變式2】(2023春·湖北·高二宜昌市三峽高級中學(xué)校聯(lián)考期中)已知圓SKIPIF1<0.(1)若直線SKIPIF1<0過點SKIPIF1<0且被圓SKIPIF1<0截得的弦長為2,求直線SKIPIF1<0的方程;(2)從圓SKIPIF1<0外一點SKIPIF1<0向圓SKIPIF1<0引一條切線,切點為SKIPIF1<0,SKIPIF1<0為坐標原點,滿足SKIPIF1<0,求點SKIPIF1<0的軌跡方程.題型14圓的對稱問題【典例1】(2023秋·安徽蚌埠·高二統(tǒng)考期末)若圓SKIPIF1<0被直線SKIPIF1<0平分,則圓SKIPIF1<0的半徑為__________.【典例2】(2023·江蘇·高二假期作業(yè))已知圓SKIPIF1<0關(guān)于直線SKIPIF1<0成軸對稱圖形,則SKIPIF1<0________;SKIPIF1<0的取值范圍是________.【典例3】(2023秋·高二課時練習(xí))求圓SKIPIF1<0關(guān)于直線SKIPIF1<0的對稱圓方程.【變式1】(2023春·廣東汕尾·高二陸豐市龍山中學(xué)??茧A段練習(xí))若直線SKIPIF1<0為圓SKIPIF1<0的一條對稱軸,則SKIPIF1<0__________.【變式2】(2023秋·四川涼山·高二統(tǒng)考期末)圓SKIPIF1<0關(guān)于直線SKIPIF1<0對稱的圓的標準方程為___________.三、數(shù)學(xué)思想01函數(shù)與方程的思想【典例1】(2023·山東泰安·統(tǒng)考模擬預(yù)測)已知直線SKIPIF1<0與圓SKIPIF1<0SKIPIF1<0,過直線SKIPIF1<0上的任意一點SKIPIF1<0向圓SKIPIF1<0引切線,設(shè)切點為SKIPIF1<0,若線段SKIPIF1<0長度的最小值為SKIPIF1<0,則實數(shù)SKIPIF1<0的值是(
)A.SKIPIF1<0 B.SKIPIF1<
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學(xué)技術(shù)課件教學(xué)課件
- 2024年度設(shè)備供應(yīng)與安裝合同
- 2024年度國際搬家集裝箱租賃合同
- 2024年城市軌道交通系統(tǒng)集成與維護合同
- 2024光通信技術(shù)研發(fā)與生產(chǎn)合同
- 2024年度區(qū)塊鏈技術(shù)應(yīng)用研發(fā)合同
- 2024年度廢舊物資回收利用合同
- 2024年度三人合伙知識產(chǎn)權(quán)協(xié)議
- 2024年床上用品批量訂購合同
- 2024年度智能客服系統(tǒng)技術(shù)服務(wù)合同
- 卓越中層管理培訓(xùn)實務(wù)PPT培訓(xùn)課件
- 電力隧道龍門架安裝方法
- 滬教牛津版八年級上冊初二英語期中測試卷
- 外科學(xué)教案-急性化膿性腹膜炎
- 工程經(jīng)濟學(xué)教學(xué)教案
- DBJ51T 060-2016 四川省建設(shè)工程項目監(jiān)理工作質(zhì)量檢查標準
- 2022年內(nèi)蒙古通遼市中考語文試題及參考答案
- 優(yōu)選楷行草鋼筆字帖字課件
- 2020版高考歷史大一輪復(fù)習(xí)-專題六-古代中國經(jīng)濟的基本結(jié)構(gòu)與特點-19-古代中國的農(nóng)業(yè)和手工業(yè)經(jīng)濟
- 《銀行支持地方經(jīng)濟發(fā)展發(fā)言稿五篇材料》
- 國際酒店前廳管理手冊前臺接待14-01 外幣兌換Foreign Exchange
評論
0/150
提交評論