新高考數(shù)學(xué)二輪復(fù)習(xí)考點(diǎn)歸納與演練專題3-10 導(dǎo)數(shù)與數(shù)列導(dǎo)數(shù)與概率統(tǒng)計(jì)(含解析)_第1頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)考點(diǎn)歸納與演練專題3-10 導(dǎo)數(shù)與數(shù)列導(dǎo)數(shù)與概率統(tǒng)計(jì)(含解析)_第2頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)考點(diǎn)歸納與演練專題3-10 導(dǎo)數(shù)與數(shù)列導(dǎo)數(shù)與概率統(tǒng)計(jì)(含解析)_第3頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)考點(diǎn)歸納與演練專題3-10 導(dǎo)數(shù)與數(shù)列導(dǎo)數(shù)與概率統(tǒng)計(jì)(含解析)_第4頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)考點(diǎn)歸納與演練專題3-10 導(dǎo)數(shù)與數(shù)列導(dǎo)數(shù)與概率統(tǒng)計(jì)(含解析)_第5頁(yè)
已閱讀5頁(yè),還剩31頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

專題3-10導(dǎo)數(shù)與數(shù)列,導(dǎo)數(shù)與概率統(tǒng)計(jì)目錄TOC\o"1-1"\h\u專題3-10導(dǎo)數(shù)與數(shù)列,導(dǎo)數(shù)與概率統(tǒng)計(jì) 1 1題型一:利用放縮通項(xiàng)公式解決數(shù)列求和中的不等問(wèn)題 1題型二:導(dǎo)數(shù)與概率統(tǒng)計(jì) 10 22題型一:利用放縮通項(xiàng)公式解決數(shù)列求和中的不等問(wèn)題【典例分析】例題1.(2022·全國(guó)·高三專題練習(xí))已知正項(xiàng)數(shù)列SKIPIF1<0滿足SKIPIF1<0.(1)求證:SKIPIF1<0;(2)求證:SKIPIF1<0.【答案】(1)證明見(jiàn)解析(2)證明見(jiàn)解析(1)∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.(2)∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.下面證明:SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0,因此SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0例題2.(2022·福建·三明一中高三階段練習(xí))已知函數(shù)SKIPIF1<0.(1)證明:函數(shù)SKIPIF1<0的圖象與直線SKIPIF1<0只有一個(gè)公共點(diǎn).(2)證明:對(duì)任意的SKIPIF1<0,SKIPIF1<0.【答案】(1)證明見(jiàn)解析(2)證明見(jiàn)解析(1)要證函數(shù)SKIPIF1<0的圖象與直線SKIPIF1<0只有一個(gè)交點(diǎn),只需證方程SKIPIF1<0只有一個(gè)根,即證SKIPIF1<0只有一個(gè)根,即SKIPIF1<0只有一個(gè)根.令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0.SKIPIF1<0SKIPIF1<0恒成立,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0方程SKIPIF1<0只有一個(gè)根,即函數(shù)SKIPIF1<0的圖象與直線SKIPIF1<0只有一個(gè)公共點(diǎn).(2)由(1)知:SKIPIF1<0恒成立,即SKIPIF1<0恒成立(在SKIPIF1<0時(shí)等號(hào)成立).SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0.【提分秘籍】常見(jiàn)的放縮不等式如下:①SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào);②SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào);③當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào);④當(dāng)SKIPIF1<0時(shí),SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào);⑤當(dāng)SKIPIF1<0時(shí),SKIPIF1<0⑥SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào);【變式演練】1.(2022·廣西·高三階段練習(xí)(理))已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍;(2)設(shè)SKIPIF1<0,求證:SKIPIF1<0.【答案】(1)SKIPIF1<0(2)證明見(jiàn)解析(1)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0遞增;當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0遞減,當(dāng)SKIPIF1<0時(shí),因?yàn)镾KIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0恒成立,當(dāng)SKIPIF1<0時(shí),因?yàn)镾KIPIF1<0,則SKIPIF1<0在區(qū)間SKIPIF1<0單調(diào)遞增,在區(qū)間SKIPIF1<0單調(diào)遞減.又SKIPIF1<0,與SKIPIF1<0恒成立相矛盾.綜上,實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.(2)由(1)知當(dāng)SKIPIF1<0時(shí),SKIPIF1<0即SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0所以SKIPIF1<0SKIPIF1<02.(2022·福建省龍巖第一中學(xué)高二階段練習(xí))已知函數(shù)SKIPIF1<0在SKIPIF1<0處取得極值(1)求函數(shù)SKIPIF1<0的單調(diào)性;(2)證明:對(duì)于任意的正整數(shù)SKIPIF1<0,不等式SKIPIF1<0都成立.【答案】(1)增區(qū)間是SKIPIF1<0,減區(qū)間是SKIPIF1<0(2)證明見(jiàn)解析(1)SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的極值點(diǎn)SKIPIF1<0SKIPIF1<0SKIPIF1<0,令SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0+-SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0的增區(qū)間是SKIPIF1<0,減區(qū)間是SKIPIF1<0;(2)由(1)知當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0SKIPIF1<0,即SKIPIF1<03.(2022·全國(guó)·高三專題練習(xí))已知函數(shù)f(x)=lnx-ax+1在x=2處的切線斜率為-SKIPIF1<0.(1)求實(shí)數(shù)a的值及函數(shù)f(x)的單調(diào)區(qū)間;(2)設(shè)g(x)=SKIPIF1<0,對(duì)?x1SKIPIF1<0(0,+∞),?x2SKIPIF1<0(-∞,0)使得f(x1)≤g(x2)成立,求正實(shí)數(shù)k的取值范圍;(3)證明:SKIPIF1<0+SKIPIF1<0+…+SKIPIF1<0(n∈N*,n≥2).【答案】(1)a=1,增區(qū)間為SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0(2)SKIPIF1<0(3)證明見(jiàn)解析(1)由已知得f′(x)=SKIPIF1<0-a,∴f′(2)=SKIPIF1<0-a=-SKIPIF1<0,解得a=1.于是f′(x)=SKIPIF1<0-1=SKIPIF1<0,當(dāng)xSKIPIF1<0(0,1)時(shí),f′(x)>0,f(x)為增函數(shù),當(dāng)xSKIPIF1<0(1,+∞)時(shí),f′(x)<0,f(x)為減函數(shù),即f(x)的單調(diào)遞增區(qū)間為(0,1),單調(diào)遞減區(qū)間為(1,+∞).(2)由(1)知x1SKIPIF1<0(0,+∞),f(x1)≤f(1)=0,即f(x1)的最大值為0,由題意知:對(duì)?x1SKIPIF1<0(0,+∞),?x2SKIPIF1<0(-∞,0)使得f(x1)≤g(x2)成立,只需f(x)max≤g(x)max.∵g(x)=SKIPIF1<0SKIPIF1<0,(SKIPIF1<0等號(hào)成立)∴只需SKIPIF1<0,解得SKIPIF1<0.(3)證明:要證明SKIPIF1<0(nSKIPIF1<0N*,n≥2).只需證SKIPIF1<0,只需證SKIPIF1<0.由(1)當(dāng)xSKIPIF1<0(1,+∞)時(shí),f′(x)<0,f(x)為減函數(shù),f(x)=lnx-x+1≤0,即lnx≤x-1,∴當(dāng)n≥2時(shí),SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0=SKIPIF1<0,∴SKIPIF1<0.4.(2022·湖南張家界·高二期末)已知函數(shù)SKIPIF1<0,其中SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求函數(shù)SKIPIF1<0的單調(diào)區(qū)間;(2)①若SKIPIF1<0恒成立,求SKIPIF1<0的最小值;②證明:SKIPIF1<0,其中SKIPIF1<0.【答案】(1)單調(diào)遞增區(qū)間為SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0(2)①1;②證明見(jiàn)解析(1)由已知條件得SKIPIF1<0,其中SKIPIF1<0的定義域?yàn)镾KIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,綜上所述可知:SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0;(2)①由SKIPIF1<0恒成立,即SKIPIF1<0恒成立,令SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0上單調(diào)遞減,∴SKIPIF1<0,SKIPIF1<0

∴SKIPIF1<0的最小值為1.②由①知:SKIPIF1<0,SKIPIF1<0時(shí)取“=”,令SKIPIF1<0,得SKIPIF1<0,

∴SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.7.(2022·全國(guó)·高三專題練習(xí))設(shè)函數(shù)SKIPIF1<0,SKIPIF1<0.(1)若函數(shù)SKIPIF1<0在定義域內(nèi)單調(diào)遞減,求SKIPIF1<0的取值范圍;(2)設(shè)SKIPIF1<0,證明:SKIPIF1<0(SKIPIF1<0為自然對(duì)數(shù)的底數(shù)).【答案】(1)SKIPIF1<0(2)證明見(jiàn)解析(1)解:函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,且SKIPIF1<0,則SKIPIF1<0,由于SKIPIF1<0在SKIPIF1<0內(nèi)單調(diào)遞減,則SKIPIF1<0對(duì)SKIPIF1<0恒成立,即SKIPIF1<0對(duì)SKIPIF1<0恒成立,從而SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0的取值范圍為SKIPIF1<0(2)證明:取SKIPIF1<0,由第(1)問(wèn)可知SKIPIF1<0在SKIPIF1<0為單調(diào)遞減函數(shù),從而SKIPIF1<0;則SKIPIF1<0對(duì)SKIPIF1<0成立,令SKIPIF1<0,有SKIPIF1<0;從而SKIPIF1<0SKIPIF1<0SKIPIF1<0,故SKIPIF1<0.題型二:導(dǎo)數(shù)與概率統(tǒng)計(jì)【典例分析】例題1.(2022·江蘇南通·高二期末)某大型養(yǎng)雞場(chǎng)流行一種傳染病,雞的感染率為SKIPIF1<0.(1)若SKIPIF1<0,從中隨機(jī)取出SKIPIF1<0只雞,記取到病雞的只數(shù)為SKIPIF1<0,求SKIPIF1<0的概率分布及數(shù)學(xué)期望SKIPIF1<0(2)對(duì)該養(yǎng)雞場(chǎng)所有雞進(jìn)行抽血化驗(yàn),以期查出所有病雞SKIPIF1<0方案如下:按每SKIPIF1<0只雞一組分組,并把同組的SKIPIF1<0只雞的血混合在一起化驗(yàn),若發(fā)現(xiàn)有問(wèn)題,再分別對(duì)該組SKIPIF1<0只雞逐只化驗(yàn)SKIPIF1<0設(shè)每只雞的化驗(yàn)次數(shù)為隨機(jī)變量SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的數(shù)學(xué)期望SKIPIF1<0,求SKIPIF1<0的取值范圍【答案】(1)分布列見(jiàn)解析,1.8(2)SKIPIF1<0(1)依題意,SKIPIF1<0的所有可能取值為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0的概率分布表為SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0所以SKIPIF1<0;(2)設(shè)SKIPIF1<0.若同一組的SKIPIF1<0只雞無(wú)感染,則SKIPIF1<0否則,SKIPIF1<0.所以SKIPIF1<0,SKIPIF1<0.所以SKIPIF1<0.又當(dāng)且僅當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0,所以當(dāng)且僅當(dāng)SKIPIF1<0且SKIPIF1<0時(shí),SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0.所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.由SKIPIF1<0知,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的取值范圍是SKIPIF1<0例題2.(2022·山東·曹縣一中高二階段練習(xí))垃圾分類,是指按一定標(biāo)準(zhǔn)將垃圾分類儲(chǔ)存、分類投放和分類搬運(yùn),從而轉(zhuǎn)變成公共資源的一系列活動(dòng)的總稱,分類的目的是提高垃圾的資源價(jià)值和經(jīng)濟(jì)價(jià)值,為爭(zhēng)物盡其用.垃圾分類后,大部分運(yùn)往垃圾處理廠進(jìn)行處理.為了監(jiān)測(cè)垃圾處理過(guò)程中對(duì)環(huán)境造成的影響,某大型垃圾處理廠為此建立了5套環(huán)境監(jiān)測(cè)系統(tǒng),并制定如下方案:每年工廠的環(huán)境監(jiān)測(cè)費(fèi)用預(yù)算定為80萬(wàn)元,日常全天候開(kāi)啟3套環(huán)境監(jiān)測(cè)系統(tǒng),若至少有2套系統(tǒng)監(jiān)測(cè)出排放超標(biāo),則立即檢查污染處理系統(tǒng);若有且只有1套系統(tǒng)監(jiān)測(cè)出排放超標(biāo),則立即同時(shí)啟動(dòng)另外兩套系統(tǒng)進(jìn)行1小時(shí)的監(jiān)測(cè),且后啟動(dòng)的這2套監(jiān)測(cè)系統(tǒng)中只要有1套系統(tǒng)監(jiān)測(cè)出排放超標(biāo),也立即檢查污染處理系統(tǒng).設(shè)每個(gè)時(shí)間段(以1小時(shí)為計(jì)量單位)被每套系統(tǒng)監(jiān)測(cè)出排放超標(biāo)的概率均為SKIPIF1<0,且各個(gè)時(shí)間段每套系統(tǒng)監(jiān)測(cè)出排放超標(biāo)情況相互獨(dú)立.(1)當(dāng)SKIPIF1<0時(shí),求某個(gè)時(shí)間段需要檢查污染處理系統(tǒng)的概率;(2)若每套環(huán)境監(jiān)測(cè)系統(tǒng)運(yùn)行成本為20元/小時(shí)(不啟動(dòng)則不產(chǎn)生運(yùn)行費(fèi)用),除運(yùn)行費(fèi)用外,所有的環(huán)境監(jiān)測(cè)系統(tǒng)每年的維修和保養(yǎng)費(fèi)用需要6萬(wàn)元.現(xiàn)以此方案實(shí)施,問(wèn)該工廠的環(huán)境監(jiān)測(cè)費(fèi)用是否會(huì)超過(guò)預(yù)算(全年按9000小時(shí)計(jì)算)?并說(shuō)明理由.【答案】(1)SKIPIF1<0;(2)不會(huì)超過(guò)預(yù)算,理由見(jiàn)解析.(1)設(shè)某個(gè)時(shí)間段在開(kāi)啟3套系統(tǒng)時(shí)就被確定需要檢查污染源處理系統(tǒng)的事件為A,則SKIPIF1<0,設(shè)某個(gè)時(shí)間段需要開(kāi)啟另外2套環(huán)境監(jiān)測(cè)系統(tǒng)才能確定需要檢查污染源處理系統(tǒng)的事件為B,則SKIPIF1<0.所以某個(gè)時(shí)間段需要檢查污染源處理系統(tǒng)的概率為SKIPIF1<0.(2)設(shè)某個(gè)時(shí)間段環(huán)境監(jiān)測(cè)系統(tǒng)的運(yùn)行費(fèi)用為X元,則X的所有可能取值為60,100.且SKIPIF1<0,SKIPIF1<0.SKIPIF1<0.令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0的最大值為SKIPIF1<0.所以實(shí)施此方案的最高費(fèi)用為SKIPIF1<0(萬(wàn)元).因?yàn)镾KIPIF1<0,所以不會(huì)超過(guò)預(yù)算.【提分秘籍】構(gòu)造函數(shù),利用導(dǎo)函數(shù)求最值【變式演練】1.(2022·全國(guó)·高一)根據(jù)社會(huì)人口學(xué)研究發(fā)現(xiàn),一個(gè)家庭有X個(gè)孩子的概率模型為:X1230概率SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0其中SKIPIF1<0,SKIPIF1<0.每個(gè)孩子的性別是男孩還是女孩的概率均為SKIPIF1<0且相互獨(dú)立,事件SKIPIF1<0表示一個(gè)家庭有i個(gè)孩子SKIPIF1<0,事件B表示一個(gè)家庭的男孩比女孩多(例如:一個(gè)家庭恰有一個(gè)男孩,則該家庭男孩多.)(1)若SKIPIF1<0,求SKIPIF1<0,并根據(jù)全概率公式SKIPIF1<0,求SKIPIF1<0;(2)為了調(diào)控未來(lái)人口結(jié)構(gòu),其中參數(shù)p受到各種因素的影響(例如生育保險(xiǎn)的增加,教育、醫(yī)療福利的增加等).①若希望SKIPIF1<0增大,如何調(diào)控p的值?②是否存在p的值使得SKIPIF1<0,請(qǐng)說(shuō)明理由.【答案】(1)SKIPIF1<0,SKIPIF1<0;(2)①增加p的取值;②不存在,理由見(jiàn)解析.(1)由題意得:SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.由全概率公式,得SKIPIF1<0SKIPIF1<0SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0;(2)①由SKIPIF1<0,得SKIPIF1<0,記SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,記SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0單調(diào)遞減.∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0在SKIPIF1<0單調(diào)遞減.因此增加p的取值,SKIPIF1<0會(huì)減小,SKIPIF1<0增大,即SKIPIF1<0增大.②假設(shè)存在p使SKIPIF1<0,又SKIPIF1<0,將上述兩式相乘,得SKIPIF1<0,化簡(jiǎn)得,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增,SKIPIF1<0的最小值為SKIPIF1<0,∴不存在SKIPIF1<0使得SKIPIF1<0.2.(2022·全國(guó)·高三專題練習(xí))甲、乙兩人進(jìn)行對(duì)抗比賽,每場(chǎng)比賽均能分出勝負(fù).已知本次比賽的主辦方提供8000元獎(jiǎng)金并規(guī)定:①若有人先贏4場(chǎng),則先贏4場(chǎng)者獲得全部獎(jiǎng)金同時(shí)比賽終止;②若無(wú)人先贏4場(chǎng)且比賽意外終止,則甲、乙便按照比賽繼續(xù)進(jìn)行各自贏得全部獎(jiǎng)金的概率之比分配獎(jiǎng)金.已知每場(chǎng)比賽甲贏的概率為p(0<p<1),乙贏的概率為1-p,且每場(chǎng)比賽相互獨(dú)立.(1)當(dāng)SKIPIF1<0時(shí),假設(shè)比賽不會(huì)意外終止,記比賽場(chǎng)次為隨機(jī)變量Y,求Y的分布列;(2)當(dāng)SKIPIF1<0時(shí),若已進(jìn)行了5場(chǎng)比賽,其中甲贏了3場(chǎng),乙贏了2場(chǎng),此時(shí)比賽因意外終止,主辦方?jīng)Q定頒發(fā)獎(jiǎng)金,求甲獲得的獎(jiǎng)金金額;(3)規(guī)定:若隨機(jī)事件發(fā)生的概率小于0.05,則稱該隨機(jī)事件為小概率事件,我們可以認(rèn)為該事件不可能發(fā)生,否則認(rèn)為該事件有可能發(fā)生.若本次比賽SKIPIF1<0,且在已進(jìn)行的3場(chǎng)比賽中甲贏2場(chǎng)、乙贏1場(chǎng),請(qǐng)判斷:比賽繼續(xù)進(jìn)行乙贏得全部獎(jiǎng)金是否有可能發(fā)生,并說(shuō)明理由.【答案】(1)分布列見(jiàn)解析;(2)6000元;(3)不可能發(fā)生,理由見(jiàn)解析.【詳解】(1)SKIPIF1<0的可能取值為4,5,6,7SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0的分布列為SKIPIF1<04567SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0(2)5場(chǎng)比賽甲勝3局,則繼續(xù)比賽甲勝的概率為SKIPIF1<0;繼續(xù)比賽乙勝的概率為SKIPIF1<0,SKIPIF1<0甲獲得獎(jiǎng)金金額為SKIPIF1<0(元)(3)設(shè)繼續(xù)進(jìn)行SKIPIF1<0場(chǎng)比賽乙贏得全部獎(jiǎng)金,SKIPIF1<0可能取值為3,4.SKIPIF1<0;SKIPIF1<0設(shè)乙贏得全部獎(jiǎng)金為事件SKIPIF1<0,則SKIPIF1<0設(shè)SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0SKIPIF1<0在SKIPIF1<0單調(diào)遞減,SKIPIF1<0SKIPIF1<0認(rèn)為比賽繼續(xù)進(jìn)行乙贏得全部獎(jiǎng)金不可能發(fā)生.3.(2022·福建·廈門雙十中學(xué)高三階段練習(xí))一疫苗生產(chǎn)單位通過(guò)驗(yàn)血方法檢驗(yàn)?zāi)撤N疫苗產(chǎn)生抗體情況,需要檢驗(yàn)血液是否有抗體現(xiàn)有SKIPIF1<0份血液樣本每份樣本取到的可能性均等有以下兩種檢驗(yàn)方式:(1)逐份檢驗(yàn),則需要檢驗(yàn)n次;(2)混合檢驗(yàn)將其中SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)份血液樣本分別取樣混合在一起檢驗(yàn)若檢驗(yàn)結(jié)果無(wú)抗體,則這k份的血液全無(wú)抗體,因而這k份血液樣本只需檢驗(yàn)一次就夠了,若檢驗(yàn)結(jié)果有抗體,為了明確這k份血液究竟哪幾份有抗體就要對(duì)這k份再逐份檢驗(yàn),此時(shí)這k份血液的檢驗(yàn)總次數(shù)為k+1次假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本的檢驗(yàn)結(jié)果有無(wú)抗體都是相互獨(dú)立的,且每份樣本有抗體的概率均為SKIPIF1<0.(1)假設(shè)有5份血液樣本,其中只有2份血液樣本有抗體,若采用逐份檢驗(yàn)方式,求恰好經(jīng)過(guò)3次檢驗(yàn)就能把有抗體的血液樣本全部檢驗(yàn)出來(lái)的概率;(2)現(xiàn)取其中SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)份血液樣本,記采用逐份檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為SKIPIF1<0,采用混合檢驗(yàn)方式樣本需要檢驗(yàn)的總次數(shù)為SKIPIF1<0.若SKIPIF1<0,求SKIPIF1<0關(guān)于k的函數(shù)關(guān)系式SKIPIF1<0,并證明SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0;證明見(jiàn)解析.【詳解】解:(1)設(shè)恰好經(jīng)過(guò)3次檢驗(yàn)?zāi)馨延锌贵w血液樣本全部檢驗(yàn)出來(lái)為事件A,所以SKIPIF1<0,所以恰好經(jīng)過(guò)3次檢驗(yàn)就能把有抗體的血液樣本全部檢驗(yàn)出來(lái)的概率為SKIPIF1<0.(2)由已知得SKIPIF1<0,SKIPIF1<0的所有可能取值為1,SKIPIF1<0.所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以p關(guān)于k的函數(shù)關(guān)系式為SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)證明:令SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)所以SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0單調(diào)遞增所以SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0且SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.4.(2022·全國(guó)·高三專題練習(xí))某醫(yī)院為篩查冠狀病毒,需要檢驗(yàn)血液是不是陽(yáng)性,現(xiàn)有SKIPIF1<0份血液樣本,有以下兩種檢驗(yàn)方式:方式一:逐份檢驗(yàn),則需要檢驗(yàn)SKIPIF1<0次.方式二:混合檢驗(yàn),將其中SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)份血液樣本分別取樣混合在一起檢驗(yàn).若檢驗(yàn)結(jié)果為陰性,這SKIPIF1<0份血液樣本全為陰性,因而這SKIPIF1<0份血液樣本只要檢驗(yàn)一次就夠了;若檢驗(yàn)結(jié)果為陽(yáng)性,為了明確這SKIPIF1<0份血液樣本究竟哪幾份為陽(yáng)性,就要對(duì)這SKIPIF1<0份血液樣本再逐份檢驗(yàn),此時(shí)這SKIPIF1<0份血液樣本的檢驗(yàn)次數(shù)總共為SKIPIF1<0.假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本的檢驗(yàn)結(jié)果是陽(yáng)性還是陰性都是獨(dú)立的,且每份樣本是陽(yáng)性結(jié)果的概率為SKIPIF1<0.現(xiàn)取其中SKIPIF1<0份血液樣本,記采用逐份檢驗(yàn)方式,需要檢驗(yàn)的總次數(shù)為SKIPIF1<0,采用混合檢驗(yàn)方式,需要檢驗(yàn)的總次數(shù)為SKIPIF1<0.(1)若SKIPIF1<0,試求SKIPIF1<0關(guān)于SKIPIF1<0的函數(shù)關(guān)系式SKIPIF1<0;(2)若SKIPIF1<0與干擾素計(jì)量SKIPIF1<0相關(guān),其中SKIPIF1<0是不同的正整數(shù),且SKIPIF1<0,SKIPIF1<0都有SKIPIF1<0成立.①求證:數(shù)列SKIPIF1<0是等比數(shù)列;②當(dāng)SKIPIF1<0時(shí),采用混合檢驗(yàn)方式可以使樣本需要檢驗(yàn)的總次數(shù)的期望值比采用逐份檢驗(yàn)方式的檢驗(yàn)總次數(shù)的期望值更少,求SKIPIF1<0的最大值.參考數(shù)據(jù):SKIPIF1<0,SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)①證明見(jiàn)詳解;②SKIPIF1<0.【詳解】(1)由已知,SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0;SKIPIF1<0的可能取值為SKIPIF1<0,SKIPIF1<0,由題意SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0;又SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0關(guān)于SKIPIF1<0的函數(shù)關(guān)系式為SKIPIF1<0;(2)①證明:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0;因?yàn)镾KIPIF1<0,所以下面證明對(duì)任意的正整數(shù)SKIPIF1<0,SKIPIF1<0;(i)當(dāng)SKIPIF1<0時(shí),顯然成立;(ii)假設(shè)SKIPIF1<0時(shí),SKIPIF1<0成立;當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,因此SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(負(fù)值舍去),所以SKIPIF1<0;由(i)(ii)可知,SKIPIF1<0,即數(shù)列SKIPIF1<0是等比數(shù)列;②由①知,SKIPIF1<0,因?yàn)椴捎没旌蠙z驗(yàn)方式可以使樣本需要檢驗(yàn)的總次數(shù)的期望值比采用逐份檢驗(yàn)方式的檢驗(yàn)總次數(shù)的期望值更少,即SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0;設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0單調(diào)遞增;所以SKIPIF1<0;又SKIPIF1<0,SKIPIF1<0,所以使SKIPIF1<0的最大整數(shù)SKIPIF1<0的取值為SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0的最大值為SKIPIF1<0;綜上,SKIPIF1<0的最大值為SKIPIF1<0.1.(2022·河北邯鄲·模擬預(yù)測(cè))設(shè)函數(shù)SKIPIF1<0(1)求曲線SKIPIF1<0在SKIPIF1<0處的切線方程;(2)證明:當(dāng)SKIPIF1<0且SKIPIF1<0時(shí),SKIPIF1<0.【答案】(1)SKIPIF1<0(2)證明見(jiàn)解析(1)顯然,SKIPIF1<0,且SKIPIF1<0,故SKIPIF1<0故切線方程為SKIPIF1<0,即SKIPIF1<0(2)令SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增故SKIPIF1<0,即當(dāng)SKIPIF1<0時(shí),SKIPIF1<0令SKIPIF1<0,得SKIPIF1<0即SKIPIF1<0由此可得,SKIPIF1<0SKIPIF1<0,……SKIPIF1<0,將以上SKIPIF1<0個(gè)式子相加,得SKIPIF1<0,SKIPIF1<0且SKIPIF1<02.(2022·全國(guó)·高三專題練習(xí))證明:SKIPIF1<0.【答案】證明見(jiàn)解析【詳解】證明:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.SKIPIF1<0.SKIPIF1<0SKIPIF1<0令SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0在SKIPIF1<0上遞增,SKIPIF1<0,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0,SKIPIF1<0SKIPIF1<0.綜上:SKIPIF1<0.3.(2022·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的極值;(2)(i)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,求正整數(shù)SKIPIF1<0的最大值;(ii)證明:SKIPIF1<0.【答案】(1)答案見(jiàn)解析(2)(i)3;(ii)證明見(jiàn)解析(1)SKIPIF1<0,x>0,當(dāng)k≤0時(shí),f′(x)>0,函數(shù)在(0,+∞)上單調(diào)遞增,沒(méi)有極值;當(dāng)k>0時(shí),由f′(x)>0得x>k,由f′(x)<0得0<x<k,所以f(x)在(0,k)上單調(diào)遞減,在(k,+∞)上單調(diào)遞增,此時(shí)函數(shù)f(x)的極小值f(k)=lnk﹣k+2,沒(méi)有極大值;(2)(i)當(dāng)x>1時(shí),f(x)>0恒成立,即只要f(x)min>0即可,由(1)k>0時(shí),f(x)在(0,k)上單調(diào)遞減,在(k,+∞)上單調(diào)遞增,(a)若k≤1時(shí),f(x)在(1,+∞)上單調(diào)遞增,f(x)min>f(1)=1滿足題意;(b)當(dāng)k>1時(shí),f(x)在(0,k)上單調(diào)遞減,在(k,+∞)上單調(diào)遞增,f(x)min=f(k)=lnk﹣k+2>0,令g(x)=lnx﹣x+2,則SKIPIF1<0<0,所以g(x)在(1,+∞)上單調(diào)遞減,且g(2)=ln2>0,g(3)=ln3﹣1>0,g(4)=ln4﹣2<0,所以存在x0∈(3,4)使得g(x0)=0,則g(x)=lnx﹣x+2>0的解集為(1,x0),綜上k的取值范圍(﹣∞,x0),其中x0∈(3,4),所以正整數(shù)k的最大值3;(ii)證明:要證SKIPIF1<0兩邊取對(duì)數(shù),即證SKIPIF1<0也即證SKIPIF1<0由(i)知SKIPIF1<0,令x=1+n(n+1),則ln[n(n+1)+1]>2﹣SKIPIF1<0所以SKIPIF1<0SKIPIF1<0所以(1+1×2)(1+2×3)…[1+n(n+1)]>SKIPIF1<0.4.(2022·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0.(1)求SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程;(2)已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上不存在極值點(diǎn),求SKIPIF1<0的取值范圍;(3)證明:SKIPIF1<0,SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(3)證明見(jiàn)解析.(1)由SKIPIF1<0可得SKIPIF1<0,所以SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線斜率為SKIPIF1<0,因?yàn)镾KIPIF1<0,所以切點(diǎn)為SKIPIF1<0,所以SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0即SKIPIF1<0.(2)SKIPIF1<0,定義域?yàn)镾KIPIF1<0,SKIPIF1<0,若SKIPIF1<0在區(qū)間SKIPIF1<0上不存在極值點(diǎn),則SKIPIF1<0或SKIPIF1<0恒成立,令SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0對(duì)于SKIPIF1<0恒成立,因?yàn)镾KIPIF1<0恒成立,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,若SKIPIF1<0恒成立,則SKIPIF1<0,所以SKIPIF1<0符合題意;因?yàn)镾KIPIF1<0對(duì)于SKIPIF1<0不可能恒成立,所以SKIPIF1<0時(shí),SKIPIF1<0恒成立,此時(shí)在區(qū)間SKIPIF1<0上不存在極值點(diǎn),所以SKIPIF1<0的取值范圍為SKIPIF1<0.(3)設(shè)SKIPIF1<0,定義域?yàn)镾KIPIF1<0,則SKIPIF1<0由SKIPIF1<0可得SKIPIF1<0;由SKIPIF1<0可得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,所以SKIPIF1<0即SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.5.(2022·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0(1)試討論SKIPIF1<0的單調(diào)性;(2)求證:SKIPIF1<0.【答案】(1)答案見(jiàn)解析;(2)證明見(jiàn)解析.【詳解】解:(1)因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0即SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增當(dāng)SKIPIF1<0即SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增當(dāng)SKIPIF1<0即SKIPIF1<0時(shí),由SKIPIF1<0得SKIPIF1<0,SKIPIF1<0,此時(shí)SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增綜上所述:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增(2)由(1)知當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0上是單調(diào)增函數(shù),且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0即SKIPIF1<0SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0,時(shí),SKIPIF1<0,將上個(gè)不等式相加得SKIPIF1<0即SKIPIF1<0.得證.6.(2022·全國(guó)·高三專題練習(xí))某病毒在進(jìn)入人體后有潛伏期,患者在潛伏期內(nèi)無(wú)任何癥狀,但已具傳染性.假設(shè)一位病毒攜帶者在潛伏期內(nèi)每天有n位密接者,每位密接者被感染的概率為p,(1)若SKIPIF1<0,SKIPIF1<0,求一天內(nèi)被一位病毒攜帶者直接感染人數(shù)X的分布列和均值:(2)某定點(diǎn)醫(yī)院為篩查某些人員是否感染此病毒,需要檢測(cè)血液樣本是否為陽(yáng)性,有以下兩種檢驗(yàn)方式:①逐份檢驗(yàn),即k份血液樣本需要檢驗(yàn)k次;②混合檢驗(yàn),即將k份(SKIPIF1<0且SKIPIF1<0)血液樣本分別取樣混合在一起檢驗(yàn),若檢驗(yàn)結(jié)果為陰性,則這k份血液樣本全為陰性,因而這k份血液樣本只要檢驗(yàn)一次就夠了:如果檢驗(yàn)結(jié)果為陽(yáng)性,為了明確這k份血液樣本究竟哪份為陽(yáng)性,就要對(duì)k份血液樣本再逐份檢驗(yàn),此時(shí)這k份血液樣本的檢驗(yàn)次數(shù)為k+1次.假設(shè)樣本的檢驗(yàn)結(jié)果相互獨(dú)立,且每份樣本檢驗(yàn)結(jié)果是陽(yáng)性的概率為SKIPIF1<0,為使混合檢驗(yàn)需要的檢驗(yàn)的總次數(shù)SKIPIF1<0的期望值比逐份檢驗(yàn)的總次數(shù)SKIPIF1<0的期望值更少,求k的取值范圍.參考數(shù)據(jù):SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.【答案】(1)答案見(jiàn)解析;(2)SKIPIF1<0且k∈N*.【詳解】(1)若n=3,p=SKIPIF1<0,依題意可知X服從二項(xiàng)分布,即X~B(3,SKIPIF1<0),從而SKIPIF1<0,i=0,1,2,3.隨機(jī)變量X的分布列為:X0123PSKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0隨機(jī)變量X的均值為SKIPIF1<0.

(2)由題意知ζ的所有可能取值為1,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,又∵E(η)=k,依題意E(ζ)<E(η),即:k+1-k(1-p)k<k,∴SKIPIF1<0<(1-p)k,∵p=1-SKIPIF1<0,∴SKIPIF1<0<(SKIPIF1<0)k,∴l(xiāng)nk>SKIPIF1<0k.設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,所以f(x)在(0,3)上單調(diào)遞增,在(3,+∞)上單調(diào)遞減,由于f(1)=SKIPIF1<0<0,f(2)=ln2-SKIPIF1<0>0,f(4)=ln4-SKIPIF1<0=0.0530>0,f(5)=ln5-SKIPIF1<0=-0.0573<0,故k的取值范圍為SKIPIF1<0且k∈N*.7.(2022·全國(guó)·高三專題練習(xí))公元1651年,法國(guó)一位著名的統(tǒng)計(jì)學(xué)家德梅赫(Demere)向另一位著名的數(shù)學(xué)家帕斯卡(B.Pascal)提出了一個(gè)問(wèn)題,帕斯卡和費(fèi)馬(Fermat)討論了這個(gè)問(wèn)題,后來(lái)惠更斯(C.Huygens)也加入了討論,這三位當(dāng)時(shí)全歐洲乃至全世界最優(yōu)秀的科學(xué)家都給出了正確的解答.該問(wèn)題如下:設(shè)兩名運(yùn)動(dòng)員約定誰(shuí)先贏SKIPIF1<0局,誰(shuí)便贏得全部獎(jiǎng)金SKIPIF1<0元.每局甲贏的概率為SKIPIF1<0,乙贏的概率為SKIPIF1<0,且每場(chǎng)比賽相互獨(dú)立.在甲贏了SKIPIF1<0局,乙贏了SKIPIF1<0局時(shí),比賽意外終止.獎(jiǎng)金該怎么分才合理?這三位數(shù)學(xué)家給出的答案是:如果出現(xiàn)無(wú)人先贏SKIPIF1<0局則比賽意外終止的情況,甲、乙便按照比賽再繼續(xù)進(jìn)行下去各自贏得全部獎(jiǎng)金的概率之比SKIPIF1<0分配獎(jiǎng)金.(1)規(guī)定如果出現(xiàn)無(wú)人先贏SKIPIF1<0局則比賽意外終止的情況,甲、乙便按照比賽再繼續(xù)進(jìn)行下去各自贏得全部獎(jiǎng)金的概率之比SKIPIF1<0分配獎(jiǎng)金.若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0.(2)記事件SKIPIF1<0為“比賽繼續(xù)進(jìn)行下去乙贏得全部獎(jiǎng)金”,試求當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0時(shí)比賽繼續(xù)進(jìn)行下去甲贏得全部獎(jiǎng)金的概率SKIPIF1<0,并判斷當(dāng)SKIPIF1<0時(shí),事件SKIPIF1<0是否為小概率事件,并說(shuō)明理由.規(guī)定:若隨機(jī)事件發(fā)生的概率小于0.05,則稱該隨機(jī)事件為小概率事件.【答案】(1)SKIPIF1<0;(2)答案見(jiàn)解析.【詳解】(1)設(shè)比賽再繼續(xù)進(jìn)行SKIPIF1<0局甲贏得全部獎(jiǎng)金,則最后一局必然甲贏.由題意知,最多再進(jìn)行SKIPIF1<0局,甲、乙必然有人贏得全部獎(jiǎng)金.當(dāng)SKIPIF1<0時(shí),甲以SKIPIF1<0贏,所以SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),甲以SKIPIF1<0贏,所以SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),甲以SKIPIF1<0贏,所以SKIPIF1<0.所以,甲贏的概率為SKIPIF1<0.所以,SKIPIF1<0;(2)設(shè)比賽繼續(xù)進(jìn)行SKIPIF1<0局乙贏得全部獎(jiǎng)金,則最后一局必然乙贏.當(dāng)SKIPIF1<0時(shí),乙以SKIPIF1<0贏,SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),乙以SKIPIF1<0贏,SK

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論