版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆遼寧省沈陽市第三十八中學中考數(shù)學押題卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,從圓外一點引圓的兩條切線,,切點分別為,,如果,,那么弦AB的長是()A. B. C. D.2.如圖,將一張三角形紙片的一角折疊,使點落在處的處,折痕為.如果,,,那么下列式子中正確的是()A. B. C. D.3.如圖,每個小正方形的邊長均為1,則下列圖形中的三角形(陰影部分)與相似的是()A. B.C. D.4.已知關于x的二次函數(shù)y=x2﹣2x﹣2,當a≤x≤a+2時,函數(shù)有最大值1,則a的值為()A.﹣1或1 B.1或﹣3 C.﹣1或3 D.3或﹣35.最小的正整數(shù)是()A.0B.1C.﹣1D.不存在6.如圖,已知菱形ABCD的對角線AC.BD的長分別為6cm、8cm,AE⊥BC于點E,則AE的長是()A. B. C. D.7.把拋物線y=﹣2x2向上平移1個單位,得到的拋物線是()A.y=﹣2x2+1 B.y=﹣2x2﹣1 C.y=﹣2(x+1)2 D.y=﹣2(x﹣1)28.方程的解是A.3 B.2 C.1 D.09.如圖,矩形是由三個全等矩形拼成的,與,,,,分別交于點,設,,的面積依次為,,,若,則的值為()A.6 B.8 C.10 D.1210.如果一組數(shù)據(jù)6、7、x、9、5的平均數(shù)是2x,那么這組數(shù)據(jù)的方差為()A.4 B.3 C.2 D.1二、填空題(共7小題,每小題3分,滿分21分)11.如圖,寬為的長方形圖案由8個相同的小長方形拼成,若小長方形的邊長為整數(shù),則的值為__________.12.若關于x的一元二次方程有兩個不相等的實數(shù)根,則k的取值范圍是______.13.已知實數(shù)x,y滿足,則以x,y的值為兩邊長的等腰三角形的周長是______.14.如圖,在四邊形ABCD中,點E、F分別是邊AB、AD的中點,BC=15,CD=9,EF=6,∠AFE=50°,則∠ADC的度數(shù)為_____.15.如圖,在邊長為3的正方形ABCD中,點E是BC邊上的點,EC=2,∠AEP=90°,且EP交正方形外角的平分線CP于點P,則PC的長為_____.16.如圖,直徑為1000mm的圓柱形水管有積水(陰影部分),水面的寬度AB為800mm,則水的最大深度CD是______mm.17.化簡:________.三、解答題(共7小題,滿分69分)18.(10分)已知關于x的一元二次方程x2﹣(2m+3)x+m2+2=1.(1)若方程有實數(shù)根,求實數(shù)m的取值范圍;(2)若方程兩實數(shù)根分別為x1、x2,且滿足x12+x22=31+|x1x2|,求實數(shù)m的值.19.(5分)已知AC=DC,AC⊥DC,直線MN經(jīng)過點A,作DB⊥MN,垂足為B,連接CB.(1)直接寫出∠D與∠MAC之間的數(shù)量關系;(2)①如圖1,猜想AB,BD與BC之間的數(shù)量關系,并說明理由;②如圖2,直接寫出AB,BD與BC之間的數(shù)量關系;(3)在MN繞點A旋轉的過程中,當∠BCD=30°,BD=時,直接寫出BC的值.20.(8分)已知:如圖,在正方形ABCD中,點E、F分別是AB、BC邊的中點,AF與CE交點G,求證:AG=CG.21.(10分)為了了解市民“獲取新聞的最主要途徑”,某市記者開展了一次抽樣調查,根據(jù)調査結果繪制了如下尚不完整的統(tǒng)計圖:根據(jù)以上信息解答下列問題:這次接受調查的市民總人數(shù)是_______人;扇形統(tǒng)計圖中,“電視”所對應的圓心角的度數(shù)是_________;請補全條形統(tǒng)計圖;若該市約有80萬人,請你估計其中將“電腦和手機上網(wǎng)”作為“獲取新聞的最主要途徑”的總人數(shù).22.(10分)如圖所示,在平面直角坐標系xOy中,正方形OABC的邊長為2cm,點A、C分別在y軸的負半軸和x軸的正半軸上,拋物線y=ax2+bx+c經(jīng)過點A、B和D(4,-2(1)求拋物線的表達式.(2)如果點P由點A出發(fā)沿AB邊以2cm/s的速度向點B運動,同時點Q由點B出發(fā),沿BC邊以1cm/s的速度向點C運動,當其中一點到達終點時,另一點也隨之停止運動.設S=PQ2(cm2).①試求出S與運動時間t之間的函數(shù)關系式,并寫出t的取值范圍;②當S取54(3)在拋物線的對稱軸上求點M,使得M到D、A的距離之差最大,求出點M的坐標.23.(12分)如圖:△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°求證:(1)△PAC∽△BPD;(2)若AC=3,BD=1,求CD的長.24.(14分)如圖,在平面直角坐標系中,拋物線y=ax2+2x+c與x軸交于A(﹣1,0)B(3,0)兩點,與y軸交于點C.求拋物線y=ax2+2x+c的解析式:;點D為拋物線上對稱軸右側、x軸上方一點,DE⊥x軸于點E,DF∥AC交拋物線對稱軸于點F,求DE+DF的最大值;①在拋物線上是否存在點P,使以點A,P,C為頂點,AC為直角邊的三角形是直角三角形?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由;②點Q在拋物線對稱軸上,其縱坐標為t,請直接寫出△ACQ為銳角三角形時t的取值范圍.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解題分析】
先利用切線長定理得到,再利用可判斷為等邊三角形,然后根據(jù)等邊三角形的性質求解.【題目詳解】解:,PB為的切線,,,為等邊三角形,.故選C.【題目點撥】本題考查切線長定理,掌握切線長定理是解題的關鍵.2、A【解題分析】
分析:根據(jù)三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得結論.詳解:由折疊得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故選A.點睛:本題考查了三角形外角的性質,熟練掌握三角形的外角等于與它不相鄰的兩個內角的和是關鍵.3、B【解題分析】
根據(jù)相似三角形的判定方法一一判斷即可.【題目詳解】解:因為中有一個角是135°,選項中,有135°角的三角形只有B,且滿足兩邊成比例夾角相等,故選:B.【題目點撥】本題考查相似三角形的性質,解題的關鍵是學會利用數(shù)形結合的思想解決問題,屬于中考??碱}型.4、A【解題分析】分析:詳解:∵當a≤x≤a+2時,函數(shù)有最大值1,∴1=x2-2x-2,解得:,即-1≤x≤3,∴a=-1或a+2=-1,∴a=-1或1,故選A.點睛:本題考查了求二次函數(shù)的最大(小)值的方法,注意:只有當自變量x在整個取值范圍內,函數(shù)值y才在頂點處取最值,而當自變量取值范圍只有一部分時,必須結合二次函數(shù)的增減性及對稱軸判斷何處取最大值,何處取最小值.5、B【解題分析】
根據(jù)最小的正整數(shù)是1解答即可.【題目詳解】最小的正整數(shù)是1.故選B.【題目點撥】本題考查了有理數(shù)的認識,關鍵是根據(jù)最小的正整數(shù)是1解答.6、D【解題分析】
根據(jù)菱形的性質得出BO、CO的長,在RT△BOC中求出BC,利用菱形面積等于對角線乘積的一半,也等于BC×AE,可得出AE的長度.【題目詳解】∵四邊形ABCD是菱形,∴CO=AC=3,BO=BD=,AO⊥BO,∴.∴.又∵,∴BC·AE=24,即.故選D.點睛:此題考查了菱形的性質,也涉及了勾股定理,要求我們掌握菱形的面積的兩種表示方法,及菱形的對角線互相垂直且平分.7、A【解題分析】
根據(jù)“上加下減”的原則進行解答即可.【題目詳解】解:由“上加下減”的原則可知,把拋物線y=﹣2x2向上平移1個單位,得到的拋物線是:y=﹣2x2+1.故選A.【題目點撥】本題考查的是二次函數(shù)的圖象與幾何變換,熟知“上加下減”的原則是解答此題的關鍵.8、A【解題分析】試題分析:分式方程去分母轉化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解:去分母得:2x=3x﹣3,解得:x=3,經(jīng)檢驗x=3是分式方程的解.故選A.9、B【解題分析】
由條件可以得出△BPQ∽△DKM∽△CNH,可以求出△BPQ與△DKM的相似比為,△BPQ與△CNH相似比為,由相似三角形的性質,就可以求出,從而可以求出.【題目詳解】∵矩形AEHC是由三個全等矩形拼成的,
∴AB=BD=CD,AE∥BF∥DG∥CH,∴∠BQP=∠DMK=∠CHN,∴△ABQ∽△ADM,△ABQ∽△ACH,∴,,∵EF=FG=BD=CD,AC∥EH,
∴四邊形BEFD、四邊形DFGC是平行四邊形,
∴BE∥DF∥CG,
∴∠BPQ=∠DKM=∠CNH,又∵∠BQP=∠DMK=∠CHN,
∴△BPQ∽△DKM,△BPQ∽△CNH,∴,,即,,,∴,即,解得:,∴,故選:B.【題目點撥】本題考查了矩形的性質,平行四邊形的判定和性質,相似三角形的判定與性質,三角形的面積公式,得出S2=4S1,S3=9S1是解題關鍵.10、A【解題分析】分析:先根據(jù)平均數(shù)的定義確定出x的值,再根據(jù)方差公式進行計算即可求出答案.詳解:根據(jù)題意,得:=2x解得:x=3,則這組數(shù)據(jù)為6、7、3、9、5,其平均數(shù)是6,所以這組數(shù)據(jù)的方差為[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,故選A.點睛:此題考查了平均數(shù)和方差的定義.平均數(shù)是所有數(shù)據(jù)的和除以數(shù)據(jù)的個數(shù).方差是一組數(shù)據(jù)中各數(shù)據(jù)與它們的平均數(shù)的差的平方的平均數(shù).二、填空題(共7小題,每小題3分,滿分21分)11、16【解題分析】
設小長方形的寬為a,長為b,根據(jù)大長方形的性質可得5a=3b,m=a+b=a+=,再根據(jù)m的取值范圍即可求出a的取值范圍,又因為小長方形的邊長為整數(shù)即可解答.【題目詳解】解:設小長方形的寬為a,長為b,由題意得:5a=3b,所以b=,m=a+b=a+=,因為,所以10<<20,解得:<a<,又因為小長方形的邊長為整數(shù),a=4、5、6、7,因為b=,所以5a是3的倍數(shù),即a=6,b==10,m=a+b=16.故答案為:16.【題目點撥】本題考查整式的列式、取值,解題關鍵是根據(jù)矩形找出小長方形的邊長關系.12、k<5且k≠1.【解題分析】試題解析:∵關于x的一元二次方程有兩個不相等的實數(shù)根,解得:且故答案為且13、1或2【解題分析】
先根據(jù)非負數(shù)的性質列式求出x、y的值,再分x的值是腰長與底邊兩種情況討論求解.【題目詳解】根據(jù)題意得,x-5=0,y-7=0,解得x=5,y=7,①5是腰長時,三角形的三邊分別為5、5、7,三角形的周長為1.②5是底邊時,三角形的三邊分別為5、7、7,能組成三角形,5+7+7=2;所以,三角形的周長為:1或2;故答案為1或2.【題目點撥】本題考查了等腰三角形的性質,絕對值與算術平方根的非負性,根據(jù)幾個非負數(shù)的和等于0,則每一個算式都等于0求出x、y的值是解題的關鍵,難點在于要分情況討論并且利用三角形的三邊關系進行判斷.14、140°【解題分析】
如圖,連接BD,∵點E、F分別是邊AB、AD的中點,∴EF是△ABD的中位線,∴EF∥BD,BD=2EF=12,∴∠ADB=∠AFE=50°,∵BC=15,CD=9,BD=12,∴BC2=225,CD2=81,BD2=144,∴CD2+BD2=BC2,∴∠BDC=90°,∴∠ADC=∠ADB+∠BDC=50°+90°=140°.故答案為:140°.15、【解題分析】
在AB上取BN=BE,連接EN,根據(jù)已知及正方形的性質利用ASA判定△ANE≌△ECP,從而得到NE=CP,在等腰直角三角形BNE中,由勾股定理即可解決問題.【題目詳解】在AB上取BN=BE,連接EN,作PM⊥BC于M.∵四邊形ABCD是正方形,∴AB=BC,∠B=∠DCB=∠DCM=90°.∵BE=BN,∠B=90°,∴∠BNE=45°,∠ANE=135°.∵PC平分∠DCM,∴∠PCM=45°,∴∠ECP=135°.∵AB=BC,BN=BE,∴AN=EC.∵∠AEP=90°,∴∠AEB+∠PEC=90°.∵∠AEB+∠NAE=90°,∴∠NAE=∠PEC,∴△ANE≌△ECP(ASA),∴NE=CP.∵BC=3,EC=2,∴NB=BE=1,∴NE==,∴PC=.故答案為:.【題目點撥】本題考查了正方形的性質、全等三角形的判定和性質、勾股定理等知識,解題的關鍵是學會添加常用輔助線,構造全等三角形解決問題,屬于中考??碱}型.16、200【解題分析】
先求出OA的長,再由垂徑定理求出AC的長,根據(jù)勾股定理求出OC的長,進而可得出結論.【題目詳解】解:∵⊙O的直徑為1000mm,
∴OA=OA=500mm.
∵OD⊥AB,AB=800mm,
∴AC=400mm,
∴OC===300mm,∴CD=OD-OC=500-300=200(mm).
答:水的最大深度為200mm.故答案為:200【題目點撥】本題考查的是垂徑定理的應用,根據(jù)勾股定理求出OC的長是解答此題的關鍵.17、【解題分析】
根據(jù)平面向量的加法法則計算即可【題目詳解】.故答案為:【題目點撥】本題考查平面向量的加減法則,解題的關鍵是熟練掌握平面向量的加減法則,注意平面向量的加減適合加法交換律以及結合律,適合去括號法則.三、解答題(共7小題,滿分69分)18、(1)m≥﹣;(2)m=2.【解題分析】
(1)利用判別式的意義得到(2m+3)2﹣4(m2+2)≥1,然后解不等式即可;(2)根據(jù)題意x1+x2=2m+3,x1x2=m2+2,由條件得x12+x22=31+x1x2,再利用完全平方公式得(x1+x2)2﹣3x1x2﹣31=1,所以2m+3)2﹣3(m2+2)﹣31=1,然后解關于m的方程,最后利用m的范圍確定滿足條件的m的值.【題目詳解】(1)根據(jù)題意得(2m+3)2﹣4(m2+2)≥1,解得m≥﹣;(2)根據(jù)題意x1+x2=2m+3,x1x2=m2+2,因為x1x2=m2+2>1,所以x12+x22=31+x1x2,即(x1+x2)2﹣3x1x2﹣31=1,所以(2m+3)2﹣3(m2+2)﹣31=1,整理得m2+12m﹣28=1,解得m1=﹣14,m2=2,而m≥﹣;所以m=2.【題目點撥】本題考查了根與系數(shù)的關系:若x1,x2是一元二次方程ax2+bx+c=1(a≠1)的兩根時,.靈活應用整體代入的方法計算.19、(1)相等或互補;(2)①BD+AB=BC;②AB﹣BD=BC;(3)BC=或.【解題分析】
(1)分為點C,D在直線MN同側和點C,D在直線MN兩側,兩種情況討論即可解題,(2)①作輔助線,證明△BCD≌△FCA,得BC=FC,∠BCD=∠FCA,∠FCB=90°,即△BFC是等腰直角三角形,即可解題,②在射線AM上截取AF=BD,連接CF,證明△BCD≌△FCA,得△BFC是等腰直角三角形,即可解題,(3)分為當點C,D在直線MN同側,當點C,D在直線MN兩側,兩種情況解題即可,見詳解.【題目詳解】解:(1)相等或互補;理由:當點C,D在直線MN同側時,如圖1,∵AC⊥CD,BD⊥MN,∴∠ACD=∠BDC=90°,在四邊形ABDC中,∠BAD+∠D=360°﹣∠ACD﹣∠BDC=180°,∵∠BAC+∠CAM=180°,∴∠CAM=∠D;當點C,D在直線MN兩側時,如圖2,∵∠ACD=∠ABD=90°,∠AEC=∠BED,∴∠CAB=∠D,∵∠CAB+∠CAM=180°,∴∠CAM+∠D=180°,即:∠D與∠MAC之間的數(shù)量是相等或互補;(2)①猜想:BD+AB=BC如圖3,在射線AM上截取AF=BD,連接CF.又∵∠D=∠FAC,CD=AC∴△BCD≌△FCA,∴BC=FC,∠BCD=∠FCA∵AC⊥CD∴∠ACD=90°即∠ACB+∠BCD=90°∴∠ACB+∠FCA=90°即∠FCB=90°∴BF=∵AF+AB=BF=∴BD+AB=;②如圖2,在射線AM上截取AF=BD,連接CF,又∵∠D=∠FAC,CD=AC∴△BCD≌△FCA,∴BC=FC,∠BCD=∠FCA∵AC⊥CD∴∠ACD=90°即∠ACB+∠BCD=90°∴∠ACB+∠FCA=90°即∠FCB=90°∴BF=∵AB﹣AF=BF=∴AB﹣BD=;(3)①當點C,D在直線MN同側時,如圖3﹣1,由(2)①知,△ACF≌△DCB,∴CF=BC,∠ACF=∠ACD=90°,∴∠ABC=45°,∵∠ABD=90°,∴∠CBD=45°,過點D作DG⊥BC于G,在Rt△BDG中,∠CBD=45°,BD=,∴DG=BG=1,在Rt△CGD中,∠BCD=30°,∴CG=DG=,∴BC=CG+BG=+1,②當點C,D在直線MN兩側時,如圖2﹣1,過點D作DG⊥CB交CB的延長線于G,同①的方法得,BG=1,CG=,∴BC=CG﹣BG=﹣1即:BC=或,【題目點撥】本題考查了三角形中的邊長關系,等腰直角三角形的性質,中等難度,分類討論與作輔助線是解題關鍵.20、詳見解析.【解題分析】
先證明△ADF≌△CDE,由此可得∠DAF=∠DCE,∠AFD=∠CED,再根據(jù)∠EAG=∠FCG,AE=CF,∠AEG=∠CFG可得△AEG≌△CFG,所以AG=CG.【題目詳解】證明:∵四邊形ABCD是正方形,∴AD=DC,∵E、F分別是AB、BC邊的中點,∴AE=ED=CF=DF.又∠D=∠D,∴△ADF≌△CDE(SAS).∴∠DAF=∠DCE,∠AFD=∠CED.∴∠AEG=∠CFG.在△AEG和△CFG中,∴△AEG≌△CFG(ASA).∴AG=CG.【題目點撥】本題主要考查正方形的性質、全等三角形的判定和性質,關鍵是要靈活運用全等三角形的判定方法.21、(1)1000;(2)54°;(3)見解析;(4)32萬人【解題分析】
根據(jù)“每項人數(shù)=總人數(shù)×該項所占百分比”,“所占角度=360度×該項所占百分比”來列出式子,即可解出答案.【題目詳解】解:(1)400÷40%=1000(人)(2)360°×=54°,故答案為:1000人;
54°
;(3)1-10%-9%-26%-40%=15%15%×1000=150(人)(4)80×=52.8(萬人)答:總人數(shù)為52.8萬人.【題目點撥】本題考查獲取圖表信息的能力,能夠根據(jù)圖表找到必要條件是解題關鍵.22、(1)拋物線的解析式為:y=1(2)①S與運動時間t之間的函數(shù)關系式是S=5t2﹣8t+4,t的取值范圍是0≤t≤1;②存在.R點的坐標是(3,﹣32(3)M的坐標為(1,﹣83【解題分析】試題分析:(1)設拋物線的解析式是y=ax2+bx+c,求出A、B、D的坐標代入即可;(2)①由勾股定理即可求出;②假設存在點R,可構成以P、B、R、Q為頂點的平行四邊形,求出P、Q的坐標,再分為兩種種情況:A、B、C即可根據(jù)平行四邊形的性質求出R的坐標;(3)A關于拋物線的對稱軸的對稱點為B,過B、D的直線與拋物線的對稱軸的交點為所求M,求出直線BD的解析式,把拋物線的對稱軸x=1代入即可求出M的坐標.試題解析:(1)設拋物線的解析式是y=ax2+bx+c,∵正方形的邊長2,∴B的坐標(2,﹣2)A點的坐標是(0,﹣2),把A(0,﹣2),B(2,﹣2),D(4,﹣23)代入得:c=-2解得a=16,b=﹣1∴拋物線的解析式為:y=1答:拋物線的解析式為:y=1(2)①由圖象知:PB=2﹣2t,BQ=t,∴S=PQ2=PB2+BQ2,=(2﹣2t)2+t2,即S=5t2﹣8t+4(0≤t≤1).答:S與運動時間t之間的函數(shù)關系式是S=5t2﹣8t+4,t的取值范圍是0≤t≤1;②假設存在點R,可構成以P、B、R、Q為頂點的平行四邊形.∵S=5t2﹣8t+4(0≤t≤1),∴當S=54時,5t2﹣8t+4=54,得20t解得t=12,t=11此時點P的坐標為(1,﹣2),Q點的坐標為(2,﹣32若R點存在,分情況討論:(i)假設R在BQ的右邊,如圖所示,這時QR=PB,RQ∥PB,則R的橫坐標為3,R的縱坐標為﹣32即R(3,﹣32代入y=1∴這時存在R(3,﹣32(ii)假設R在QB的左邊時,這時PR=QB,PR∥QB,則R(1,﹣32)代入,y=左右不相等,∴R不在拋物線上.(1分)綜上所述,存點一點R(3,﹣32答:存在,R點的坐標是(3,﹣32(3)如圖,M′B=M′A,∵A關于拋物線的對稱軸的對稱點為B,過B、D的直線與拋物線的對稱軸的交點為所求M,理由是:∵MA=MB,若M不為L與DB的交點,則三點B、M、D構成三角形,∴|MB|﹣|MD|<|DB|,即M到D、A的距離之差為|DB|時,差值最大,設直線BD的解析式是y=kx+b,把B、D的坐標代入得:,解得:k=23,b=﹣10∴y=23x﹣10拋物線y=1把x=1代入得:y=﹣8∴M的坐標為(1,﹣83答:M的坐標為(1,﹣83考點:二次函數(shù)綜合題.23、(1)見解析;(2)6.【解題分析】
(1)由△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°,可得∠PAB=∠PBD,∠BPD=∠PAC,從而即可證明;
(2)根據(jù)相似三角形對應邊成比例即可求出PC=PD=3,再由勾股定理即可求解.【題目詳解】證明:(1)∵△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°,∴∠APC+∠BPD=45°,
又∠PAB+∠PBA=45°,∠PBA+∠PBD=45°,∴∠PAB=∠PBD,∠BPD=∠PAC,
∵∠PCA=∠PDB,∴△PAC∽△BPD;
(2)∵ACPD=PCBD,PC=PD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 24630.2-2024產(chǎn)品幾何技術規(guī)范(GPS)平面度第2部分:規(guī)范操作集
- 農(nóng)村房屋購買合同范文
- 個體戶車輛轉讓協(xié)議
- 電腦租賃合同范本2024年
- 2024年鉆機購銷合同國際貿易合同
- 合作伙伴協(xié)議:有限合伙企業(yè)合作合同
- 短期運輸合同書
- 勞務協(xié)議書范本中的風險防范
- 土地買賣合同范本2024年
- 校園意外傷害賠償協(xié)議
- 書法入門(三)課件
- 一年級數(shù)學上冊2位置第1課時上下前后作業(yè)新人教版
- 亮化維修協(xié)議書范本亮化維修方案(九篇)
- 發(fā)展?jié)h語(第二版)中級寫作教案
- 熱交換器的定期檢驗-全國壓力容器檢驗員RQ-1
- 融資擔保機構擔保代償管理指引
- GB 14194-1993永久氣體氣瓶充裝規(guī)定
- 如何做好行政執(zhí)法與刑事司法相銜接課件
- 注氮機司機講義
- 數(shù)據(jù)庫工程師考試大綱
- 小學數(shù)學西南師大六年級上冊七負數(shù)的初步認識 西師大數(shù)學六上《負數(shù)的初步認識》
評論
0/150
提交評論