




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
TheimpactofAIon
UKjobsandtraining
November2023
2
Contents
Acknowledgements3
TheimpactofAIonUKjobsandtraining4
Introduction4
Summary5
1Methodology6
1.1SelectionofAIapplications6
1.2Mappinghumanabilitiestojobroles7
1.3AssessingAIapplicationsagainsthumanabilities7
1.4Calculatingoccupationalexposure8
1.5Mappingoccupationstotrainingpathways9
1.6Datasources9
1.7ResearchbyInternationalMonetaryFund10
2OccupationalexposuretoAI11
2.1OccupationsmostexposedtoAI11
2.2ExposuretoAIbyskilllevelofoccupation13
3ExposuretoAIacrossindustriesandgeography16
3.1ExposuretoAIacrossindustry16
3.2ExposuretoAIbygeography17
4ExposuretoAIbyqualification18
4.1Trainingroutes18
4.2Subjectareas19
Annex1:Apprenticeships22
Annex2:Augmentationversussubstitution24
Annex3:ComparisontofindingsfromthePewResearchCenter26
Annex4:Furtheranalysisforoccupationsexposedtolargelanguagemodelling28
ExposuretoLLMacrossindustries28
ExposuretoLLMbygeography30
ExposuretoLLMbyqualification31
Trainingroutes31
Subjectareas32
3
Acknowledgements
TheauthorswouldliketoextendtheirthankstoEdwardFelten,RobertSeamansand
ManavRajwhopublishedtheresourcesfortheirresearch,allowingittobereusedfor
thisreport.TheywouldalsoliketothanktheNationalFoundationforEducationResearchandresearchersattheUniversityofSheffieldandtheUniversityofWarwickformakingavailablethelatestmappingbetweenSOC2020andO*NET.
4
TheimpactofAIonUKjobsandtraining
Introduction
AdvancesinArtificialIntelligence(AI)arewidelyexpectedtohaveaprofoundand
widespreadeffectontheUKeconomyandsociety,thoughtheprecisenatureandspeedofthiseffectisuncertain.Itisestimatedthat10-30%ofjobsareautomatablewithAI
havingthepotentialtoincreaseproductivityandcreatenewhighvaluejobsintheUKeconomy
.1,
2
TheUKeducationsystemandemployerswillneedtoadapttoensurethatindividualsintheworkforcehavetheskillstheyneedtomakethemostofthepotentialbenefits,advancesinAIwillbring.
Thisreport,producedbytheUnitforFutureSkills
3
intheDepartmentforEducation,is
oneofthefirstattemptstoquantifytheimpactofAIontheUKjobmarket(separateto
automationmoregenerally).TheresearchtakesamethodologyfromaUSbasedstudydevelopedbyFelteneta
l4
andappliesitforaUKcontext.Theapproachconsiderstheabilitiesneededtoperformdifferentjobroles,andtheextenttowhichthesecanbeaidedbyaselectionof10commonAIapplications
5.
Themethodologyisextendedfurtherto
considerthelinkbetweentrainingandjobsimpactedbyAI,usinganoveldatasetthatincludesinformationonthequalificationsheldbyyoungpeopleinemployment.
Resultsshouldbeinterpretedwithcaution
TheestimatesofwhichjobsaremoreexposedtoAIarebasedonanumberof
uncertainassumptionssotheresultsshouldbeinterpretedwithcaution.Quantifyingoccupationsintermsofabilitiestoperformajobrolewillneverfullydescribeallrolesandalevelofjudgementisrequiredwheninterpretingtheresults.Further,theextenttowhichoccupationsareexposedtoAIwillchangeduetothepaceatwhichAI
technologiesaredevelopingandasnewdatabecomesavailable.
However,thethemeshighlightedbytheanalysisareexpectedtocontinueandprovideagoodbasisforconsideringtherelativeimpactofAIacrossdifferentpartsofthe
labourmarket.
1
PwC,Willrobotsreallystealourjobs?
2
TheBritishInstituteAcademy,Theimpactofartificialintelligenceonwork
3
.uk/government/groups/unit-for-future-skills
4
FeltenE,RajM,SeamansR(2023)‘HowwillLanguageModelerslikeChatGPTAffectOccupationsand
Industries?’
5Abstractstrategygames;real-timevideogames;imagerecognition;visualquestionanswering;imagegeneration;readingcomprehension;languagemodelling;translation;speechrecognition;instrumentaltrackrecognition.
5
Summary
Thisreportshowstheoccupations,sectorsandareaswithintheUKlabourmarketthatareexpectedtobemostimpactedbyAIandlargelanguagemodelsspecifically.Italsoshowsthequalificationsandtrainingroutesthatmostcommonlyleadtothesehighlyimpactedjobs.Themainfindingsare:
?ProfessionaloccupationsaremoreexposedtoAI,particularlythose
associatedwithmoreclericalworkandacrossfinance,lawandbusiness
managementroles.Thisincludesmanagementconsultantsandbusiness
analysts;accountants;andpsychologists.TeachingoccupationsalsoshowhigherexposuretoAI,wheretheapplicationoflargelanguagemodelsisparticularly
relevant.
?Thefinance&insurancesectorismoreexposedtoAIthananyothersector.TheothersectorsmostexposedtoAIareinformation&communication;
professional,scientific&technical;property;publicadministration&defence;andeducation.
?WorkersinLondonandtheSouthEasthavethehighestexposuretoAI,
reflectingthegreaterconcentrationofprofessionaloccupationsinthoseareas.
WorkersintheNorthEastareinjobswiththeleastexposuretoAIacrosstheUK.However,overallthevariationinexposuretoAIacrossthegeographicalareasismuchsmallerthanthevariationobservedacrossoccupationsorindustries.
?Employeeswithhigherlevelsofachievementaretypicallyinjobsmore
exposedtoAI.Forexample,employeeswithalevel6qualification(equivalenttoadegree)aremorelikelytoworkinajobwithhigherexposuretoAIthan
employeeswithalevel3qualification(equivalenttoA-Levels).
?EmployeeswithqualificationsinaccountingandfinancethroughFurtherEducationorapprenticeships,andeconomicsandmathematicsthrough
HigherEducationaretypicallyinjobsmoreexposedtoAI.Employeeswithqualificationsatlevel3orbelowinbuildingandconstruction,manufacturing
technologies,andtransportationoperationsandmaintenanceareinjobsthatareleastexposedtoAI.
TheanalysismeasurestheexposureofjobstoAI,ratherthandistinguishingwhetherajobwillbeaugmented(aided)orreplaced(substituted)byAI.Researchbythe
InternationalLaborOrganization(ILO
)6
suggeststhatmostjobsandindustriesareonlypartlyexposedtoautomationandaremorelikelytobecomplementedratherthan
substitutedbygenerativeAIlikeChatGPT.Annex2mapsthejobshighlightedinthatreporttotheUKjobmarket,andgenerallyincludecustomerserviceandadministrative
occupations,includingcallandcontactcentreandunclassifiedadministrativeoccupations.
6
GenerativeAIandjobs:Aglobalanalysisofpotentialeffectsonjobquantityandquality()
6
1Methodology
ThemethodologybroadlyfollowstheapproachdescribedbyFelteneta
l7
tocreateanAIOccupationalExposure(AIOE)score,withsomeadaptationstomakeitsuitableforaUKcontext.
1.1SelectionofAIapplications
TheAIOEisconstructedbasedonassumptionsaroundtheuseofadefinedsetof
commonAIapplications.The10AIapplicationsselectedarebasedonthosewheretheElectronicFrontierFoundation(EFF)hasrecordedscientificactivityandprogressinthetechnologyfrom2010onwards.
Table1:AIapplications
AIapplication
Definition
Abstractstrategygames
Theabilitytoplayabstractgamesinvolving
sometimescomplexstrategyandreasoningability,suchaschess,go,orcheckers,atahighlevel.
Real-timevideogames
Theabilitytoplayavarietyofreal-timevideogamesofincreasingcomplexityatahighlevel.
Imagerecognition
Thedeterminationofwhatobjectsarepresentinastillimage.
Visualquestionanswering
Therecognitionofevents,relationships,andcontextfromastillimage.
Imagegeneration
Thecreationofcompleximages.
Readingcomprehension
Theabilitytoanswersimplereasoningquestionsbasedonanunderstandingoftext.
Languagemodelling
Theabilitytomodel,predict,ormimichumanlanguage.
Translation
Thetranslationofwordsortextfromonelanguageintoanother.
Speechrecognition
Therecognitionofspokenlanguageintotext.
Instrumentaltrackrecognition
Therecognitionofinstrumentalmusicaltracks.
ThissetofapplicationsdoesnotcomprehensivelycoverthesetofapplicationsforwhichAIcouldultimatelybeused;however,basedonfurtherworkconductedbyFeltenetalwithfieldexperts,itisbelievedthattheserepresentfundamentalapplicationsofAIthat
7FeltenE,RajM,SeamansR(2023)HowwillLanguageModelerslikeChatGPTAffectOccupationsandIndustries?
7
arelikelytohaveimplicationsfortheworkforceandareapplicationsthatcoverthemostlikelyandmostcommonusesofAI.
1.2Mappinghumanabilitiestojobroles
ThemethodologybyFeltenetalusestheOccupationalInformationNetwork(O*NET)
databaseofoccupationalcharacteristicsandworkerrequirementsinformationacrosstheUSeconomy
.8
ThereiscurrentlynoequivalentdatabaseforUKoccupation
s9
sothe
O*NETdataismappedtotheUKusingacrosswalkbetweenO*NEToccupationsandSOC2010.
TheO*NETsystemuses52distinctabilitiestodescribetheworkplaceactivitiesofeachoccupation,eachwithaseparatescorefor‘level’and‘importance’.Abilitiesaregroupedunderfourcategories:cognitive,physical,psychometerandsensory.Examplesof
abilitiesareoralcomprehension,writtenexpression,mathematicalreasoning,manualdexterity,andstamina
.10
SOC2010wasusedinsteadofSOC2020toalignwithinformationontrainingpathwaysandduetoknownissueswithSOC2020
11
.UpdatingtheanalysistoSOC2020willleadtosmallchangesintheorderingofAIOEscoresbutnottheoverallfindings.
1.3AssessingAIapplicationsagainsthumanabilities
AIapplicationsarelinkedtoworkplaceabilitiesusingacrowd-sourceddatasetcollectedbyFeltenetal,andconstructedusingsurveyresponsesof“gigworkers”fromAmazon'sMechanicalTurk(mTurk)webservice.Thedatahasameasureofapplication-ability
relatednessforeachcombinationboundbetween0and1.Thismeasureofapplication-abilityrelatednessisthenorganisedintoamatrixthatconnectsthe10AIapplicationstothe52O*NEToccupationalabilities.Anability-levelexposureiscalculatedasfollows:
Aij=xij
(1)
Inthisequation,iindexestheAIapplicationandjindexestheoccupationalability.The
ability-levelexposure,A,iscalculatedasthesumofthe10application-abilityrelatednessscores,x,asconstructedusingmTurksurveydata.Bycalculatingtheability-levelAI
8FeltenE,RajM,SeamansR(2023)HowwillLanguageModelerslikeChatGPTAffectOccupationsandIndustries?
9
.uk/government/publications/a-skills-classification-for-the-uk
10
O*NET28.0DatabaseatO*NETResourceCenter()
11
RevisionofmiscodedoccupationaldataintheONSLabourForceSurvey,UK-OfficeforNational
Statistics
8
exposureasasumofalltheAIapplications,allapplicationsareweightedequall
y12.
Thisapproachassumesthateachapplicationhasanindependenteffectonanabilityand
doesnotconsiderinteractionsacrossapplications.
Theestimatesforeachapplicationarethenstandardisedtogivearatingbetween0and1.
1.4Calculatingoccupationalexposure
Foreachoccupation,thevaluesforthelevelandimportanceofeachabilityarecombinedwiththeratingfortherelatednessofeachAIapplicationtocreateanAIOccupational
Exposure(AIOE)score.ThisisdoneoverallforallAIapplications,andindividuallyforeachapplication,e.g.languagemodelling.
∑1Aij×Ljk×Ijk
∑1Ljk×Ijk
AIOEk=
(2)
Inthisequation,iindexestheAIapplication,jindexestheoccupationalability,andk
indexestheoccupation.Aijrepresentstheability-levelexposurescorecalculatedin
Equation1.Theability-levelAIexposureisweightedbytheability'sprevalence(Ljk)andimportance(Ijk)withineachoccupationasmeasuredbyO*NET(mappedtoSOC2010)bymultiplyingtheability-levelAIexposurebytheprevalenceandimportancescoresforthatabilitywithineachoccupation,scaledsothattheyareequallyweighted.These
prevalenceandimportancescores,accountforthepresenceofdifferentabilitieswithinanoccupation.Abilitiesthatareintegraltoanoccupationhavehighprevalenceand
importancescores,whilethosethatareusedlessoftenorarelessvitalhavelower
prevalenceandimportancescores.Anoccupation'saggregateexposuretoAIis
calculatedbysummingthisweightedability-levelAIexposureacrossallabilitiesinanoccupation.Thescoresarethenstandardisedandrankedfrommosttoleastexposed.Thesescoresareappliedtoemploymentcountsacrossoccupationstogiveaggregateexposurescores,forexampleacrossthegeographicalareas.
IntestingtherobustnessoftheirmethodologyFeltenetalfoundevidencethatAIismostlikelytoaffectcognitiveandsensoryabilities,andtheAIOEscoreswerenotsensitivetoexcludinganyoftheapplicationsinthesample.Therefore,anyAIapplicationsthatmayhavebeenexcludedarealsolikelytoberelatedtoasimilarsetofcognitiveandsensoryabilities.
12Feltenetalcarriedoutfurtheranalysiswhichsuggestedthatweightingtheapplicationsisunlikelytohaveameaningfulimpactonthemeasure.
9
1.5Mappingoccupationstotrainingpathways
RelationshipsbetweenoccupationsandtrainingaretakenfromASHE-LEOdata,anewdataresourceavailableintheDepartmentforEducation.Itbringstogetherthe
longitudinaleducationandlabourmarketinformationintheLongitudinalEducation
Outcomesstudy(LEO
)13
withtheinformationonemploymentandearningsintheAnnualSurveyofHoursandEarnings(ASHE)
.14
Therearearound100,000individualsintheASHE-LEOsampleineachyear.This
represents45-75%oftheoverallASHEsample,withlateryearshavingabettermatchratethanearlieryears,andyoungerageshavingabettermatchratethanolderages.ASHE-LEOisusedhereasanapproximatelyrepresentativesampleofearlycareer
employeesinLEO(employeesaged23-30inthe2018-19taxyear).
Thedataisusedtoidentifythetrainingtakenbyemployeesforeachoccupation.Aseachtrainingroutemaybeassociatedwithmultipleoccupations,aweightedaverageis
calculatedtoarriveatanaverageAIOEscore.
1.6Datasources
Name
Description
AIOEdata1
5
Organisedmeasureofapplication-abilityrelatednessthatconnectsthe10EFFAIapplicationstothe52O*NEToccupationalabilities.
AnnualPopulationSurvey
Aresidencebasedlabourmarketsurvey
encompassingpopulation,economicactivity
(employmentandunemployment),economicinactivityandqualifications.
Apprenticeshipdata
ApprenticeshipsstartsinEnglandreportedforan
academicyearbasedondatareturnedbyproviders.
ASHE-LEO
Educationandlabourmarketinformationinthe
LongitudinalEducationOutcomesstudy(LEO)linkedwiththeinformationonemploymentandearningsintheAnnualSurveyofHoursandEarnings(ASHE)
13
ApplytoaccesstheLongitudinalEducationOutcomes(LEO)dataset-GOV.UK(.uk)
14
AnnualSurveyofHoursandEarnings(ASHE)-OfficeforNationalStatistics(.uk)
15FeltenE,RajM,SeamansR(2021)Occupational,industry,andgeographicexposuretoartificialintelligence:Anoveldatasetanditspotentialuses.StrategicManagementJournal42(12):2195–2217
10
1.7ResearchbyInternationalMonetaryFund
TheInternationalMonetaryFund(IMF)haveconstructedacomplementarityadjustedAIoccupationalexposure(C-AIOE)measure,wheretheexposureofoccupationstoAIaremitigatedbytheirpotentialforcomplementarity
.16
AtahighleveltheauthorsofthisstudymakeanadjustmenttotheFeltenetal
methodologyforAIOE
17
tocapturethepotentialtocomplementorsubstituteforlabourineachoccupation.Theythenapplyboththeoriginalmeasureandthecomplementarity
adjustedmeasurestolabourforcemicrodata(usingISCO-08)from6countriesincludingtheUK,withaparticularfocusonemergingmarkets.
Theresearchfindsthattherearesubstantialcross-countrydisparitiesinthebaseline
AIOE,withemergingmarketsgenerallydisplayinglowerexposurelevelsthanadvanced
economies.Thisdisparityismainlyduetodifferentemploymentstructures,with
advancedeconomiescharacterisedbylargerproportionsofhigh-skilloccupationssuchasprofessionalsandmanagers.InlinewiththisreportandasoutlinedbyFeltenetal,
theseprofessionsarethemostexposedtoAIduetotheirhighconcentrationofcognitive-basedtasks.However,becausethosehigh-skilloccupationsalsoshowhigherpotentialforAIcomplementarity,thesecross-countrydisparitiesintermsofpotentiallydisruptiveexposurereduceconsiderablyoncecomplementarityisfactoredin.Nevertheless,
advancedeconomiesremainmoreexposedevenundertheC-AIOEmeasure.Emergingmarketswithalargeshareofagriculturalemployment,remainrelativelylessexposed
underbothmeasures,asoccupationsinthissectorhaveverylowbaselineexposuretoAI.Overall,theresultssuggestthattheimpactofAIonlabourmarketsinadvanced
economiesmaybemore“polarised,”astheiremploymentstructurebetterpositionsthemtobenefitfromgrowthopportunitiesbutalsomakesthemmorevulnerabletolikelyjob
displacements.
16
LaborMarketExposuretoAI:Cross-countryDifferencesandDistributionalImplications()
17
FeltenE,RajM,SeamansR(2023)‘HowwillLanguageModelerslikeChatGPTAffectOccupationsand
Industries?’
11
2OccupationalexposuretoAI
ThereisarangeofUKandinternationalresearchonAIandtheimpactthatitwillhaveonjobsandthelabourmarket.Itisverydifficulttomakeanumericalestimateona
technologywhichisnotyetfullyunderstoodandisevolvingatarapidpace.However,aconsensushasbeguntoemergethat10-30%ofjobsintheUKarehighlyautomatableandcouldbesubjecttosomelevelofautomationoverthenexttwodecades.However,theoverallneteffectonemploymentisunclearbutitisoftenassumedthattherewillbeabroadlyneutrallong-termeffectandjobdisplacementwillbematchedbyjobcreation
.18
ThisanalysisassessestherelativeexposureofUKjob
s19
toAIbyuseofanAI
OccupationalExposure(AIOE)score.TheAIOEscoreallowsjobstoberankedto
showwhichjobsaremoreandlesslikelytobeimpactedbyadvancesinAI,basedontheabilitiesrequiredtoperformthejob.AswellasAIgenerally,asimilarexposurescoreiscreatedtoconsiderlargelanguagemodellingspecificallythroughgenerativeAItoolslikeChatGPTandBard.
TheanalysismeasurestheexposureofjobstoAI,ratherthandistinguishingwhetherajobwillbeaugmented(aided)orreplaced(substituted)byAI.Annex2discussesthepotentialforidentifyingUKjobswhichcouldbefullyautomatedasaresultofAIbasedonresearchfromtheInternationalLaborOrganization(ILO).
2.1OccupationsmostexposedtoAI
Table2
showsalistofthetop20occupationsthataremostexposedtoAI,andtolargelanguagemodellingspecifically.Afulllistofalloccupationsispublishedalongsidethisreport.
Theexposurescoreisbasedonanumberofassumptionsincludingtheabilities
consideredimportantforajobatagivenpointintimesorankingsshouldbe
interpretedwithcaution,howeverthethemeshighlightedbytheanalysisareexpectedtocontinu
e20.
TheoccupationsmostexposedtoAIincludemoreprofessionaloccupations,particularlythoseassociatedwithmoreclericalworkandacrossfinance,lawandbusiness
managementroles.Thisincludesmanagementconsultantsandbusinessanalysts,
accountants,andpsychologists.ThiscomparestotheoccupationsleastexposedtoAI,whichincludesportprofessionals,roofersandsteelerectors.
ThelistofoccupationsmostexposedtolargelanguagemodellingincludesmanyofthesameoccupationsexposedtoAImoregenerally,withbothlistsincludingsolicitors,
18
Willrobotsreallystealourjobs?(pwc.co.uk)
19Definedby4digitstandardisedoccupationclassification(SOC2010)codes.
20Feltenetal(2021)AppendixC:QuantitativeValidationoftheAIOEandRelatedMeasures
12
psychologistsandmanagementconsultantsandbusinessanalysts.Italsoincludesmoreeducationrelatedoccupations,particularlyforpost-16training.Thisalignswithpublic
statementsaroundthepotentialuseofgenerativeAItoolsbyteachers,forexampleinpreparingteachingmaterial.
Table2:OccupationsmostexposedtoAIandlargelanguagemodelling
ExposuretoallAIapplications
Exposuretolargelanguage
modelling
1
Managementconsultantsandbusinessanalysts*
Telephonesalespersons
2
Financialmanagersanddirectors
Solicitors*
3
Chartedandcertifiedaccountants
Psychologists*
4
Psychologists*
Furthereducationteaching
professionals
5
Purchasingmanagersanddirectors
Marketandstreettradersand
assistants
6
Actuaries,economistsandstatisticians
Legalprofessionalsn.e.c.*
7
Businessandfinancialproject
managementprofessionals
Creditcontrollers*
8
Financeandinvestmentanalystsandadvisers
Humanresourceadministration
occupations*
9
Legalprofessionalsn.e.c.*
Publicrelationsprofessionals
10
Businessandrelatedassociate
professionalsn.e.c.
Managementconsultantandbusinessanalysts*
11
Creditcontrollers*
Marketresearchinterviewers
12
Solicitors*
Localgovernmentadministrativeoccupations
13
Civilengineers
Clergy
14
Educationadvisersandschool
inspectors*
Highereducationteaching
professionals
15
Humanresourcesadministrative
occupations*
Collectorsalespersonsandcreditagents
16
Business,researchandadministrativeprofessionalsn.e.c.
Educationadvisersandschool
inspectors*
17
Financialaccountsmanagers
Humanresourcemanagersand
directors
18
Bookkeepers,payrollmanagersandwagesclerks
Nationalgovernmentadministrativeoccupations*
19
Nationalgovernmentadministrativeoccupations*
Vocationalandindustrialtrainersandinstructors
20
Marketingassociateprofessionals
Socialandhumanitiesscientists
*Occupationsthatappearinbothlistsaremarkedwithanasterisk.
Table3
showsalistoftheoccupationsthatareleastexposedtoAI,andtolargelanguagemodellingspecifically.
TheoccupationsleastexposedtoAIandLLMincludemanyofthesameareas,includingmoremanualworkthatistechnicallydifficult,inunpredictableenvironments,andwith
13
lowerwages(reducingtheincentivetoautomate)–withtheexceptionofsportsplayers.Thisincludes:roofers,rooftilersandslaters;elementaryconstructionoccupations;
plasterers;andsteelerectors.
Table3:OccupationsleastexposedtoAIandlargelanguagemodelling
ExposuretoallAIapplications
Exposuretolargelanguage
modelling
1
Sportsplayers*
Fork-lifttruckdrivers*
2
Roofers,rooftilersandslaters*
Roofers,rooftilersandslaters*
3
Elementaryconstructionoccupations*
Steelerectors*
4
Plasterers*
Vehiclevaletersandcleaners*
5
Steelerectors*
Elementaryconstructionoccupations*
6
Vehiclevaletersandcleaners*
Plasterers*
7
Hospitalporters
Metalplateworkers,andriveters*
8
Cleanersanddomestics
Vehiclepainttechnicians
9
Floorersandwalltilers*
Floorersandwalltilers*
10
Metalplateworkers,andriveters
Mobilemachinedriversandoperativesn.e.c.
11
Launderers,drycleanersandpressers*
Launderers,drycleanersand
pressers*
12
Windowcleaners
Largegoodsvehicledrivers
13
Paintersanddecorators
Roadconstructionoperatives*
14
Fork-lifttruckdrivers*
Railconstructionandmaintenanceoperatives
15
Packers,bottlers,cannersandfillers
Industrialcleaningprocess
occupations
16
Gardenersandlandscapegardeners
Elementaryprocessplantoccupationsn.e.c.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業(yè)內(nèi)部溝通協(xié)作平臺建設(shè)方案
- 江西省九江市都昌縣2024-2025學年八年級上學期期末生物試題(含答案)
- 北京延慶區(qū)2024-2025學年高二上學期期末生物學試題(含答案)
- 三農(nóng)用物資采購管理作業(yè)指導(dǎo)書
- 從理論到實踐科學探究活動課
- 青稞種植知識培訓課件
- 電商直播平臺搭建與運營服務(wù)協(xié)議
- 數(shù)學王國里的智慧讀后感
- 電子支付平臺推廣專項資金協(xié)議
- 智能供應(yīng)鏈管理服務(wù)合同
- 2025中高考百日誓師大會教師表態(tài)發(fā)言稿:百日競渡立壯志 師生同心鑄輝煌
- 2025體育單招英語備考100個高頻名詞精講(精校打印版)
- 臺球館裝修合同模板及明細
- DeepSeek:從入門到精通3天教程
- 2024-2025學年人教版數(shù)學七下 第七章 相交線與平行線(含答案)
- GB/T 44994-2024聲學助聽器驗配管理
- 2025年上海鐵路局集團公司招聘筆試參考題庫含答案解析
- 2024年04月北京中信銀行總行社會招考(423)筆試歷年參考題庫附帶答案詳解
- 2025年中國航天科工招聘筆試參考題庫含答案解析
- 兒童教育總經(jīng)理聘任合同
- 4《公民的基本權(quán)利和義務(wù)》(第2課時)教學實錄-2024-2025學年道德與法治六年級上冊統(tǒng)編版
評論
0/150
提交評論