




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆廣東省深圳市羅芳中學(xué)中考數(shù)學(xué)押題卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿(mǎn)、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿(mǎn)分30分)1.如圖,A、B、C是⊙O上的三點(diǎn),∠BAC=30°,則∠BOC的大小是()A.30° B.60° C.90° D.45°2.如圖,正六邊形ABCDEF內(nèi)接于⊙O,半徑為4,則這個(gè)正六邊形的邊心距OM和BC的長(zhǎng)分別為()A.2,π3 B.23,π C.3,2π3 D.233.在同一坐標(biāo)系中,反比例函數(shù)y=與二次函數(shù)y=kx2+k(k≠0)的圖象可能為()A. B.C. D.4.如圖,等邊三角形ABC的邊長(zhǎng)為3,N為AC的三等分點(diǎn),三角形邊上的動(dòng)點(diǎn)M從點(diǎn)A出發(fā),沿A→B→C的方向運(yùn)動(dòng),到達(dá)點(diǎn)C時(shí)停止.設(shè)點(diǎn)M運(yùn)動(dòng)的路程為x,MN2=y,則y關(guān)于x的函數(shù)圖象大致為A.B.C.D.5.黃河是中華民族的象征,被譽(yù)為母親河,黃河壺口瀑布位于我省吉縣城西45千米處,是黃河上最具氣勢(shì)的自然景觀.其落差約30米,年平均流量1010立方米/秒.若以小時(shí)作時(shí)間單位,則其年平均流量可用科學(xué)記數(shù)法表示為()A.6.06×104立方米/時(shí) B.3.136×106立方米/時(shí)C.3.636×106立方米/時(shí) D.36.36×105立方米/時(shí)6.已知a,b為兩個(gè)連續(xù)的整數(shù),且a<<b,則a+b的值為()A.7 B.8 C.9 D.107.下列圖形中,是軸對(duì)稱(chēng)圖形的是()A. B. C. D.8.如圖,若銳角△ABC內(nèi)接于⊙O,點(diǎn)D在⊙O外(與點(diǎn)C在AB同側(cè)),則∠C與∠D的大小關(guān)系為()A.∠C>∠D B.∠C<∠D C.∠C=∠D D.無(wú)法確定9.如圖,反比例函數(shù)y=-4x的圖象與直線y=-1A.8B.6C.4D.210.估計(jì)+1的值在()A.2和3之間 B.3和4之間 C.4和5之間 D.5和6之間二、填空題(共7小題,每小題3分,滿(mǎn)分21分)11.有公共頂點(diǎn)A,B的正五邊形和正六邊形按如圖所示位置擺放,連接AC交正六邊形于點(diǎn)D,則∠ADE的度數(shù)為()A.144° B.84° C.74° D.54°12.如圖,矩形OABC的邊OA,OC分別在軸、軸上,點(diǎn)B在第一象限,點(diǎn)D在邊BC上,且∠AOD=30°,四邊形OA′B′D與四邊形OABD關(guān)于直線OD對(duì)稱(chēng)(點(diǎn)A′和A,B′和B分別對(duì)應(yīng)),若AB=1,反比例函數(shù)的圖象恰好經(jīng)過(guò)點(diǎn)A′,B,則的值為_(kāi)________.13.若關(guān)于x的方程x2-x+sinα=0有兩個(gè)相等的實(shí)數(shù)根,則銳角α的度數(shù)為_(kāi)__.14.函數(shù)y=中,自變量x的取值范圍是_____.15.如圖,直線y=k1x+b與雙曲線交于A、B兩點(diǎn),其橫坐標(biāo)分別為1和5,則不等式k1x<+b的解集是▲.16.規(guī)定:[x]表示不大于x的最大整數(shù),(x)表示不小于x的最小整數(shù),[x)表示最接近x的整數(shù)(x≠n+0.5,n為整數(shù)),例如:[1.3]=1,(1.3)=3,[1.3)=1.則下列說(shuō)法正確的是________.(寫(xiě)出所有正確說(shuō)法的序號(hào))①當(dāng)x=1.7時(shí),[x]+(x)+[x)=6;②當(dāng)x=﹣1.1時(shí),[x]+(x)+[x)=﹣7;③方程4[x]+3(x)+[x)=11的解為1<x<1.5;④當(dāng)﹣1<x<1時(shí),函數(shù)y=[x]+(x)+x的圖象與正比例函數(shù)y=4x的圖象有兩個(gè)交點(diǎn).17.若+(y﹣2018)2=0,則x﹣2+y0=_____.三、解答題(共7小題,滿(mǎn)分69分)18.(10分)圖1和圖2中,優(yōu)弧紙片所在⊙O的半徑為2,AB=2,點(diǎn)P為優(yōu)弧上一點(diǎn)(點(diǎn)P不與A,B重合),將圖形沿BP折疊,得到點(diǎn)A的對(duì)稱(chēng)點(diǎn)A′.發(fā)現(xiàn):(1)點(diǎn)O到弦AB的距離是,當(dāng)BP經(jīng)過(guò)點(diǎn)O時(shí),∠ABA′=;(2)當(dāng)BA′與⊙O相切時(shí),如圖2,求折痕的長(zhǎng).拓展:把上圖中的優(yōu)弧紙片沿直徑MN剪裁,得到半圓形紙片,點(diǎn)P(不與點(diǎn)M,N重合)為半圓上一點(diǎn),將圓形沿NP折疊,分別得到點(diǎn)M,O的對(duì)稱(chēng)點(diǎn)A′,O′,設(shè)∠MNP=α.(1)當(dāng)α=15°時(shí),過(guò)點(diǎn)A′作A′C∥MN,如圖3,判斷A′C與半圓O的位置關(guān)系,并說(shuō)明理由;(2)如圖4,當(dāng)α=°時(shí),NA′與半圓O相切,當(dāng)α=°時(shí),點(diǎn)O′落在上.(3)當(dāng)線段NO′與半圓O只有一個(gè)公共點(diǎn)N時(shí),直接寫(xiě)出β的取值范圍.19.(5分)如圖,已知拋物線y=ax2+2x+8與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,且B(4,0).(1)求拋物線的解析式及其頂點(diǎn)D的坐標(biāo);(2)如果點(diǎn)P(p,0)是x軸上的一個(gè)動(dòng)點(diǎn),則當(dāng)|PC﹣PD|取得最大值時(shí),求p的值;(3)能否在拋物線第一象限的圖象上找到一點(diǎn)Q,使△QBC的面積最大,若能,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.20.(8分)如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與軸交于,兩點(diǎn),與軸交于點(diǎn),點(diǎn)的坐標(biāo)為.(1)求二次函數(shù)的解析式;(2)若點(diǎn)是拋物線在第四象限上的一個(gè)動(dòng)點(diǎn),當(dāng)四邊形的面積最大時(shí),求點(diǎn)的坐標(biāo),并求出四邊形的最大面積;(3)若為拋物線對(duì)稱(chēng)軸上一動(dòng)點(diǎn),直接寫(xiě)出使為直角三角形的點(diǎn)的坐標(biāo).21.(10分)觀察下列各個(gè)等式的規(guī)律:第一個(gè)等式:=1,第二個(gè)等式:=2,第三個(gè)等式:=3…請(qǐng)用上述等式反映出的規(guī)律解決下列問(wèn)題:直接寫(xiě)出第四個(gè)等式;猜想第n個(gè)等式(用n的代數(shù)式表示),并證明你猜想的等式是正確的.22.(10分)(問(wèn)題情境)張老師給愛(ài)好學(xué)習(xí)的小軍和小俊提出這樣的一個(gè)問(wèn)題:如圖1,在△ABC中,AB=AC,點(diǎn)P為邊BC上任一點(diǎn),過(guò)點(diǎn)P作PD⊥AB,PE⊥AC,垂足分別為D,E,過(guò)點(diǎn)C作CF⊥AB,垂足為F,求證:PD+PE=CF.小軍的證明思路是:如圖2,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.小俊的證明思路是:如圖2,過(guò)點(diǎn)P作PG⊥CF,垂足為G,可以證得:PD=GF,PE=CG,則PD+PE=CF.[變式探究]如圖3,當(dāng)點(diǎn)P在BC延長(zhǎng)線上時(shí),其余條件不變,求證:PD﹣PE=CF;請(qǐng)運(yùn)用上述解答中所積累的經(jīng)驗(yàn)和方法完成下列兩題:[結(jié)論運(yùn)用]如圖4,將矩形ABCD沿EF折疊,使點(diǎn)D落在點(diǎn)B上,點(diǎn)C落在點(diǎn)C′處,點(diǎn)P為折痕EF上的任一點(diǎn),過(guò)點(diǎn)P作PG⊥BE、PH⊥BC,垂足分別為G、H,若AD=8,CF=3,求PG+PH的值;[遷移拓展]圖5是一個(gè)航模的截面示意圖.在四邊形ABCD中,E為AB邊上的一點(diǎn),ED⊥AD,EC⊥CB,垂足分別為D、C,且AD?CE=DE?BC,AB=2dm,AD=3dm,BD=dm.M、N分別為AE、BE的中點(diǎn),連接DM、CN,求△DEM與△CEN的周長(zhǎng)之和.23.(12分)如圖,拋物線y=﹣x2+bx+c與x軸交于A,B兩點(diǎn)(A在B的左側(cè)),其中點(diǎn)B(3,0),與y軸交于點(diǎn)C(0,3).(1)求拋物線的解析式;(2)將拋物線向下平移h個(gè)單位長(zhǎng)度,使平移后所得拋物線的頂點(diǎn)落在△OBC內(nèi)(包括△OBC的邊界),求h的取值范圍;(3)設(shè)點(diǎn)P是拋物線上且在x軸上方的任一點(diǎn),點(diǎn)Q在直線l:x=﹣3上,△PBQ能否成為以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若能,求出符合條件的點(diǎn)P的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.24.(14分)如圖,在△ABC中,∠CAB=90°,∠CBA=50°,以AB為直徑作⊙O交BC于點(diǎn)D,點(diǎn)E在邊AC上,且滿(mǎn)足ED=EA.(1)求∠DOA的度數(shù);(2)求證:直線ED與⊙O相切.
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿(mǎn)分30分)1、B【解題分析】【分析】欲求∠BOC,又已知一圓周角∠BAC,可利用圓周角與圓心角的關(guān)系求解.【題目詳解】∵∠BAC=30°,∴∠BOC=2∠BAC=60°(同弧所對(duì)的圓周角是圓心角的一半),故選B.【題目點(diǎn)撥】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半.2、D【解題分析】試題分析:連接OB,∵OB=4,∴BM=2,∴OM=23,BC=故選D.考點(diǎn):1正多邊形和圓;2.弧長(zhǎng)的計(jì)算.3、D【解題分析】
根據(jù)k>0,k<0,結(jié)合兩個(gè)函數(shù)的圖象及其性質(zhì)分類(lèi)討論.【題目詳解】分兩種情況討論:①當(dāng)k<0時(shí),反比例函數(shù)y=,在二、四象限,而二次函數(shù)y=kx2+k開(kāi)口向上下與y軸交點(diǎn)在原點(diǎn)下方,D符合;②當(dāng)k>0時(shí),反比例函數(shù)y=,在一、三象限,而二次函數(shù)y=kx2+k開(kāi)口向上,與y軸交點(diǎn)在原點(diǎn)上方,都不符.分析可得:它們?cè)谕恢苯亲鴺?biāo)系中的圖象大致是D.故選D.【題目點(diǎn)撥】本題主要考查二次函數(shù)、反比例函數(shù)的圖象特點(diǎn).4、B【解題分析】分析:分析y隨x的變化而變化的趨勢(shì),應(yīng)用排它法求解,而不一定要通過(guò)求解析式來(lái)解決:∵等邊三角形ABC的邊長(zhǎng)為3,N為AC的三等分點(diǎn),∴AN=1?!喈?dāng)點(diǎn)M位于點(diǎn)A處時(shí),x=0,y=1。①當(dāng)動(dòng)點(diǎn)M從A點(diǎn)出發(fā)到AM=的過(guò)程中,y隨x的增大而減小,故排除D;②當(dāng)動(dòng)點(diǎn)M到達(dá)C點(diǎn)時(shí),x=6,y=3﹣1=2,即此時(shí)y的值與點(diǎn)M在點(diǎn)A處時(shí)的值不相等,故排除A、C。故選B。5、C【解題分析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【題目詳解】1010×360×24=3.636×106立方米/時(shí),故選C.【題目點(diǎn)撥】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.6、A【解題分析】∵9<11<16,∴,即,∵a,b為兩個(gè)連續(xù)的整數(shù),且,∴a=3,b=4,∴a+b=7,故選A.7、B【解題分析】分析:根據(jù)軸對(duì)稱(chēng)圖形的概念求解.詳解:A、不是軸對(duì)稱(chēng)圖形,故此選項(xiàng)不合題意;B、是軸對(duì)稱(chēng)圖形,故此選項(xiàng)符合題意;C、不是軸對(duì)稱(chēng)圖形,故此選項(xiàng)不合題意;D、不是軸對(duì)稱(chēng)圖形,故此選項(xiàng)不合題意;故選B.點(diǎn)睛:本題考查了軸對(duì)稱(chēng)圖形,軸對(duì)稱(chēng)圖形的判斷方法:把某個(gè)圖象沿某條直線折疊,如果圖形的兩部分能夠重合,那么這個(gè)是軸對(duì)稱(chēng)圖形.8、A【解題分析】
直接利用圓周角定理結(jié)合三角形的外角的性質(zhì)即可得.【題目詳解】連接BE,如圖所示:
∵∠ACB=∠AEB,
∠AEB>∠D,
∴∠C>∠D.
故選:A.【題目點(diǎn)撥】考查了圓周角定理以及三角形的外角,正確作出輔助線是解題關(guān)鍵.9、A【解題分析】試題解析:由于點(diǎn)A、B在反比例函數(shù)圖象上關(guān)于原點(diǎn)對(duì)稱(chēng),則△ABC的面積=2|k|=2×4=1.故選A.考點(diǎn):反比例函數(shù)系數(shù)k的幾何意義.10、B【解題分析】分析:直接利用2<<3,進(jìn)而得出答案.詳解:∵2<<3,∴3<+1<4,故選B.點(diǎn)睛:此題主要考查了估算無(wú)理數(shù)的大小,正確得出的取值范圍是解題關(guān)鍵.二、填空題(共7小題,每小題3分,滿(mǎn)分21分)11、B【解題分析】正五邊形的內(nèi)角是∠ABC==108°,∵AB=BC,∴∠CAB=36°,正六邊形的內(nèi)角是∠ABE=∠E==120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°–120°–120°–36°=84°,故選B.12、【解題分析】
解:∵四邊形ABCO是矩形,AB=1,∴設(shè)B(m,1),∴OA=BC=m,∵四邊形OA′B′D與四邊形OABD關(guān)于直線OD對(duì)稱(chēng),∴OA′=OA=m,∠A′OD=∠AOD=30°,∴∠A′OA=60°,過(guò)A′作A′E⊥OA于E,∴OE=m,A′E=m,∴A′(m,m),∵反比例函數(shù)y=(k≠0)的圖象恰好經(jīng)過(guò)點(diǎn)A′,B,∴m?m=m,∴m=,∴k=.【題目點(diǎn)撥】本題考查反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征;矩形的性質(zhì),利用數(shù)形結(jié)合思想解題是關(guān)鍵.13、30°【解題分析】試題解析:∵關(guān)于x的方程有兩個(gè)相等的實(shí)數(shù)根,∴解得:∴銳角α的度數(shù)為30°;故答案為30°.14、x≠﹣.【解題分析】
該函數(shù)是分式,分式有意義的條件是分母不等于1,故分母x﹣1≠1,解得x的范圍.【題目詳解】解:根據(jù)分式有意義的條件得:2x+3≠1解得:故答案為【題目點(diǎn)撥】本題考查了函數(shù)自變量取值范圍的求法.要使得本題函數(shù)式子有意義,必須滿(mǎn)足分母不等于1.15、-2<x<-1或x>1.【解題分析】不等式的圖象解法,平移的性質(zhì),反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題,對(duì)稱(chēng)的性質(zhì).不等式k1x<+b的解集即k1x-b<的解集,根據(jù)不等式與直線和雙曲線解析式的關(guān)系,可以理解為直線y=k1x-b在雙曲線下方的自變量x的取值范圍即可.而直線y=k1x-b的圖象可以由y=k1x+b向下平移2b個(gè)單位得到,如圖所示.根據(jù)函數(shù)圖象的對(duì)稱(chēng)性可得:直線y=k1x-b和y=k1x+b與雙曲線的交點(diǎn)坐標(biāo)關(guān)于原點(diǎn)對(duì)稱(chēng).由關(guān)于原點(diǎn)對(duì)稱(chēng)的坐標(biāo)點(diǎn)性質(zhì),直線y=k1x-b圖象與雙曲線圖象交點(diǎn)A′、B′的橫坐標(biāo)為A、B兩點(diǎn)橫坐標(biāo)的相反數(shù),即為-1,-2.∴由圖知,當(dāng)-2<x<-1或x>1時(shí),直線y=k1x-b圖象在雙曲線圖象下方.∴不等式k1x<+b的解集是-2<x<-1或x>1.16、②③【解題分析】試題解析:①當(dāng)x=1.7時(shí),[x]+(x)+[x)=[1.7]+(1.7)+[1.7)=1+1+1=5,故①錯(cuò)誤;②當(dāng)x=﹣1.1時(shí),[x]+(x)+[x)=[﹣1.1]+(﹣1.1)+[﹣1.1)=(﹣3)+(﹣1)+(﹣1)=﹣7,故②正確;③當(dāng)1<x<1.5時(shí),4[x]+3(x)+[x)=4×1+3×1+1=4+6+1=11,故③正確;④∵﹣1<x<1時(shí),∴當(dāng)﹣1<x<﹣0.5時(shí),y=[x]+(x)+x=﹣1+0+x=x﹣1,當(dāng)﹣0.5<x<0時(shí),y=[x]+(x)+x=﹣1+0+x=x﹣1,當(dāng)x=0時(shí),y=[x]+(x)+x=0+0+0=0,當(dāng)0<x<0.5時(shí),y=[x]+(x)+x=0+1+x=x+1,當(dāng)0.5<x<1時(shí),y=[x]+(x)+x=0+1+x=x+1,∵y=4x,則x﹣1=4x時(shí),得x=;x+1=4x時(shí),得x=;當(dāng)x=0時(shí),y=4x=0,∴當(dāng)﹣1<x<1時(shí),函數(shù)y=[x]+(x)+x的圖象與正比例函數(shù)y=4x的圖象有三個(gè)交點(diǎn),故④錯(cuò)誤,故答案為②③.考點(diǎn):1.兩條直線相交或平行問(wèn)題;1.有理數(shù)大小比較;3.解一元一次不等式組.17、1【解題分析】
直接利用偶次方的性質(zhì)以及二次根式的性質(zhì)分別化簡(jiǎn)得出答案.【題目詳解】解:∵+(y﹣1018)1=0,∴x﹣1=0,y﹣1018=0,解得:x=1,y=1018,則x﹣1+y0=1﹣1+10180=1+1=1.故答案為:1.【題目點(diǎn)撥】此題主要考查了非負(fù)數(shù)的性質(zhì),正確得出x,y的值是解題關(guān)鍵.三、解答題(共7小題,滿(mǎn)分69分)18、發(fā)現(xiàn):(1)1,60°;(2)2;拓展:(1)相切,理由詳見(jiàn)解析;(2)45°;30°;(3)0°<α<30°或45°≤α<90°.【解題分析】
發(fā)現(xiàn):(1)利用垂徑定理和勾股定理即可求出點(diǎn)O到AB的距離;利用銳角三角函數(shù)的定義及軸對(duì)稱(chēng)性就可求出∠ABA′.(2)根據(jù)切線的性質(zhì)得到∠OBA′=90°,從而得到∠ABA′=120°,就可求出∠ABP,進(jìn)而求出∠OBP=30°.過(guò)點(diǎn)O作OG⊥BP,垂足為G,容易求出OG、BG的長(zhǎng),根據(jù)垂徑定理就可求出折痕的長(zhǎng).拓展:(1)過(guò)A'、O作A'H⊥MN于點(diǎn)H,OD⊥A'C于點(diǎn)D.用含30°角的直角三角形的性質(zhì)可得OD=A'H=A'N=MN=2可判定A′C與半圓相切;(2)當(dāng)NA′與半圓相切時(shí),可知ON⊥A′N(xiāo),則可知α=45°,當(dāng)O′在時(shí),連接MO′,則可知NO′=MN,可求得∠MNO′=60°,可求得α=30°;(3)根據(jù)點(diǎn)A′的位置不同得到線段NO′與半圓O只有一個(gè)公共點(diǎn)N時(shí)α的取值范圍是0°<α<30°或45°≤α<90°.【題目詳解】發(fā)現(xiàn):(1)過(guò)點(diǎn)O作OH⊥AB,垂足為H,如圖1所示,∵⊙O的半徑為2,AB=2,∴OH==在△BOH中,OH=1,BO=2∴∠ABO=30°∵圖形沿BP折疊,得到點(diǎn)A的對(duì)稱(chēng)點(diǎn)A′.∴∠OBA′=∠ABO=30°∴∠ABA′=60°(2)過(guò)點(diǎn)O作OG⊥BP,垂足為G,如圖2所示.∵BA′與⊙O相切,∴OB⊥A′B.∴∠OBA′=90°.∵∠OBH=30°,∴∠ABA′=120°.∴∠A′BP=∠ABP=60°.∴∠OBP=30°.∴OG=OB=1.∴BG=.∵OG⊥BP,∴BG=PG=.∴BP=2.∴折痕的長(zhǎng)為2拓展:(1)相切.分別過(guò)A'、O作A'H⊥MN于點(diǎn)H,OD⊥A'C于點(diǎn)D.如圖3所示,∵A'C∥MN∴四邊形A'HOD是矩形∴A'H=O∵α=15°∴∠A'NH=30∴OD=A'H=A'N=MN=2∴A'C與半圓(2)當(dāng)NA′與半圓O相切時(shí),則ON⊥NA′,∴∠ONA′=2α=90°,∴α=45當(dāng)O′在上時(shí),連接MO′,則可知NO′=MN,∴∠O′MN=0°∴∠MNO′=60°,∴α=30°,故答案為:45°;30°.(3)∵點(diǎn)P,M不重合,∴α>0,由(2)可知當(dāng)α增大到30°時(shí),點(diǎn)O′在半圓上,∴當(dāng)0°<α<30°時(shí)點(diǎn)O′在半圓內(nèi),線段NO′與半圓只有一個(gè)公共點(diǎn)B;當(dāng)α增大到45°時(shí)NA′與半圓相切,即線段NO′與半圓只有一個(gè)公共點(diǎn)B.當(dāng)α繼續(xù)增大時(shí),點(diǎn)P逐漸靠近點(diǎn)N,但是點(diǎn)P,N不重合,∴α<90°,∴當(dāng)45°≤α<90°線段BO′與半圓只有一個(gè)公共點(diǎn)B.綜上所述0°<α<30°或45°≤α<90°.【題目點(diǎn)撥】本題考查了切線的性質(zhì)、垂徑定理、勾股定理、三角函數(shù)的定義、30°角所對(duì)的直角邊等于斜邊的一半、翻折問(wèn)題等知識(shí),正確的作出輔助線是解題的關(guān)鍵.19、(1)y=﹣(x﹣1)2+9,D(1,9);(2)p=﹣1;(3)存在點(diǎn)Q(2,1)使△QBC的面積最大.【解題分析】分析:(1)把點(diǎn)B的坐標(biāo)代入y=ax2+2x+1求得a的值,即可得到該拋物線的解析式,再把所得解析式配方化為頂點(diǎn)式,即可得到拋物線頂點(diǎn)D的坐標(biāo);(2)由題意可知點(diǎn)P在直線CD上時(shí),|PC﹣PD|取得最大值,因此,求得點(diǎn)C的坐標(biāo),再求出直CD的解析式,即可求得符合條件的點(diǎn)P的坐標(biāo),從而得到p的值;(3)由(1)中所得拋物線的解析式設(shè)點(diǎn)Q的坐標(biāo)為(m,﹣m2+2m+1)(0<m<4),然后用含m的代數(shù)式表達(dá)出△BCQ的面積,并將所得表達(dá)式配方化為頂點(diǎn)式即可求得對(duì)應(yīng)點(diǎn)Q的坐標(biāo).詳解:(1)∵拋物線y=ax2+2x+1經(jīng)過(guò)點(diǎn)B(4,0),∴16a+1+1=0,∴a=﹣1,∴拋物線的解析式為y=﹣x2+2x+1=﹣(x﹣1)2+9,∴D(1,9);(2)∵當(dāng)x=0時(shí),y=1,∴C(0,1).設(shè)直線CD的解析式為y=kx+b.將點(diǎn)C、D的坐標(biāo)代入得:,解得:k=1,b=1,∴直線CD的解析式為y=x+1.當(dāng)y=0時(shí),x+1=0,解得:x=﹣1,∴直線CD與x軸的交點(diǎn)坐標(biāo)為(﹣1,0).∵當(dāng)P在直線CD上時(shí),|PC﹣PD|取得最大值,∴p=﹣1;(3)存在,理由:如圖,由(2)知,C(0,1),∵B(4,0),∴直線BC的解析式為y=﹣2x+1,過(guò)點(diǎn)Q作QE∥y軸交BC于E,設(shè)Q(m,﹣m2+2m+1)(0<m<4),則點(diǎn)E的坐標(biāo)為:(m,﹣2m+1),∴EQ=﹣m2+2m+1﹣(﹣2m+1)=﹣m2+4m,∴S△QBC=(﹣m2+4m)×4=﹣2(m﹣2)2+1,∴m=2時(shí),S△QBC最大,此時(shí)點(diǎn)Q的坐標(biāo)為:(2,1).點(diǎn)睛:(1)解第2小題時(shí),知道當(dāng)點(diǎn)P在直線CD上時(shí),|PC﹣PD|的值最大,是找到解題思路的關(guān)鍵;(2)解第3小題的關(guān)鍵是設(shè)出點(diǎn)Q的坐標(biāo)(m,﹣m2+2m+1)(0<m<4),并結(jié)合點(diǎn)B、C的坐標(biāo)把△BCQ的面積用含m的代數(shù)式表達(dá)出來(lái).20、(1);(2)P點(diǎn)坐標(biāo)為,;(3)或或或.【解題分析】
(1)根據(jù)待定系數(shù)法把A、C兩點(diǎn)坐標(biāo)代入可求得二次函數(shù)的解析式;
(2)由拋物線解析式可求得B點(diǎn)坐標(biāo),由B、C坐標(biāo)可求得直線BC解析式,可設(shè)出P點(diǎn)坐標(biāo),用P點(diǎn)坐標(biāo)表示出四邊形ABPC的面積,根據(jù)二次函數(shù)的性質(zhì)可求得其面積的最大值及P點(diǎn)坐標(biāo);
(3)首先設(shè)出Q點(diǎn)的坐標(biāo),則可表示出QB2、QC2和BC2,然后分∠BQC=90°、∠CBQ=90°和∠BCQ=90°三種情況,求解即可.【題目詳解】解:(1)∵A(-1,0),在上,,解得,∴二次函數(shù)的解析式為;(2)在中,令可得,解得或,,且,∴經(jīng)過(guò)、兩點(diǎn)的直線為,設(shè)點(diǎn)的坐標(biāo)為,如圖,過(guò)點(diǎn)作軸,垂足為,與直線交于點(diǎn),則,,∴當(dāng)時(shí),四邊形的面積最大,此時(shí)P點(diǎn)坐標(biāo)為,∴四邊形的最大面積為;(3),∴對(duì)稱(chēng)軸為,∴可設(shè)點(diǎn)坐標(biāo)為,,,,,,為直角三角形,∴有、和三種情況,①當(dāng)時(shí),則有,即,解得或,此時(shí)點(diǎn)坐標(biāo)為或;②當(dāng)時(shí),則有,即,解得,此時(shí)點(diǎn)坐標(biāo)為;③當(dāng)時(shí),則有,即,解得,此時(shí)點(diǎn)坐標(biāo)為;綜上可知點(diǎn)的坐標(biāo)為或或或.【題目點(diǎn)撥】本題考查了待定系數(shù)法、三角形的面積、二次函數(shù)的性質(zhì)、勾股定理、方程思想及分類(lèi)討論思想等知識(shí),注意分類(lèi)討論思想的應(yīng)用.21、(1)=4;(2)=n.【解題分析】
試題分析:(1)根據(jù)題目中的式子的變化規(guī)律可以寫(xiě)出第四個(gè)等式;(2)根據(jù)題目中的式子的變化規(guī)律可以猜想出第n等式并加以證明.試題解析:解:(1)由題目中式子的變化規(guī)律可得,第四個(gè)等式是:=4;(2)第n個(gè)等式是:=n.證明如下:∵===n∴第n個(gè)等式是:=n.點(diǎn)睛:本題考查規(guī)律型:數(shù)字的變化類(lèi),解答本題的關(guān)鍵是明確題目中式子的變化規(guī)律,求出相應(yīng)的式子.22、小軍的證明:見(jiàn)解析;小俊的證明:見(jiàn)解析;[變式探究]見(jiàn)解析;[結(jié)論運(yùn)用]PG+PH的值為1;[遷移拓展](6+2)dm【解題分析】
小軍的證明:連接AP,利用面積法即可證得;小俊的證明:過(guò)點(diǎn)P作PG⊥CF,先證明四邊形PDFG為矩形,再證明△PGC≌△CEP,即可得到答案;[變式探究]小軍的證明思路:連接AP,根據(jù)S△ABC=S△ABP﹣S△ACP,即可得到答案;小俊的證明思路:過(guò)點(diǎn)C,作CG⊥DP,先證明四邊形CFDG是矩形,再證明△CGP≌△CEP即可得到答案;[結(jié)論運(yùn)用]過(guò)點(diǎn)E作EQ⊥BC,先根據(jù)矩形的性質(zhì)求出BF,根據(jù)翻折及勾股定理求出DC,證得四邊形EQCD是矩形,得出BE=BF即可得到答案;[遷移拓展]延長(zhǎng)AD,BC交于點(diǎn)F,作BH⊥AF,證明△ADE∽△BCE得到FA=FB,設(shè)DH=x,利用勾股定理求出x得到BH=6,再根據(jù)∠ADE=∠BCE=90°,且M,N分別為AE,BE的中點(diǎn)即可得到答案.【題目詳解】小軍的證明:連接AP,如圖②∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABC=S△ABP+S△ACP,∴AB×CF=AB×PD+AC×PE,∵AB=AC,∴CF=PD+PE.小俊的證明:過(guò)點(diǎn)P作PG⊥CF,如圖2,∵PD⊥AB,CF⊥AB,PG⊥FC,∴∠CFD=∠FDG=∠FGP=90°,∴四邊形PDFG為矩形,∴DP=FG,∠DPG=90°,∴∠CGP=90°,∵PE⊥AC,∴∠CEP=90°,∴∠PGC=∠CEP,∵∠BDP=∠DPG=90°,∴PG∥AB,∴∠GPC=∠B,∵AB=AC,∴∠B=∠ACB,∴∠GPC=∠ECP,在△PGC和△CEP中,∴△PGC≌△CEP,∴CG=PE,∴CF=CG+FG=PE+PD;[變式探究]小軍的證明思路:連接AP,如圖③,∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABC=S△ABP﹣S△ACP,∴AB×CF=AB×PD﹣AC×PE,∵AB=AC,∴CF=PD﹣PE;小俊的證明思路:過(guò)點(diǎn)C,作CG⊥DP,如圖③,∵PD⊥AB,CF⊥AB,CG⊥DP,∴∠CFD=∠FDG=∠DGC=90°,∴CF=GD,∠DGC=90°,四邊形CFDG是矩形,∵PE⊥AC,∴∠CEP=90°,∴∠CGP=∠CEP,∵CG⊥DP,AB⊥DP,∴∠CGP=∠BDP=90°,∴CG∥AB,∴∠GCP=∠B,∵AB=AC,∴∠B=∠ACB,∵∠ACB=∠PCE,∴∠GCP=∠ECP,在△CGP和△CEP中,,∴△CGP≌△CEP,∴PG=PE,∴CF=DG=DP﹣PG=DP﹣PE.[結(jié)論運(yùn)用]如圖④過(guò)點(diǎn)E作EQ⊥BC,∵四邊形ABCD是矩形,∴AD=BC,∠C=∠ADC=90°,∵AD=8,CF=3,∴BF=BC﹣CF=AD﹣CF=5,由折疊得DF=BF,∠BEF=∠DEF,∴DF=5,∵∠C=90°,∴DC==1,∵EQ⊥BC,∠C=∠ADC=90°,∴∠EQC=90°=∠C=∠ADC,∴四邊形EQCD是矩形,∴EQ=DC=1,∵AD∥BC,∴∠DEF=∠EFB,∵∠BEF=∠DEF,∴∠BEF=∠EFB,∴BE=BF,由問(wèn)題情景中的結(jié)論可得:PG+PH=EQ,∴PG+PH=1.∴PG+PH的值為1.[遷移拓展]延長(zhǎng)AD,BC交于點(diǎn)F,作BH⊥AF,如圖⑤,∵AD×CE=DE×BC,∴,∵ED⊥AD,EC⊥CB,∴∠ADE=∠BCE=90°,∴△ADE∽△BCE,∴∠A=∠CBE,∴FA=FB,由問(wèn)題情景中的結(jié)論可得:ED+EC=BH,設(shè)DH=x,∴AH=AD+DH=3+x,∵BH⊥AF,∴∠BHA=90°,∴BH2=BD2﹣DH2=AB2﹣AH2,∵AB=2,AD=3,BD=,∴()2﹣x2=(2)2﹣(3+x)2,∴x=1,∴BH2=BD2﹣DH2=37﹣1=36,∴BH=6,∴ED+EC=6,∵∠ADE=∠BCE=90°,且M,N分別為AE,BE的中點(diǎn),∴DM=EM=AE,CN=EN=BE,∴△DEM與△CEN的周長(zhǎng)之和=DE+DM+EM+CN+EN+EC=DE+AE+BE+EC=DE+AB+EC=DE+EC+AB=6+2,∴△DEM與△CEN的周長(zhǎng)之和(6+2)dm.【題目點(diǎn)撥】此題是一道綜合題,考查三角形全等的判定及性質(zhì),勾股定理,矩形的性質(zhì)定理,三角形的相似的判定及性質(zhì)定理,翻折的性質(zhì),根據(jù)題中小軍和小俊的思路進(jìn)行證
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 43708-2025科學(xué)數(shù)據(jù)安全要求通則
- GB/T 19343-2025巧克力及巧克力制品、代可可脂巧克力及代可可脂巧克力制品質(zhì)量要求
- 公司資金貸款合同范本
- 公司變?cè)靹趧?dòng)合同范本
- 醫(yī)療器械保險(xiǎn)銷(xiāo)售合同范本
- alc工程合同范本
- 從屬許可合同范本
- 保姆英語(yǔ)合同范本
- 上海遮光窗簾加盟合同范本
- 臨時(shí)活動(dòng)勞務(wù)派遣合同范例
- 小學(xué)科學(xué)點(diǎn)亮我的小燈泡省公開(kāi)課一等獎(jiǎng)全國(guó)示范課微課金獎(jiǎng)?wù)n件
- 2023-2024學(xué)年高中信息技術(shù)必修一滬科版(2019)第三單元項(xiàng)目六《 解決溫標(biāo)轉(zhuǎn)換問(wèn)題-認(rèn)識(shí)程序和程序設(shè)計(jì)語(yǔ)言》教學(xué)設(shè)計(jì)
- 【湘教版】2024-2025學(xué)年七年級(jí)數(shù)學(xué)下冊(cè)教學(xué)工作計(jì)劃(及進(jìn)度表)
- 《急性左心衰》課件
- 課件:以《哪吒2》為鏡借哪吒精神燃開(kāi)學(xué)斗志
- 新生兒胃腸減壓護(hù)理
- 七年級(jí)數(shù)學(xué)下冊(cè) 第8章 單元測(cè)試卷(蘇科版 2025年春)
- 二零二五版洗煤廠與礦業(yè)公司合作洗煤業(yè)務(wù)合同3篇
- 上海市第一至十八屆高一物理基礎(chǔ)知識(shí)競(jìng)賽試題及答案
- 2024李娜一建管理講義修訂版
- 2024院感培訓(xùn)課件
評(píng)論
0/150
提交評(píng)論