2024屆高考數(shù)學(xué)備考研究與備考策略 課件_第1頁(yè)
2024屆高考數(shù)學(xué)備考研究與備考策略 課件_第2頁(yè)
2024屆高考數(shù)學(xué)備考研究與備考策略 課件_第3頁(yè)
2024屆高考數(shù)學(xué)備考研究與備考策略 課件_第4頁(yè)
2024屆高考數(shù)學(xué)備考研究與備考策略 課件_第5頁(yè)
已閱讀5頁(yè),還剩151頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

高考數(shù)學(xué)備考研究

與備考策略一、關(guān)于思維品質(zhì)二、關(guān)于學(xué)習(xí)方法三、關(guān)于高考研究四、備考建議

(1)關(guān)于考試大綱(2)關(guān)于備考策略一、關(guān)于思維品質(zhì)數(shù)學(xué)如果說(shuō)是一門(mén)學(xué)科,不如更多的雖說(shuō)是一種思維方式。它讓人們有效的進(jìn)行歸納,演繹,類比,轉(zhuǎn)化化歸等思考方式。學(xué)好數(shù)學(xué),我認(rèn)為最應(yīng)該做好的是歸納,或者說(shuō)歸類。從眾多紛雜的題目之中,發(fā)現(xiàn)他們的共性,找到一般規(guī)律,看到本質(zhì),總結(jié)出一種解題模式,使之可以有更多的應(yīng)用,解決更多的問(wèn)題。這是我們應(yīng)該較多使用的,尤其是在二輪中,題組式教學(xué),提煉規(guī)律,升華認(rèn)識(shí)。關(guān)于思維品質(zhì),我認(rèn)為耐心和毅力是最重要的,就能夠持續(xù)思考,深入鉆研,養(yǎng)成終身學(xué)習(xí)的習(xí)慣,不斷地提升自己的智力結(jié)構(gòu)和境界,可持續(xù)發(fā)展。而現(xiàn)在一些聰明的小孩,就是缺乏耐心,沒(méi)有毅力,導(dǎo)致成績(jī)不夠理想。這些聰明是被誤讀的,我分析可能是這個(gè)樣子的。這些人,從小反應(yīng)快,聰明伶俐,掌握一個(gè)知識(shí)或者技能非常容易,別人挖空心思想了好幾遍還沒(méi)有想明白的時(shí)候,他們可能一遍就明白了,所以就不會(huì)再費(fèi)力氣,而那些反應(yīng)較慢的小孩,則是反復(fù)的一遍一遍的思考,從各個(gè)角度,內(nèi)涵外延,等等,才能想明白,這樣日積月累,就養(yǎng)成了三思而后行,深思熟慮的習(xí)慣,就形成了良好的思維習(xí)慣和思維品質(zhì),而且他們始終在保持這個(gè)習(xí)慣,日復(fù)一日的精益求精,智能結(jié)構(gòu)思維層次總是在提升,而那些聰明小孩依靠自己的天賦,很容易的收獲了他們的一切,別人也就越夸他們聰明,他們反映快,他們也就越陶醉于此,認(rèn)為他們的成功是因?yàn)槁斆?,這可能就是問(wèn)題所在。發(fā)展心理學(xué)的領(lǐng)軍人物卡羅德威克博士對(duì)智力的整體理論和漸進(jìn)理論進(jìn)行了區(qū)分。屬于整體理論的孩子即受父母和老師影響而采取這種的小孩子,傾向于這樣認(rèn)為:我在這方面很聰明。并將成敗歸結(jié)于一種與生俱來(lái)、無(wú)法改變的能力水平。他們把自己的綜合智力或智能水平看成一個(gè)固定的無(wú)法演變的整體。而漸進(jìn)理論則是一種則是一種完全不同的學(xué)習(xí)模式,權(quán)且將其稱作學(xué)習(xí)理論,該理論更傾向于用這樣的句子描述結(jié)果:我之所以做到了是因我非??炭?,或者我應(yīng)該更努力一些才是。采取學(xué)習(xí)理論的小孩更傾向于這樣的想法:世上無(wú)難事,只怕有心人,通過(guò)努力,一步一步通過(guò)努力,新手也能成為大師。德威克的研究表明,當(dāng)遭遇挑戰(zhàn)的時(shí)候,學(xué)習(xí)理論者更有可能迎接挑戰(zhàn),而整體理論者更容易急躁不安,甚至放棄。那些聰明小孩可能表面上光芒四射,但是實(shí)際上他們的智能結(jié)構(gòu)并沒(méi)有隨著年齡的增長(zhǎng)而有效的增長(zhǎng),可是他們的虛榮心在增長(zhǎng),耐心在變差,當(dāng)他們逐漸地不能快速的收獲以后,也很難沉下心來(lái)重新定位自己,退到最本來(lái)的地方,從零開(kāi)始,而困境也會(huì)折磨他們的虛榮心,讓他們變得更加的脆弱,浮躁,也很難投入到自己所做的事,沉浸于此,也就成為了華而不實(shí)的方仲永。而那些看上去并不是太聰明的小孩,他們卻投入到了自己逐漸成長(zhǎng)的成就感之中,他們體會(huì)到的是學(xué)習(xí)本身的快樂(lè),而不是學(xué)習(xí)帶來(lái)的各種其他物質(zhì)或心理的獎(jiǎng)賞。天下事有難易乎?為之,則難者亦易矣;不為,則易者亦難矣。人之為學(xué)有難易乎?學(xué)之,則難者亦易矣;不學(xué),則易者亦難矣。蜀之鄙有二僧:其一貧,其一富。貧者語(yǔ)于富者曰:“吾欲之南海,何如?”富者曰:“子何恃而往?”曰:“吾一瓶一缽足矣。”富者曰:“吾數(shù)年來(lái)欲買舟而下,猶未能也。子何恃而往!”越明年,貧者自南海還,以告富者,富者有慚色。人之立志,顧不如蜀鄙之僧哉?是故聰與敏,可恃而不可恃也;自恃其聰與敏而不學(xué)者,自敗者也?;枧c庸,可限而不可限也;不自限其昏與庸,而力學(xué)不倦者,自力者也。二、關(guān)于學(xué)習(xí)方法不同的人有不同的風(fēng)格模式化的東西都是千錘百煉所形成的不管什么方法,它反映的都是一種付出精神意識(shí)和能力最好的方法往往是最直接的方法(以下摘自一位清華學(xué)子寫(xiě)的《永遠(yuǎn)不要說(shuō)你已經(jīng)盡力了》)大二,我們上一門(mén)課叫“模擬電子線路”,特別難。我們的老師------高文煥院士告訴我們一句話:“學(xué)習(xí)模擬電子線路和學(xué)習(xí)其它學(xué)科有一個(gè)共同的竅門(mén),八個(gè)字------題海戰(zhàn)術(shù),題海戰(zhàn)術(shù)。”我當(dāng)時(shí)非常費(fèi)解,從小到大老師都說(shuō)要講方法,不要死做題,怎么院士這么說(shuō)呢?之后幾件事我明白了這八個(gè)字的含義。

我們班有一個(gè)山東的省高考狀元,得了713分(750分滿分)。我問(wèn)他,你到底是怎么學(xué)成這么“牛”的?他說(shuō):我高中的時(shí)候只要市場(chǎng)上能買到的習(xí)題集我都做過(guò)。

如果大家覺(jué)得省高考狀元離我們太遠(yuǎn)的話,我再舉一個(gè)河南省高考第76名的同學(xué)的例子,看看他是怎樣做題的。他的智商不會(huì)比在座各位高的,因?yàn)樗谇迦A電子系學(xué)習(xí)非常吃力。他說(shuō)他高考6個(gè)主科的題典他至少做了五遍。所以我覺(jué)得高文煥院士還是對(duì)的,題海戰(zhàn)術(shù)絕對(duì)是學(xué)習(xí)高中課程的好方法,我自己也有體會(huì),比如我高三時(shí)英語(yǔ)的短文改錯(cuò)總做不好,于是一個(gè)周末,我連續(xù)做了50篇改錯(cuò),之后的英語(yǔ)考試短文改錯(cuò)幾乎沒(méi)錯(cuò)過(guò)。大家可能覺(jué)得大學(xué)生就很少做題了,我不知道其它大學(xué)的情況,但我可以毫不夸張的說(shuō),我在清華每年做的題肯定比我高三的時(shí)候做的多。那么我們?cè)趺磾D時(shí)間呢?首先,我個(gè)人覺(jué)得在座各位的走路速度太慢,我看到的是在家有說(shuō)有笑的踱著步子慢慢走。大家如果到了清華可以看到,所有的學(xué)生騎車都是飛車,走路幾乎都是小跑。我們沒(méi)有必要把時(shí)間浪費(fèi)在這些沒(méi)有意義的事情上。你很快從校門(mén)走進(jìn)教室就可以比別人多看一會(huì)書(shū),多做一道題。時(shí)間久了,日積月累,你就會(huì)在時(shí)間上占有絕對(duì)的優(yōu)勢(shì)。其次,我們的課間十分鐘也非常寶貴,這一點(diǎn)我到了高三下學(xué)期才意識(shí)到,充分利用課間十分種,我們一天可以擠出將近兩個(gè)小時(shí),可以比別人多做一套題。再就是,我們最好別看電視了。我在高中的時(shí)候每天必須看電視,當(dāng)時(shí)主要是因?yàn)橐孀樱戳梭w育比賽、晚間新聞去和別人侃,看了電視劇和別人吹。整天裝出一副不太用功但成績(jī)不錯(cuò)的樣子,歸根結(jié)底還是希望別人說(shuō)自己聰明。我現(xiàn)在的觀點(diǎn)是,被人說(shuō)“他聰明但就是不學(xué)習(xí)”的人是最蠢的人。不管你是否真的智商超群,但是如果我們把太多的精力用在那些與自己前途無(wú)關(guān)的事情上,就是對(duì)自己的最大的不負(fù)責(zé)任。同學(xué)們不要把清華的學(xué)生想得太牛了,清華學(xué)生中智商超群的人至多占學(xué)生總數(shù)的四分之一。其他學(xué)生的智商不會(huì)比在座的各位高到哪去,他們比你們多的東西我覺(jué)得只是對(duì)待自己的未來(lái)的態(tài)度。清華學(xué)生身上有一種非常令人敬畏的精神力量。他們可以為了自己的目標(biāo)放棄任何誘惑。就算在大年三十清華的自習(xí)教室也會(huì)人滿為患。用一位美國(guó)教授的話說(shuō):“StudentsofTsinghua,noSaturday,noSunday,noholiday!”就是這種精神鑄造了清華的神話。不這樣就很難考上清華。學(xué)生的思維品質(zhì)和學(xué)習(xí)方法可以認(rèn)為是內(nèi)因,內(nèi)因是事物發(fā)展的根本原因,但不是惟一原因;內(nèi)因是事物發(fā)展的根本動(dòng)力,但不是惟一動(dòng)力。事物的發(fā)展是內(nèi)因和外因共同起作用的結(jié)果。內(nèi)因是事物變化發(fā)展的根據(jù),外因是事物變化發(fā)展的條件,外因通過(guò)內(nèi)因起作用。教師的高考研究可以認(rèn)為是外因,它可以為學(xué)生節(jié)省時(shí)間、為學(xué)生提供好的方法、經(jīng)驗(yàn)等,可以使學(xué)生的學(xué)習(xí)行為有正確的方向,較高的效率,更加有效的積累。一切教學(xué)行為都要落實(shí)在學(xué)生身上。子啐母啄。三、關(guān)于高考研究研究考試大綱研究課堂教學(xué)研究高考試卷研究高考題型研究學(xué)生研究備考策略研究為本一、知識(shí)要求

對(duì)知識(shí)的要求由低到高分為三個(gè)層次,依次是知道(了解、模仿)、理解(獨(dú)立操作)、掌握(運(yùn)用、遷移),且高一級(jí)的層次要求包括低一級(jí)的層次要求.(1)研究考試大綱1.知道(了解、模仿):要求對(duì)所列知識(shí)的含義有初步的、感性的認(rèn)識(shí),知道這一知識(shí)內(nèi)容是什么,按照一定的程序和步驟照樣模仿,并能(或會(huì))在有關(guān)的問(wèn)題中識(shí)別和認(rèn)識(shí)它.這一層次所涉及的主要行為動(dòng)詞有:了解,知道、

識(shí)別,模仿,會(huì)求、會(huì)解等.2.理解(獨(dú)立操作):要求對(duì)所列知識(shí)內(nèi)容有較深刻的理性認(rèn)識(shí),知道知識(shí)間的邏輯關(guān)系,能夠?qū)λ兄R(shí)作正確的描述說(shuō)明并用數(shù)學(xué)語(yǔ)言表達(dá),能夠利用所學(xué)的知識(shí)內(nèi)容對(duì)有關(guān)問(wèn)題作比較、判別、討論,具備利用所學(xué)知識(shí)解決簡(jiǎn)單問(wèn)題的能力.

這一層次所涉及的主要行為動(dòng)詞有:描述,說(shuō)明,

表達(dá)、表示,推測(cè)、想象,比較、判別、判斷,初

步應(yīng)用等.3.掌握(運(yùn)用、遷移):要求能夠?qū)λ械闹R(shí)內(nèi)容能夠推導(dǎo)證明,能夠利用所學(xué)知識(shí)對(duì)問(wèn)題能夠進(jìn)行分析、研究、討論,并且加以解決.

這一層次所涉及的主要行為動(dòng)詞有:掌握、導(dǎo)出、

分析,推導(dǎo)、證明,研究、討論、運(yùn)用、解決問(wèn)題等.二、能力要求能力是指空間想像能力、抽象概括能力、推理論證能力、運(yùn)算求解能力、數(shù)據(jù)處理能力以及應(yīng)用意識(shí)和創(chuàng)新意識(shí).

1.空間想像能力:能根據(jù)條件作出正確的圖形,根據(jù)圖形想象出直觀形象;能正確地分析出圖形中基本元素及其相互關(guān)系;能對(duì)圖形進(jìn)行分解、組合;會(huì)運(yùn)用圖形與圖表等手段形象地揭示問(wèn)題的本質(zhì).

空間想象能力2.抽象概括能力:對(duì)具體的、生動(dòng)的實(shí)例,在抽象概括的過(guò)程中,發(fā)現(xiàn)研究對(duì)象的本質(zhì);從給定的大量信息材料中,概括出一些結(jié)論,并能應(yīng)用于解決問(wèn)題或作出新的判斷.抽象概括能力3.推理論證能力:根據(jù)已知的事實(shí)和已獲得的正確數(shù)學(xué)命題,論證某一數(shù)學(xué)命題真實(shí)性的初步的推理能力.推理包括合情推理和演繹推理,論證方法既包括按形式劃分的演繹法和歸納法,也包括按思考方法劃分的直接證法和間接證法.一般運(yùn)用合情推理進(jìn)行猜想,再運(yùn)用演繹推理進(jìn)行證明.推理論證能力推理論證能力4.運(yùn)算求解能力:會(huì)根據(jù)法則、公式進(jìn)行正確運(yùn)算、變形和數(shù)據(jù)處理,能根據(jù)問(wèn)題的條件尋找與設(shè)計(jì)合理、簡(jiǎn)捷的運(yùn)算途徑;能根據(jù)要求對(duì)數(shù)據(jù)進(jìn)行估計(jì)和近似計(jì)算.運(yùn)算求解能力運(yùn)算求解能力運(yùn)算求解能力5.?dāng)?shù)據(jù)處理能力:會(huì)收集、整理、分析數(shù)據(jù),能從大量數(shù)據(jù)中抽取對(duì)研究問(wèn)題有用的信息,并作出判斷.?dāng)?shù)據(jù)處理能力主要依據(jù)統(tǒng)計(jì)或統(tǒng)計(jì)案例中的方法對(duì)數(shù)據(jù)進(jìn)行整理、分析,并解決給定的實(shí)際問(wèn)題.

6.應(yīng)用意識(shí):能綜合應(yīng)用所學(xué)數(shù)學(xué)知識(shí)、思想和方法解決問(wèn)題,包括解決在相關(guān)學(xué)科、生產(chǎn)、生活中簡(jiǎn)單的數(shù)學(xué)問(wèn)題;能理解對(duì)問(wèn)題陳述的材料,并對(duì)所提供的信息資料進(jìn)行歸納、整理和分類,將實(shí)際問(wèn)題抽象為數(shù)學(xué)問(wèn)題;能應(yīng)用相關(guān)的數(shù)學(xué)方法解決問(wèn)題并加以驗(yàn)證,并能用數(shù)學(xué)語(yǔ)言正確地表達(dá)和說(shuō)明.應(yīng)用的主要過(guò)程是依據(jù)現(xiàn)實(shí)的生活背景,提煉相關(guān)的數(shù)量關(guān)系,將現(xiàn)實(shí)問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,構(gòu)造數(shù)學(xué)模型,并加以解決.數(shù)據(jù)處理能力、應(yīng)用意識(shí)7.創(chuàng)新意識(shí):能發(fā)現(xiàn)問(wèn)題、提出問(wèn)題,綜合與靈活地應(yīng)用所學(xué)的數(shù)學(xué)知識(shí)、思想方法,選擇有效的方法和手段分析信息,進(jìn)行獨(dú)立的思考、探索和研究,提出解決問(wèn)題的思路,創(chuàng)造性地解決問(wèn)題.創(chuàng)新意識(shí)是理性思維的高層次表現(xiàn).對(duì)數(shù)學(xué)問(wèn)題的“觀察、猜測(cè)、抽象、概括、證明”,是發(fā)現(xiàn)問(wèn)題和解決問(wèn)題的重要途徑,對(duì)數(shù)學(xué)知識(shí)的遷移、組合、融會(huì)的程度越高,顯示出的創(chuàng)新意識(shí)也就越強(qiáng).三、個(gè)性品質(zhì)要求

個(gè)性品質(zhì)是指考生個(gè)體的情感、態(tài)度和價(jià)值觀.要求考生具有一定的數(shù)學(xué)視野,認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值和人文價(jià)值,崇尚數(shù)學(xué)的理性精神,形成審慎的思維習(xí)慣,體會(huì)數(shù)學(xué)的美學(xué)意義.要求考生克服緊張情緒,以平和的心態(tài)參加考試,合理支配考試時(shí)間,以實(shí)事求是的科學(xué)態(tài)度解答試題。四、考查要求

數(shù)學(xué)學(xué)科的系統(tǒng)性和嚴(yán)密性決定了數(shù)學(xué)知識(shí)之間深刻的內(nèi)在聯(lián)系,包括各部分知識(shí)的縱向聯(lián)系和橫向聯(lián)系,要善于從本質(zhì)上抓住這些聯(lián)系,進(jìn)而通過(guò)分類、梳理、綜合,構(gòu)建數(shù)學(xué)試卷的框架結(jié)構(gòu).對(duì)數(shù)學(xué)基礎(chǔ)知識(shí)的考查,既要全面又要突出重點(diǎn),對(duì)于支撐學(xué)科知識(shí)體系的重點(diǎn)內(nèi)容,要占有較大的比例,構(gòu)成數(shù)學(xué)試卷的主體,注重學(xué)科的內(nèi)在聯(lián)系和知識(shí)的綜合性,不刻意追求知識(shí)的覆蓋面.從學(xué)科的整體高度和思維價(jià)值的高度考慮問(wèn)題,在知識(shí)網(wǎng)絡(luò)交匯點(diǎn)設(shè)計(jì)試題,使對(duì)數(shù)學(xué)基礎(chǔ)知識(shí)的考查達(dá)到必要的深度.數(shù)學(xué)思想和方法是數(shù)學(xué)知識(shí)在更高層次上的抽象和概括,蘊(yùn)涵在數(shù)學(xué)知識(shí)發(fā)生、發(fā)展和應(yīng)用的過(guò)程中,能夠遷移并廣泛用于相關(guān)學(xué)科和社會(huì)生活.因此,對(duì)數(shù)學(xué)思想和方法的考查必然要與數(shù)學(xué)知識(shí)的考查結(jié)合進(jìn)行,通過(guò)對(duì)數(shù)學(xué)知識(shí)的考查,反映考生對(duì)數(shù)學(xué)思想和方法理解和掌握的程度.考查時(shí)要從學(xué)科整體意義和思想價(jià)值立意,要有明確的目的,加強(qiáng)針對(duì)性,注重通性通法,淡化特殊技巧,有效地檢測(cè)考生對(duì)中學(xué)數(shù)學(xué)知識(shí)中所蘊(yùn)涵的數(shù)學(xué)思想和方法的掌握程度.

數(shù)學(xué)是一門(mén)思維的科學(xué),是培養(yǎng)理性思維的重要載體,通過(guò)空間想象、直覺(jué)猜想、歸納抽象、符號(hào)表達(dá)、運(yùn)算推理、演繹證明和模式構(gòu)建等諸方面,對(duì)客觀事物中的數(shù)量關(guān)系和數(shù)學(xué)模式作出思考和判斷,形成和發(fā)展理性思維,構(gòu)成數(shù)學(xué)能力的主題.對(duì)能力的考查,強(qiáng)調(diào)“以能力立意”,就是以數(shù)學(xué)知識(shí)為載體,從問(wèn)題入手,把握學(xué)科的整體意義,用統(tǒng)一的數(shù)學(xué)觀點(diǎn)組織材料.對(duì)知識(shí)的考查側(cè)重于理解和應(yīng)用,尤其是綜合和靈活的應(yīng)用,以此來(lái)檢測(cè)考生將知識(shí)遷移到不同情境中去的能力,從而檢測(cè)出考生個(gè)體理性思維的廣度和深度以及進(jìn)一步學(xué)習(xí)的潛能.對(duì)能力的考查,以思維能力為核心.全面考查各種能力,強(qiáng)調(diào)綜合性、應(yīng)用性,切合學(xué)生實(shí)際.運(yùn)算能力是思維能力和運(yùn)算技能的結(jié)合,它不僅包括數(shù)的運(yùn)算,還包括式的運(yùn)算,對(duì)考生運(yùn)算能力的考查主要是對(duì)算理合邏輯推理的考查,以含字母的式的運(yùn)算為主.空間想象能力是對(duì)空間形式的觀察、分析、抽象的能力,考查時(shí)注意與推理相結(jié)合.實(shí)踐能力在考試中表現(xiàn)為解答應(yīng)用問(wèn)題,考查的重點(diǎn)是客觀事物的數(shù)學(xué)化,這個(gè)過(guò)程主要是依據(jù)現(xiàn)實(shí)的生活背景,提煉相關(guān)的數(shù)量關(guān)系,構(gòu)造數(shù)學(xué)模型,將現(xiàn)實(shí)問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,并加以解決.命題時(shí)要堅(jiān)持“貼近生活,背景公平,控制難度”的原則,要把握好提出問(wèn)題所涉及的數(shù)學(xué)知識(shí)和方法的深度和廣度,要結(jié)合中學(xué)數(shù)學(xué)教學(xué)的實(shí)際,讓數(shù)學(xué)應(yīng)用問(wèn)題的難度更加符合考生的水平,引導(dǎo)考試自覺(jué)地置身于現(xiàn)實(shí)社會(huì)的大環(huán)境中,關(guān)心自己身邊的數(shù)學(xué)問(wèn)題,促使學(xué)生在學(xué)習(xí)和實(shí)踐中形成和發(fā)展數(shù)學(xué)應(yīng)用的意識(shí).

創(chuàng)新意識(shí)和創(chuàng)造能力是理想思維的高層次表現(xiàn).在數(shù)學(xué)的學(xué)習(xí)和研究過(guò)程中,知識(shí)的遷移、組合、融會(huì)的程度越高,展示能力的區(qū)域就越寬泛,顯現(xiàn)出的創(chuàng)造意識(shí)也就越強(qiáng).命題時(shí)要注意試題的多樣性,涉及考查數(shù)學(xué)主體內(nèi)容,體現(xiàn)數(shù)學(xué)素質(zhì)的題目,反映數(shù)、形運(yùn)動(dòng)變化的題目,研究型、探索型或開(kāi)放型的題目,讓考生獨(dú)立思考,自主探索,發(fā)揮主觀能動(dòng)性,探究問(wèn)題的本質(zhì),尋求合適的解題工具,梳理解題程序,為考生展現(xiàn)創(chuàng)新意識(shí)、發(fā)揮創(chuàng)造能力創(chuàng)設(shè)廣闊的空間.?dāng)?shù)學(xué)思想①函數(shù)與方程的思想②數(shù)形結(jié)合思想③分類討論思想④轉(zhuǎn)化化歸的思想數(shù)學(xué)素養(yǎng)數(shù)學(xué)素養(yǎng)屬于認(rèn)識(shí)論和方法論的綜合性思維形式,它具有概念化、抽象化、模式化的認(rèn)識(shí)特征。具有數(shù)學(xué)素養(yǎng)的人善于把數(shù)學(xué)中的概念結(jié)論和處理方法推廣應(yīng)用于認(rèn)識(shí)一切客觀事物,具有這樣的哲學(xué)高度和認(rèn)識(shí)特征。具體說(shuō),一個(gè)具有“數(shù)學(xué)素養(yǎng)”的人在他的認(rèn)識(shí)世界和改造世界的活動(dòng)中,常常表現(xiàn)出以下特點(diǎn):1、在討論問(wèn)題時(shí),習(xí)慣于強(qiáng)調(diào)定義(界定概念),強(qiáng)調(diào)問(wèn)題存在的條件;2、在觀察問(wèn)題時(shí),習(xí)慣于抓住其中的(函數(shù))關(guān)系,在微觀(局部)認(rèn)識(shí)基礎(chǔ)上進(jìn)一步做出多因素的全局性(全空間)考慮;3、在認(rèn)識(shí)問(wèn)題時(shí),習(xí)慣于將已有的嚴(yán)格的數(shù)學(xué)概念如對(duì)偶、相關(guān)、隨機(jī)、周期性等等概念廣義化,用于認(rèn)識(shí)現(xiàn)實(shí)中的問(wèn)題。一位名家說(shuō):真正的數(shù)學(xué)家應(yīng)能把他的東西講給任何人聽(tīng)得懂。因?yàn)槿魏螖?shù)學(xué)形式再?gòu)?fù)雜,總有它簡(jiǎn)單的思想實(shí)質(zhì),我們往往只注意到數(shù)學(xué)的思想方法中嚴(yán)格推理的一面,它屬于“演繹”的范疇,另外,數(shù)學(xué)修養(yǎng)中也有對(duì)偶的一面――“歸納”,稱之為“合情推理”或“常識(shí)推理”,它要求我們培養(yǎng)和運(yùn)用靈活、猜想和活躍的思維習(xí)慣。哥尼斯堡七橋問(wèn)題好像與數(shù)學(xué)關(guān)系不大,它是幾何問(wèn)題,但不是關(guān)于長(zhǎng)度、角度的歐氏幾何??墒菤W拉卻以敏銳的數(shù)學(xué)家眼光,猜想這個(gè)問(wèn)題可能無(wú)解(這是合情推理)。然后他以高度的抽象概括能力,把問(wèn)題變成了一個(gè)“一筆畫(huà)”問(wèn)題。解法一:解法二:解法三:(2)研究備考策略(以函數(shù)導(dǎo)數(shù)不等式為例)(1)三次函數(shù)專題(2)一元不等式專題(3)二元不等式專題(4)證明不等式專題三次函數(shù)專題分解因式求根公式實(shí)根分布特殊值根的個(gè)數(shù)根的個(gè)數(shù)四次函數(shù)一元不等式專題1.分類討論法2.分離參數(shù)法3.放縮變形法放縮變形法放縮變形法放縮變形法放縮變形法分離參數(shù)法分離參數(shù)法:分離參數(shù)法分離參數(shù)法:分類討論法分類討論分類討論法運(yùn)用特殊值縮小討論的范圍二元不等式專題

關(guān)于與函數(shù)導(dǎo)數(shù)有關(guān)的二元不等式的題目。此類問(wèn)題處理方法大致有:1.把一個(gè)視為主元,另一個(gè)視為副元,構(gòu)造函數(shù)法;2.代入消元法;3.比值減元法;4.基本不等式放縮法;5幾何意義轉(zhuǎn)化法;6.變量分離,構(gòu)造函數(shù)法;7.整體代換法.中心思想就是把多元轉(zhuǎn)化為一元.注意注意基本不等式法主元副元法整體代換法整體代換法整體代換法構(gòu)造函數(shù)法構(gòu)造函數(shù)法幾何意義法構(gòu)造函數(shù)法幾何意義法代入消元法整體代換+放縮證明不等式專題1、追求一步到位,違背認(rèn)識(shí)規(guī)律2、要求過(guò)分統(tǒng)一,忽視個(gè)性差異3、教學(xué)思路模糊,課堂定位不當(dāng)①以知識(shí)或結(jié)論為線②以解題方法為線③以條件的類型為線④以知識(shí)的應(yīng)用為線⑤以歸納的題組為線四、備考建議我們存在的問(wèn)題及對(duì)策:4、知識(shí)簡(jiǎn)單羅列,缺乏網(wǎng)絡(luò)構(gòu)建①注重概念的多元化特征②注重概念的前后聯(lián)系③回顧知識(shí)的生成過(guò)程④揭示知識(shí)的內(nèi)在規(guī)律5、典例就題講解,歸納變式不夠①注重解后反思②及時(shí)變式訓(xùn)練6、解題只重思路,答題失分連連①加強(qiáng)算理教學(xué)②關(guān)注學(xué)生弱點(diǎn)③注重規(guī)范解題7、教學(xué)方法單一,忽略學(xué)生主體8、小結(jié)內(nèi)容空洞,解題策略缺失9、作業(yè)量大題難,糾錯(cuò)反思不力①控制好題量與難度②注重選題的針對(duì)性三角函數(shù)分析與展望:主要考查三角函數(shù)的圖象與性質(zhì)(單調(diào)性、奇偶性、周期性、對(duì)稱性)、圖象變換(平移與伸縮)、運(yùn)用三角公式進(jìn)行化簡(jiǎn)、求值。今年的三角函數(shù)試題:小題主要考查三角函數(shù)的圖象與性質(zhì)、圖象變換。大題仍有可能以三角形中的三角函數(shù)為背景,結(jié)合平面向量、正弦、余弦定理,考查三角公式的恒等變形,和運(yùn)算求解能力;也有可能考查三角函數(shù)的圖像與性質(zhì),結(jié)合實(shí)際問(wèn)題考查三角函數(shù)的基本公式、圖象與性質(zhì)、正、余弦定理.解三角形的實(shí)際應(yīng)用題要高度關(guān)注。試題來(lái)源:生活中的素材、課本上的例題、習(xí)題。數(shù)列分析與展望:對(duì)數(shù)列的考查,重在等差、等比數(shù)列的概念、通項(xiàng)公式、求和公式、公式推導(dǎo)過(guò)程中所包含的思想和方法(如觀察-歸納-猜想、累加、倒序相加、錯(cuò)位相減、裂項(xiàng)相消等)、前n和與第n項(xiàng)之間的關(guān)系。數(shù)列與函數(shù)、不等式結(jié)合,主要考查考生綜合運(yùn)用所學(xué)知識(shí)解決問(wèn)題的能力、推理論證能力、應(yīng)用意識(shí)。今年數(shù)列考題:數(shù)列小題主要考查等差、等比數(shù)列的通項(xiàng)公式、求和公式及其性質(zhì)等,從函數(shù)的角度來(lái)理解數(shù)列、將數(shù)列與框圖結(jié)合均值得關(guān)注;大題仍然會(huì)以將遞推關(guān)系轉(zhuǎn)化為等差、等比數(shù)列求通項(xiàng)、求和.試題來(lái)源:課本上的例題、習(xí)題改編、重組;歷屆高考試題.概率與統(tǒng)計(jì)分析與展望:高中數(shù)學(xué)內(nèi)容中的概率與統(tǒng)計(jì),是大學(xué)統(tǒng)計(jì)學(xué)的基礎(chǔ),起著承上啟下的作用。高考對(duì)概率統(tǒng)計(jì)內(nèi)容的考查,主要突出考查古典概型、統(tǒng)計(jì)的基本知識(shí)與方法、統(tǒng)計(jì)的基本思想。小題理科結(jié)合排列、組合、計(jì)數(shù)原理考查等可能事件的概率,文科主要考查統(tǒng)計(jì)的基本思想與方法,古典概率。由于計(jì)數(shù)原理只在理科中出現(xiàn),故文科求概率只能采用列舉法,因此用樹(shù)狀法、列表法考慮基本事件數(shù)、概率與統(tǒng)計(jì)相結(jié)合是主要考查形式。文科求概率受限制于古典概率與互斥(對(duì)立)事件,因此文科大題基本上會(huì)向統(tǒng)計(jì)(頻率分布直方圖、莖葉圖、獨(dú)立性檢驗(yàn)、回歸分析等)方面轉(zhuǎn)移。理科大題重在統(tǒng)計(jì)與概率的結(jié)合,文科大題重在等可能事件概率與統(tǒng)計(jì)相結(jié)合。概率與統(tǒng)計(jì)今年的概率統(tǒng)計(jì)題,計(jì)數(shù)方法與古典概率,統(tǒng)計(jì)中的抽樣方法、正態(tài)分布、線性回歸、回歸分析與獨(dú)立性檢驗(yàn)、莖葉圖、頻率分布直方圖在小題中考查的可能性較大.大題理科考查重點(diǎn)仍可能為隨機(jī)變量的分布列及數(shù)學(xué)期望或與統(tǒng)計(jì)結(jié)合起來(lái)考查隨機(jī)變量的分布列及數(shù)學(xué)期望;文科以等可能事件、互斥事件的概率求法為主.將頻率分布直方圖、莖葉圖與概率結(jié)合起來(lái),仍是一個(gè)熱點(diǎn)。小題還需要特別關(guān)注幾何計(jì)數(shù)與古典概率的結(jié)合。概率與統(tǒng)計(jì)大題運(yùn)算量會(huì)有所控制,試題背景可能關(guān)注社會(huì)熱點(diǎn),也可能一反常態(tài),以函數(shù)、方程、線性規(guī)劃、摸球、擲骰子等學(xué)生熟悉的知識(shí)為背景,但問(wèn)法和前提的給出可能會(huì)比較新穎.學(xué)會(huì)用數(shù)據(jù)說(shuō)話,對(duì)數(shù)據(jù)分析的題目,如統(tǒng)計(jì)抽樣的圖表、頻率分布直方圖中的信息的獲得,結(jié)合概率的試題要特別關(guān)注。試題來(lái)源:社會(huì)生活的背景,課本例題、習(xí)題的改編。立體幾何分析與展望:立體幾何考試的重點(diǎn)是空間直線與直線、直線與平面、平面與平面的平行與垂直的性質(zhì)與判定、理科還包括線線角、線面角、二面角的計(jì)算??疾榭臻g想象能力、推理論證能力是立體幾何試題的主要任務(wù)。小題考查概念辨析、位置關(guān)系探究、三視圖與幾何體的表面積、體積的簡(jiǎn)單計(jì)算,考查畫(huà)圖、識(shí)圖、用圖的能力;大題是先證后求,一題兩法考查空間想象能力,運(yùn)算求解能力、推理論證能力。今年的立體幾何考題:對(duì)立體幾何內(nèi)容的考查相對(duì)穩(wěn)定。重在考查空間想象能力、三視圖的識(shí)圖能力、推理論證能力。小題以三視圖考查多面體、旋轉(zhuǎn)體的表面積、體積計(jì)算和空間位置關(guān)系的想象的可能性最大;文科大題可能是位置關(guān)系的證明(平行關(guān)系與垂直關(guān)系),結(jié)合體積計(jì)算,理科大題可能是位置關(guān)系的證明(平行關(guān)系與垂直關(guān)系)和利用空間向量計(jì)算空間角和距離。將解答題中的條件以三視圖的形式給出,考生根據(jù)三視圖將圖形語(yǔ)言轉(zhuǎn)化為空間圖形和符號(hào)語(yǔ)言后再進(jìn)行證明與計(jì)算的大題是今年立體幾何題創(chuàng)新點(diǎn)之一,值得關(guān)注。背景是特殊的四棱柱、四棱錐、三棱柱和三棱錐等基本模型。試題難度適中,證明與計(jì)算的要求大致與往年持平。試題來(lái)源:以常見(jiàn)的錐體、柱體為模型,進(jìn)行割、補(bǔ)、折、展,或生活中的幾何模型,來(lái)呈現(xiàn)問(wèn)題的背景或是課本例題、習(xí)題,歷屆高考題、模擬題的改編、整合、拓展而得。解析幾何分析與展望:對(duì)解析幾何的考查,小題主要在直線與圓、橢圓、雙曲線與拋物線的方程,圓錐曲線的定義的應(yīng)用,圓錐曲線的幾何量計(jì)算(離心率、雙曲線的漸近線等),直線與直線的位置關(guān)系等;大題注重與平面向量、函數(shù)、二次方程、不等式等融合與滲透。探求曲線的軌跡方程問(wèn)題、最值問(wèn)題、定值問(wèn)題與參數(shù)的

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論