版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
廣東省汕頭市龍湖區(qū)市級名校2024屆中考三模數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.反比例函數(shù)y=(a>0,a為常數(shù))和y=在第一象限內(nèi)的圖象如圖所示,點M在y=的圖象上,MC⊥x軸于點C,交y=的圖象于點A;MD⊥y軸于點D,交y=的圖象于點B,當(dāng)點M在y=的圖象上運動時,以下結(jié)論:①S△ODB=S△OCA;②四邊形OAMB的面積不變;③當(dāng)點A是MC的中點時,則點B是MD的中點.其中正確結(jié)論的個數(shù)是()A.0 B.1 C.2 D.32.某大型企業(yè)員工總數(shù)為28600人,數(shù)據(jù)“28600”用科學(xué)記數(shù)法可表示為()A.0.286×105B.2.86×105C.28.6×103D.2.86×1043.如圖,點O′在第一象限,⊙O′與x軸相切于H點,與y軸相交于A(0,2),B(0,8),則點O′的坐標(biāo)是()A.(6,4) B.(4,6) C.(5,4) D.(4,5)4.據(jù)統(tǒng)計,2015年廣州地鐵日均客運量均為人次,將用科學(xué)記數(shù)法表示為()A. B. C. D.5.如圖,已知線段AB,分別以A,B為圓心,大于AB為半徑作弧,連接弧的交點得到直線l,在直線l上取一點C,使得∠CAB=25°,延長AC至點M,則∠BCM的度數(shù)為()A.40° B.50° C.60° D.70°6.拋物線y=–x2+bx+c上部分點的橫坐標(biāo)x、縱坐標(biāo)y的對應(yīng)值如下表所示:x…–2–1012…y…04664…從上表可知,下列說法錯誤的是A.拋物線與x軸的一個交點坐標(biāo)為(–2,0) B.拋物線與y軸的交點坐標(biāo)為(0,6)C.拋物線的對稱軸是直線x=0 D.拋物線在對稱軸左側(cè)部分是上升的7.如圖,數(shù)軸上有A,B,C,D四個點,其中表示互為相反數(shù)的點是A.點A和點C B.點B和點DC.點A和點D D.點B和點C8.在Rt△ABC中,∠C=90°,AC=5,AB=13,則sinA的值為()A.512 B.513 C.129.我國古代數(shù)學(xué)家劉徽創(chuàng)立的“割圓術(shù)”可以估算圓周率π,理論上能把π的值計算到任意精度.祖沖之繼承并發(fā)展了“割圓術(shù)”,將π的值精確到小數(shù)點后第七位,這一結(jié)果領(lǐng)先世界一千多年,“割圓術(shù)”的第一步是計算半徑為1的圓內(nèi)接正六邊形的面積S6,則S6的值為()A. B.2 C. D.10.若=1,則符合條件的m有()A.1個 B.2個 C.3個 D.4個二、填空題(共7小題,每小題3分,滿分21分)11.一只不透明的袋子中裝有紅球和白球共30個,這些球除了顏色外都相同,校課外學(xué)習(xí)小組做摸球?qū)嶒?,將球攪勻后任意摸出一個球,記下顏色后放回,攪勻,通過多次重復(fù)試驗,算得摸到紅球的頻率是0.2,則袋中有________個紅球.12.如圖,點D為矩形OABC的AB邊的中點,反比例函數(shù)的圖象經(jīng)過點D,交BC邊于點E.若△BDE的面積為1,則k=________13.如圖,點A在雙曲線y=的第一象限的那一支上,AB垂直于y軸與點B,點C在x軸正半軸上,且OC=2AB,點E在線段AC上,且AE=3EC,點D為OB的中點,若△ADE的面積為3,則k的值為_____.14.已知關(guān)于x的一元二次方程(a-1)x2-2x+1=0有兩個不相等的實數(shù)根,則a的取值范圍是_______________.15.某小區(qū)購買了銀杏樹和玉蘭樹共150棵用來美化小區(qū)環(huán)境,購買銀杏樹用了12000元,購買玉蘭樹用了9000元.已知玉蘭樹的單價是銀杏樹單價的1.5倍,求銀杏樹和玉蘭樹的單價.設(shè)銀杏樹的單價為x元,可列方程為______.16.袋中裝有紅、綠各一個小球,隨機(jī)摸出1個小球后放回,再隨機(jī)摸出一個,則第一次摸到紅球,第二次摸到綠球的概率是_____.17.如圖,在矩形ABCD中,AB=4,AD=3,矩形內(nèi)部有一動點P滿足S△PAB=S矩形ABCD,則點P到A、B兩點的距離之和PA+PB的最小值為______.三、解答題(共7小題,滿分69分)18.(10分)如圖,點A、B在⊙O上,點O是⊙O的圓心,請你只用無刻度的直尺,分別畫出圖①和圖②中∠A的余角.(1)圖①中,點C在⊙O上;(2)圖②中,點C在⊙O內(nèi);19.(5分)拋物線與x軸交于A,B兩點(點A在點B的左邊),與y軸正半軸交于點C.(1)如圖1,若A(-1,0),B(3,0),①求拋物線的解析式;②P為拋物線上一點,連接AC,PC,若∠PCO=3∠ACO,求點P的橫坐標(biāo);(2)如圖2,D為x軸下方拋物線上一點,連DA,DB,若∠BDA+2∠BAD=90°,求點D的縱坐標(biāo).20.(8分)已知:如圖,拋物線y=ax2+bx+c與坐標(biāo)軸分別交于點A(0,6),B(6,0),C(﹣2,0),點P是線段AB上方拋物線上的一個動點.(1)求拋物線的解析式;(2)當(dāng)點P運動到什么位置時,△PAB的面積有最大值?(3)過點P作x軸的垂線,交線段AB于點D,再過點P做PE∥x軸交拋物線于點E,連結(jié)DE,請問是否存在點P使△PDE為等腰直角三角形?若存在,求出點P的坐標(biāo);若不存在,說明理由.21.(10分)如圖,在大樓AB正前方有一斜坡CD,坡角∠DCE=30°,樓高AB=60米,在斜坡下的點C處測得樓頂B的仰角為60°,在斜坡上的D處測得樓頂B的仰角為45°,其中點A,C,E在同一直線上.求坡底C點到大樓距離AC的值;求斜坡CD的長度.22.(10分)在平面直角坐標(biāo)系中,已知拋物線經(jīng)過A(-3,0),B(0,-3),C(1,0)三點.(1)求拋物線的解析式;(2)若點M為第三象限內(nèi)拋物線上一動點,點M的橫坐標(biāo)為m,△AMB的面積為S.求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值;(3)若點P是拋物線上的動點,點Q是直線y=-x上的動點,判斷有幾個位置能夠使得點P、Q、B、O為頂點的四邊形為平行四邊形,直接寫出相應(yīng)的點Q的坐標(biāo).23.(12分)如圖,在△ABC中,AB=BC,CD⊥AB于點D,CD=BD.BE平分∠ABC,點H是BC邊的中點.連接DH,交BE于點G.連接CG.(1)求證:△ADC≌△FDB;(2)求證:(3)判斷△ECG的形狀,并證明你的結(jié)論.24.(14分)如圖,拋物線y=x1﹣1x﹣3與x軸交于A、B兩點(點A在點B的左側(cè)),直線l與拋物線交于A,C兩點,其中點C的橫坐標(biāo)為1.(1)求A,B兩點的坐標(biāo)及直線AC的函數(shù)表達(dá)式;(1)P是線段AC上的一個動點(P與A,C不重合),過P點作y軸的平行線交拋物線于點E,求△ACE面積的最大值;(3)若直線PE為拋物線的對稱軸,拋物線與y軸交于點D,直線AC與y軸交于點Q,點M為直線PE上一動點,則在x軸上是否存在一點N,使四邊形DMNQ的周長最?。咳舸嬖?,求出這個最小值及點M,N的坐標(biāo);若不存在,請說明理由.(4)點H是拋物線上的動點,在x軸上是否存在點F,使A、C、F、H四個點為頂點的四邊形是平行四邊形?如果存在,請直接寫出所有滿足條件的F點坐標(biāo);如果不存在,請說明理由.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解題分析】
根據(jù)反比例函數(shù)的性質(zhì)和比例系數(shù)的幾何意義逐項分析可得出解.【題目詳解】①由于A、B在同一反比例函數(shù)y=圖象上,由反比例系數(shù)的幾何意義可得S△ODB=S△OCA=1,正確;②由于矩形OCMD、△ODB、△OCA為定值,則四邊形MAOB的面積不會發(fā)生變化,正確;③連接OM,點A是MC的中點,則S△ODM=S△OCM=,因S△ODB=S△OCA=1,所以△OBD和△OBM面積相等,點B一定是MD的中點.正確;故答案選D.考點:反比例系數(shù)的幾何意義.2、D【解題分析】
用科學(xué)記數(shù)法表示較大的數(shù)時,一般形式為a×10﹣n,其中1≤|a|<10,n為整數(shù),據(jù)此判斷即可【題目詳解】28600=2.86×1.故選D.【題目點撥】此題主要考查了用科學(xué)記數(shù)法表示較大的數(shù),一般形式為a×10﹣n,其中1≤|a|<10,確定a與n的值是解題的關(guān)鍵3、D【解題分析】
過O'作O'C⊥AB于點C,過O'作O'D⊥x軸于點D,由切線的性質(zhì)可求得O'D的長,則可得O'B的長,由垂徑定理可求得CB的長,在Rt△O'BC中,由勾股定理可求得O'C的長,從而可求得O'點坐標(biāo).【題目詳解】如圖,過O′作O′C⊥AB于點C,過O′作O′D⊥x軸于點D,連接O′B,∵O′為圓心,∴AC=BC,∵A(0,2),B(0,8),∴AB=8?2=6,∴AC=BC=3,∴OC=8?3=5,∵⊙O′與x軸相切,∴O′D=O′B=OC=5,在Rt△O′BC中,由勾股定理可得O′C===4,∴P點坐標(biāo)為(4,5),故選:D.【題目點撥】本題考查了切線的性質(zhì),坐標(biāo)與圖形性質(zhì),解題的關(guān)鍵是掌握切線的性質(zhì)和坐標(biāo)計算.4、D【解題分析】
科學(xué)記數(shù)法就是將一個數(shù)字表示成(a×10的n次冪的形式),其中1≤|a|<10,n表示整數(shù).n為整數(shù)位數(shù)減1,即從左邊第一位開始,在首位非零的后面加上小數(shù)點,再乘以10的n次冪.【題目詳解】解:6
590
000=6.59×1.故選:D.【題目點撥】本題考查學(xué)生對科學(xué)記數(shù)法的掌握,一定要注意a的形式,以及指數(shù)n的確定方法.5、B【解題分析】
解:∵由作法可知直線l是線段AB的垂直平分線,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故選B.6、C【解題分析】當(dāng)x=-2時,y=0,
∴拋物線過(-2,0),
∴拋物線與x軸的一個交點坐標(biāo)為(-2,0),故A正確;
當(dāng)x=0時,y=6,
∴拋物線與y軸的交點坐標(biāo)為(0,6),故B正確;
當(dāng)x=0和x=1時,y=6,
∴對稱軸為x=,故C錯誤;
當(dāng)x<時,y隨x的增大而增大,
∴拋物線在對稱軸左側(cè)部分是上升的,故D正確;
故選C.7、C【解題分析】
根據(jù)相反數(shù)的定義進(jìn)行解答即可.【題目詳解】解:由A表示-2,B表示-1,C表示0.75,D表示2.根據(jù)相反數(shù)和為0的特點,可確定點A和點D表示互為相反數(shù)的點.故答案為C.【題目點撥】本題考查了相反數(shù)的定義,掌握相反數(shù)和為0是解答本題的關(guān)鍵.8、C【解題分析】
先根據(jù)勾股定理求出BC得長,再根據(jù)銳角三角函數(shù)正弦的定義解答即可.【題目詳解】如圖,根據(jù)勾股定理得,BC=AB∴sinA=BCAB故選C.【題目點撥】本題考查了銳角三角函數(shù)的定義及勾股定理,熟知銳角三角函數(shù)正弦的定義是解決問題的關(guān)鍵.9、C【解題分析】
根據(jù)題意畫出圖形,結(jié)合圖形求出單位圓的內(nèi)接正六邊形的面積.【題目詳解】如圖所示,單位圓的半徑為1,則其內(nèi)接正六邊形ABCDEF中,△AOB是邊長為1的正三角形,所以正六邊形ABCDEF的面積為S6=6××1×1×sin60°=.故選C.【題目點撥】本題考查了已知圓的半徑求其內(nèi)接正六邊形面積的應(yīng)用問題,關(guān)鍵是根據(jù)正三角形的面積,正n邊形的性質(zhì)解答.10、C【解題分析】
根據(jù)有理數(shù)的乘方及解一元二次方程-直接開平方法得出兩個有關(guān)m的等式,即可得出.【題目詳解】=1m2-9=0或m-2=1即m=3或m=3,m=1m有3個值故答案選C.【題目點撥】本題考查的知識點是有理數(shù)的乘方及解一元二次方程-直接開平方法,解題的關(guān)鍵是熟練的掌握有理數(shù)的乘方及解一元二次方程-直接開平方法.二、填空題(共7小題,每小題3分,滿分21分)11、1【解題分析】
在同樣條件下,大量反復(fù)試驗時,隨機(jī)事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從比例關(guān)系入手,設(shè)袋中有x個紅球,列出方程=20%,求得x=1.
故答案為1.點睛:此題主要考查了利用頻率估計概率,本題利用了用大量試驗得到的頻率可以估計事件的概率.關(guān)鍵是根據(jù)紅球的頻率得到相應(yīng)的等量關(guān)系.12、1【解題分析】分析:設(shè)D(a,),利用點D為矩形OABC的AB邊的中點得到B(2a,),則E(2a,),然后利用三角形面積公式得到?a?(-)=1,最后解方程即可.詳解:設(shè)D(a,),
∵點D為矩形OABC的AB邊的中點,
∴B(2a,),
∴E(2a,),
∵△BDE的面積為1,
∴?a?(-)=1,解得k=1.
故答案為1.點睛:本題考查了反比例函數(shù)解析式的應(yīng)用,根據(jù)解析式設(shè)出點的坐標(biāo),結(jié)合矩形的性質(zhì)并利用平面直角坐標(biāo)系中點的特征確定三角形的兩邊長,進(jìn)而結(jié)合三角形的面積公式列出方程求解,可確定參數(shù)k的取值.13、.【解題分析】
由AE=3EC,△ADE的面積為3,可知△ADC的面積為4,再根據(jù)點D為OB的中點,得到△ADC的面積為梯形BOCA面積的一半,即梯形BOCA的面積為8,設(shè)A(x,),從而表示出梯形BOCA的面積關(guān)于k的等式,求解即可.【題目詳解】如圖,連接DC,∵AE=3EC,△ADE的面積為3,∴△CDE的面積為1.∴△ADC的面積為4.∵點A在雙曲線y=的第一象限的那一支上,∴設(shè)A點坐標(biāo)為(x,).∵OC=2AB,∴OC=2x.∵點D為OB的中點,∴△ADC的面積為梯形BOCA面積的一半,∴梯形BOCA的面積為8.∴梯形BOCA的面積=,解得.【題目點撥】反比例函數(shù)綜合題,曲線上點的坐標(biāo)與方程的關(guān)系,相似三角形的判定和性質(zhì),同底三角形面積的計算,梯形中位線的性質(zhì).14、a<2且a≠1.【解題分析】
利用一元二次方程根的判別式列不等式,解不等式求出a的取值范圍.【題目詳解】試題解析:∵關(guān)于x的一元二次方程(a-1)x2-2x+l=0有兩個不相等的實數(shù)根,∴△=b2-4ac>0,即4-4×(a-2)×1>0,解這個不等式得,a<2,又∵二次項系數(shù)是(a-1),∴a≠1.故a的取值范圍是a<2且a≠1.【題目點撥】本題考查的是一元二次方程根的判別式,根據(jù)方程有兩不等的實數(shù)根,得到判別式大于零,求出a的取值范圍,同時方程是一元二次方程,二次項系數(shù)不為零.15、【解題分析】
根據(jù)銀杏樹的單價為x元,則玉蘭樹的單價為1.5x元,根據(jù)“某小區(qū)購買了銀杏樹和玉蘭樹共1棵”列出方程即可.【題目詳解】設(shè)銀杏樹的單價為x元,則玉蘭樹的單價為1.5x元,根據(jù)題意,得:1.故答案為:1.【題目點撥】本題考查了由實際問題抽象出分式方程,找到關(guān)鍵描述語,找到合適的等量關(guān)系是解決問題的關(guān)鍵.16、【解題分析】解:列表如下:所有等可能的情況有4種,所以第一次摸到紅球,第二次摸到綠球的概率=.故答案為.17、4【解題分析】分析:首先由S△PAB=S矩形ABCD,得出動點P在與AB平行且與AB的距離是2的直線l上,作A關(guān)于直線l的對稱點E,連接AE,連接BE,則BE的長就是所求的最短距離.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.詳解:設(shè)△ABP中AB邊上的高是h.∵S△PAB=S矩形ABCD,∴AB?h=AB?AD,∴h=AD=2,∴動點P在與AB平行且與AB的距離是2的直線l上,如圖,作A關(guān)于直線l的對稱點E,連接AE,連接BE,則BE的長就是所求的最短距離.在Rt△ABE中,∵AB=4,AE=2+2=4,∴BE=,即PA+PB的最小值為4.故答案為4.點睛:本題考查了軸對稱-最短路線問題,三角形的面積,矩形的性質(zhì),勾股定理,兩點之間線段最短的性質(zhì).得出動點P所在的位置是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、圖形見解析【解題分析】試題分析:(1)根據(jù)同弧所對的圓周角相等和直徑所對的圓周角為直角畫圖即可;(2)延長AC交⊙O于點E,利用(1)的方法畫圖即可.試題解析:如圖①∠DBC就是所求的角;如圖②∠FBE就是所求的角19、(1)①y=-x2+2x+3②(2)-1【解題分析】分析:(1)①把A、B的坐標(biāo)代入解析式,解方程組即可得到結(jié)論;②延長CP交x軸于點E,在x軸上取點D使CD=CA,作EN⊥CD交CD的延長線于N.由CD=CA,OC⊥AD,得到∠DCO=∠ACO.由∠PCO=3∠ACO,得到∠ACD=∠ECD,從而有tan∠ACD=tan∠ECD,,即可得出AI、CI的長,進(jìn)而得到.設(shè)EN=3x,則CN=4x,由tan∠CDO=tan∠EDN,得到,故設(shè)DN=x,則CD=CN-DN=3x=,解方程即可得出E的坐標(biāo),進(jìn)而求出CE的直線解析式,聯(lián)立解方程組即可得到結(jié)論;(2)作DI⊥x軸,垂足為I.可以證明△EBD∽△DBC,由相似三角形對應(yīng)邊成比例得到,即,整理得.令y=0,得:.故,從而得到.由,得到,解方程即可得到結(jié)論.詳解:(1)①把A(-1,0),B(3,0)代入得:,解得:,∴②延長CP交x軸于點E,在x軸上取點D使CD=CA,作EN⊥CD交CD的延長線于N.∵CD=CA,OC⊥AD,∴∠DCO=∠ACO.∵∠PCO=3∠ACO,∴∠ACD=∠ECD,∴tan∠ACD=tan∠ECD,∴,AI=,∴CI=,∴.設(shè)EN=3x,則CN=4x.∵tan∠CDO=tan∠EDN,∴,∴DN=x,∴CD=CN-DN=3x=,∴,∴DE=,E(,0).CE的直線解析式為:,,解得:.點P的橫坐標(biāo).(2)作DI⊥x軸,垂足為I.∵∠BDA+2∠BAD=90°,∴∠DBI+∠BAD=90°.∵∠BDI+∠DBI=90°,∴∠BAD=∠BDI.∵∠BID=∠DIA,∴△EBD∽△DBC,∴,∴,∴.令y=0,得:.∴,∴.∵,∴,解得:yD=0或-1.∵D為x軸下方一點,∴,∴D的縱坐標(biāo)-1.點睛:本題是二次函數(shù)的綜合題.考查了二次函數(shù)解析式、性質(zhì),相似三角形的判定與性質(zhì),根與系數(shù)的關(guān)系.綜合性比較強,難度較大.20、(1)拋物線解析式為y=﹣x2+2x+6;(2)當(dāng)t=3時,△PAB的面積有最大值;(3)點P(4,6).【解題分析】
(1)利用待定系數(shù)法進(jìn)行求解即可得;(2)作PM⊥OB與點M,交AB于點N,作AG⊥PM,先求出直線AB解析式為y=﹣x+6,設(shè)P(t,﹣t2+2t+6),則N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=PN?AG+PN?BM=PN?OB列出關(guān)于t的函數(shù)表達(dá)式,利用二次函數(shù)的性質(zhì)求解可得;(3)由PH⊥OB知DH∥AO,據(jù)此由OA=OB=6得∠BDH=∠BAO=45°,結(jié)合∠DPE=90°知若△PDE為等腰直角三角形,則∠EDP=45°,從而得出點E與點A重合,求出y=6時x的值即可得出答案.【題目詳解】(1)∵拋物線過點B(6,0)、C(﹣2,0),∴設(shè)拋物線解析式為y=a(x﹣6)(x+2),將點A(0,6)代入,得:﹣12a=6,解得:a=﹣,所以拋物線解析式為y=﹣(x﹣6)(x+2)=﹣x2+2x+6;(2)如圖1,過點P作PM⊥OB與點M,交AB于點N,作AG⊥PM于點G,設(shè)直線AB解析式為y=kx+b,將點A(0,6)、B(6,0)代入,得:,解得:,則直線AB解析式為y=﹣x+6,設(shè)P(t,﹣t2+2t+6)其中0<t<6,則N(t,﹣t+6),∴PN=PM﹣MN=﹣t2+2t+6﹣(﹣t+6)=﹣t2+2t+6+t﹣6=﹣t2+3t,∴S△PAB=S△PAN+S△PBN=PN?AG+PN?BM=PN?(AG+BM)=PN?OB=×(﹣t2+3t)×6=﹣t2+9t=﹣(t﹣3)2+,∴當(dāng)t=3時,△PAB的面積有最大值;(3)△PDE為等腰直角三角形,
則PE=PD,
點P(m,-m2+2m+6),
函數(shù)的對稱軸為:x=2,則點E的橫坐標(biāo)為:4-m,
則PE=|2m-4|,
即-m2+2m+6+m-6=|2m-4|,
解得:m=4或-2或5+或5-(舍去-2和5+)
故點P的坐標(biāo)為:(4,6)或(5-,3-5).【題目點撥】本題考查了二次函數(shù)的綜合問題,涉及到待定系數(shù)法、二次函數(shù)的最值、等腰直角三角形的判定與性質(zhì)等,熟練掌握和靈活運用待定系數(shù)法求函數(shù)解析式、二次函數(shù)的性質(zhì)、等腰直角三角形的判定與性質(zhì)等是解題的關(guān)鍵.21、(1)坡底C點到大樓距離AC的值為20米;(2)斜坡CD的長度為80-120米.【解題分析】分析:(1)在直角三角形ABC中,利用銳角三角函數(shù)定義求出AC的長即可;(2)過點D作DF⊥AB于點F,則四邊形AEDF為矩形,得AF=DE,DF=AE.利用DF=AE=AC+CE求解即可.詳解:(1)在直角△ABC中,∠BAC=90°,∠BCA=60°,AB=60米,則AC=(米)答:坡底C點到大樓距離AC的值是20米.(2)過點D作DF⊥AB于點F,則四邊形AEDF為矩形,∴AF=DE,DF=AE.設(shè)CD=x米,在Rt△CDE中,DE=x米,CE=x米在Rt△BDF中,∠BDF=45°,∴BF=DF=AB-AF=60-x(米)∵DF=AE=AC+CE,∴20+x=60-x解得:x=80-120(米)故斜坡CD的長度為(80-120)米.點睛:此題考查了解直角三角形-仰角俯角問題,坡度坡角問題,熟練掌握勾股定理是解本題的關(guān)鍵.22、(1)時,S最大為(1)(-1,1)或或或(1,-1)【解題分析】試題分析:(1)先假設(shè)出函數(shù)解析式,利用三點法求解函數(shù)解析式.(2)設(shè)出M點的坐標(biāo),利用S=S△AOM+S△OBM﹣S△AOB即可進(jìn)行解答;(1)當(dāng)OB是平行四邊形的邊時,表示出PQ的長,再根據(jù)平行四邊形的對邊相等列出方程求解即可;當(dāng)OB是對角線時,由圖可知點A與P應(yīng)該重合,即可得出結(jié)論.試題解析:解:(1)設(shè)此拋物線的函數(shù)解析式為:y=ax2+bx+c(a≠0),將A(-1,0),B(0,-1),C(1,0)三點代入函數(shù)解析式得:解得,所以此函數(shù)解析式為:.(2)∵M(jìn)點的橫坐標(biāo)為m,且點M在這條拋物線上,∴M點的坐標(biāo)為:(m,),∴S=S△AOM+S△OBM-S△AOB=×1×(-)+×1×(-m)-×1×1=-(m+)2+,當(dāng)m=-時,S有最大值為:S=-.(1)設(shè)P(x,).分兩種情況討論:①當(dāng)OB為邊時,根據(jù)平行四邊形的性質(zhì)知PB∥OQ,∴Q的橫坐標(biāo)的絕對值等于P的橫坐標(biāo)的絕對值,又∵直線的解析式為y=-x,則Q(x,-x).由PQ=OB,得:|-x-()|=1解得:x=0(不合題意,舍去),-1,,∴Q的坐標(biāo)為(-1,1)或或;②當(dāng)BO為對角線時,如圖,知A與P應(yīng)該重合,OP=1.四邊形PBQO為平行四邊形則BQ=OP=1,Q橫坐標(biāo)為1,代入y=﹣x得出Q為(1,﹣1).綜上所述:Q的坐標(biāo)為:(-1,1)或或或(1,-1).點睛:本題是對二次函數(shù)的綜合考查,有待定系數(shù)法求二次函數(shù)解析式,三角形的面積,二次函數(shù)的最值問題,平行四邊形的對邊相等的性質(zhì),平面直角坐標(biāo)系中兩點間的距離的表示,綜合性較強,但難度不大,仔細(xì)分析便不難求解.23、(1)詳見解析;(2)詳見解析;(3)詳見解析.【解題分析】
(1)首先根據(jù)AB=BC,BE平分∠ABC,得到BE⊥AC,CE=AE,進(jìn)一步得到∠ACD=∠DBF,結(jié)合CD=BD,即可證明出△ADC≌△FDB;(2)由△ADC≌△FDB得到AC=BF,結(jié)合CE=AE,即可證明出結(jié)論;(3)由點H是BC邊的中點,得到GH垂直平分BC,即GC=GB,由∠DBF=∠GBC=∠GCB=∠ECF,得∠ECO=45°,結(jié)合BE⊥AC,即可判斷出△ECG的形狀.【題目詳解】解:(1)∵AB=BC,BE平分∠ABC∴BE⊥AC∵CD⊥AB∴∠ACD=∠ABE(同角的余角相等)又∵CD=BD∴△ADC≌△FDB(2)∵AB=BC
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年綠色施工安全生產(chǎn)文明工地綜合服務(wù)合同3篇
- 二零二五版養(yǎng)老機(jī)構(gòu)勞動合同管理規(guī)范及養(yǎng)老服務(wù)協(xié)議3篇
- 2025年度香菇食品企業(yè)信用評級與評估服務(wù)合同2篇
- 二零二五年櫥柜安裝及廚房設(shè)備更新合同2篇
- 年度老年人保健品競爭策略分析報告
- 二零二四年外債轉(zhuǎn)貸業(yè)務(wù)借款合同標(biāo)準(zhǔn)3篇
- 二零二五版商業(yè)地產(chǎn)項目股權(quán)借款抵押合同3篇
- 2024版新材料研發(fā)與技術(shù)轉(zhuǎn)讓合同
- 二零二五版體育賽事贊助合同協(xié)議范本下載3篇
- 二零二五版企業(yè)安全生產(chǎn)與環(huán)境保護(hù)培訓(xùn)合同2篇
- 細(xì)胞庫建設(shè)與標(biāo)準(zhǔn)制定-洞察分析
- 2024年國家公務(wù)員錄用考試公共基礎(chǔ)知識復(fù)習(xí)題庫2500題及答案
- DB3309T 98-2023 登步黃金瓜生產(chǎn)技術(shù)規(guī)程
- 2024年萍鄉(xiāng)衛(wèi)生職業(yè)學(xué)院單招職業(yè)技能測試題庫標(biāo)準(zhǔn)卷
- DBJ41-T 108-2011 鋼絲網(wǎng)架水泥膨脹珍珠巖夾芯板隔墻應(yīng)用技術(shù)規(guī)程
- 2025年學(xué)長引領(lǐng)的讀書會定期活動合同
- 表內(nèi)乘除法口算l練習(xí)題1200道a4打印
- 《EICC培訓(xùn)講義》課件
- 2025年四川省政府直屬事業(yè)單位招聘管理單位筆試遴選500模擬題附帶答案詳解
- 2024年物業(yè)公司服務(wù)質(zhì)量保證合同條款
- 文言文閱讀之理解實詞含義(講義)-2025年中考語文專項復(fù)習(xí)
評論
0/150
提交評論