廣東省梅州五華縣聯(lián)考2024屆中考數(shù)學(xué)全真模擬試題含解析_第1頁(yè)
廣東省梅州五華縣聯(lián)考2024屆中考數(shù)學(xué)全真模擬試題含解析_第2頁(yè)
廣東省梅州五華縣聯(lián)考2024屆中考數(shù)學(xué)全真模擬試題含解析_第3頁(yè)
廣東省梅州五華縣聯(lián)考2024屆中考數(shù)學(xué)全真模擬試題含解析_第4頁(yè)
廣東省梅州五華縣聯(lián)考2024屆中考數(shù)學(xué)全真模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

廣東省梅州五華縣聯(lián)考2024屆中考數(shù)學(xué)全真模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,將邊長(zhǎng)為2cm的正方形OABC放在平面直角坐標(biāo)系中,O是原點(diǎn),點(diǎn)A的橫坐標(biāo)為1,則點(diǎn)C的坐標(biāo)為()A.(,-1) B.(2,﹣1) C.(1,-) D.(﹣1,)2.如圖,平行四邊形ABCD中,點(diǎn)A在反比例函數(shù)y=(k≠0)的圖象上,點(diǎn)D在y軸上,點(diǎn)B、點(diǎn)C在x軸上.若平行四邊形ABCD的面積為10,則k的值是()A.﹣10 B.﹣5 C.5 D.103.如圖,數(shù)軸上有三個(gè)點(diǎn)A、B、C,若點(diǎn)A、B表示的數(shù)互為相反數(shù),則圖中點(diǎn)C對(duì)應(yīng)的數(shù)是()A.﹣2 B.0 C.1 D.44.拋物線y=x2+2x+3的對(duì)稱(chēng)軸是()A.直線x=1 B.直線x=-1C.直線x=-2 D.直線x=25.如圖,已知Rt△ABC中,∠BAC=90°,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn),使點(diǎn)D落在射線CA上,DE的延長(zhǎng)線交BC于F,則∠CFD的度數(shù)為()A.80° B.90° C.100° D.120°6.的平方根是()A.2 B. C.±2 D.±7.如圖,在平面直角坐標(biāo)中,正方形ABCD與正方形BEFG是以原點(diǎn)O為位似中心的位似圖形,且相似比為,點(diǎn)A,B,E在x軸上,若正方形BEFG的邊長(zhǎng)為6,則C點(diǎn)坐標(biāo)為()A.(3,2) B.(3,1) C.(2,2) D.(4,2)8.如圖,AB為⊙O的直徑,C、D為⊙O上的點(diǎn),若AC=CD=DB,則cos∠CAD=()A. B. C. D.9.如右圖,⊿ABC內(nèi)接于⊙O,若∠OAB=28°則∠C的大小為()A.62° B.56° C.60° D.28°10.如圖,能判定EB∥AC的條件是()A.∠C=∠ABE B.∠A=∠EBDC.∠A=∠ABE D.∠C=∠ABC11.計(jì)算6m6÷(-2m2)3的結(jié)果為()A. B. C. D.12.如圖,AB是⊙O的一條弦,點(diǎn)C是⊙O上一動(dòng)點(diǎn),且∠ACB=30°,點(diǎn)E,F(xiàn)分別是AC,BC的中點(diǎn),直線EF與⊙O交于G,H兩點(diǎn),若⊙O的半徑為6,則GE+FH的最大值為()A.6 B.9 C.10 D.12二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.不等式組的解集是__.14.如圖,已知直線y=x+4與雙曲線y=(x<0)相交于A、B兩點(diǎn),與x軸、y軸分別相交于D、C兩點(diǎn),若AB=2,則k=_____.15.如圖,直線l經(jīng)過(guò)⊙O的圓心O,與⊙O交于A、B兩點(diǎn),點(diǎn)C在⊙O上,∠AOC=30°,點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn)(與圓心O不重合),直線CP與⊙O相交于點(diǎn)Q,且PQ=OQ,則滿足條件的∠OCP的大小為_(kāi)______.16.如圖,AB是⊙O的直徑,CD是⊙O的弦,∠BAD=60°,則∠ACD=_____°.17.因式分解:a3b﹣ab3=_____.18.在直徑為10m的圓柱形油槽內(nèi)裝入一些油后,截面如圖所示如果油面寬AB=8m,那么油的最大深度是_________.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)如圖,已知AB為⊙O的直徑,AC是⊙O的弦,D是弧BC的中點(diǎn),過(guò)點(diǎn)D作⊙O的切線,分別交AC、AB的延長(zhǎng)線于點(diǎn)E和點(diǎn)F,連接CD、BD.(1)求證:∠A=2∠BDF;(2)若AC=3,AB=5,求CE的長(zhǎng).20.(6分)(1)問(wèn)題發(fā)現(xiàn):如圖①,在等邊三角形ABC中,點(diǎn)M為BC邊上異于B、C的一點(diǎn),以AM為邊作等邊三角形AMN,連接CN,NC與AB的位置關(guān)系為;(2)深入探究:如圖②,在等腰三角形ABC中,BA=BC,點(diǎn)M為BC邊上異于B、C的一點(diǎn),以AM為邊作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,連接CN,試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說(shuō)明理由;(3)拓展延伸:如圖③,在正方形ADBC中,AD=AC,點(diǎn)M為BC邊上異于B、C的一點(diǎn),以AM為邊作正方形AMEF,點(diǎn)N為正方形AMEF的中點(diǎn),連接CN,若BC=10,CN=,試求EF的長(zhǎng).21.(6分)如圖,在平面直角坐標(biāo)系xOy中,直線y=kx+m與雙曲線y=﹣相交于點(diǎn)A(m,2).(1)求直線y=kx+m的表達(dá)式;(2)直線y=kx+m與雙曲線y=﹣的另一個(gè)交點(diǎn)為B,點(diǎn)P為x軸上一點(diǎn),若AB=BP,直接寫(xiě)出P點(diǎn)坐標(biāo).22.(8分)一個(gè)不透明的袋子中裝有3個(gè)標(biāo)號(hào)分別為1、2、3的完全相同的小球,隨機(jī)地摸出一個(gè)小球不放回,再隨機(jī)地摸出一個(gè)小球.采用樹(shù)狀圖或列表法列出兩次摸出小球出現(xiàn)的所有可能結(jié)果;求摸出的兩個(gè)小球號(hào)碼之和等于4的概率.23.(8分)計(jì)算:.24.(10分)計(jì)算:﹣14﹣2×(﹣3)2+÷(﹣)如圖,小林將矩形紙片ABCD沿折痕EF翻折,使點(diǎn)C、D分別落在點(diǎn)M、N的位置,發(fā)現(xiàn)∠EFM=2∠BFM,求∠EFC的度數(shù).25.(10分)如圖,在平面直角坐標(biāo)系xOy中,正比例函數(shù)y=x的圖象與一次函數(shù)y=kx-k的圖象的交點(diǎn)坐標(biāo)為A(m,2).(1)求m的值和一次函數(shù)的解析式;(2)設(shè)一次函數(shù)y=kx-k的圖象與y軸交于點(diǎn)B,求△AOB的面積;(3)直接寫(xiě)出使函數(shù)y=kx-k的值大于函數(shù)y=x的值的自變量x的取值范圍.26.(12分)九(3)班“2017年新年聯(lián)歡會(huì)”中,有一個(gè)摸獎(jiǎng)游戲,規(guī)則如下:有4張紙牌,背面都是喜羊羊頭像,正面有2張笑臉、2張哭臉.現(xiàn)將4張紙牌洗勻后背面朝上擺放到桌上,然后讓同學(xué)去翻紙牌.(1)現(xiàn)小芳有一次翻牌機(jī)會(huì),若正面是笑臉的就獲獎(jiǎng),正面是哭臉的不獲獎(jiǎng).她從中隨機(jī)翻開(kāi)一張紙牌,求小芳獲獎(jiǎng)的概率.(2)如果小芳、小明都有翻兩張牌的機(jī)會(huì).小芳先翻一張,放回后再翻一張;小明同時(shí)翻開(kāi)兩張紙牌.他們翻開(kāi)的兩張紙牌中只要出現(xiàn)一張笑臉就獲獎(jiǎng).他們獲獎(jiǎng)的機(jī)會(huì)相等嗎?通過(guò)樹(shù)狀圖分析說(shuō)明理由.27.(12分)在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A(0,1),點(diǎn)C(1,0),正方形AOCD的兩條對(duì)角線的交點(diǎn)為B,延長(zhǎng)BD至點(diǎn)G,使DG=BD,延長(zhǎng)BC至點(diǎn)E,使CE=BC,以BG,BE為鄰邊作正方形BEFG.(Ⅰ)如圖①,求OD的長(zhǎng)及的值;(Ⅱ)如圖②,正方形AOCD固定,將正方形BEFG繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),得正方形BE′F′G′,記旋轉(zhuǎn)角為α(0°<α<360°),連接AG′.①在旋轉(zhuǎn)過(guò)程中,當(dāng)∠BAG′=90°時(shí),求α的大?。虎谠谛D(zhuǎn)過(guò)程中,求AF′的長(zhǎng)取最大值時(shí),點(diǎn)F′的坐標(biāo)及此時(shí)α的大?。ㄖ苯訉?xiě)出結(jié)果即可).

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、A【解題分析】

作AD⊥y軸于D,作CE⊥y軸于E,則∠ADO=∠OEC=90°,得出∠1+∠1=90°,由正方形的性質(zhì)得出OC=AO,∠1+∠3=90°,證出∠3=∠1,由AAS證明△OCE≌△AOD,得到OE=AD=1,CE=OD=,即可得出結(jié)果.【題目詳解】解:作AD⊥y軸于D,作CE⊥y軸于E,如圖所示:則∠ADO=∠OEC=90°,∴∠1+∠1=90°.∵AO=1,AD=1,∴OD=,∴點(diǎn)A的坐標(biāo)為(1,),∴AD=1,OD=.∵四邊形OABC是正方形,∴∠AOC=90°,OC=AO,∴∠1+∠3=90°,∴∠3=∠1.在△OCE和△AOD中,∵,∴△OCE≌△AOD(AAS),∴OE=AD=1,CE=OD=,∴點(diǎn)C的坐標(biāo)為(,﹣1).故選A.【題目點(diǎn)撥】本題考查了正方形的性質(zhì)、坐標(biāo)與圖形性質(zhì)、全等三角形的判定與性質(zhì);熟練掌握正方形的性質(zhì),證明三角形全等得出對(duì)應(yīng)邊相等是解決問(wèn)題的關(guān)鍵.2、A【解題分析】

作AE⊥BC于E,由四邊形ABCD為平行四邊形得AD∥x軸,則可判斷四邊形ADOE為矩形,所以S平行四邊形ABCD=S矩形ADOE,根據(jù)反比例函數(shù)k的幾何意義得到S矩形ADOE=|?k|,利用反比例函數(shù)圖象得到.【題目詳解】作AE⊥BC于E,如圖,∵四邊形ABCD為平行四邊形,∴AD∥x軸,∴四邊形ADOE為矩形,∴S平行四邊形ABCD=S矩形ADOE,而S矩形ADOE=|?k|,∴|?k|=1,∵k<0,∴k=?1.故選A.【題目點(diǎn)撥】本題考查了反比例函數(shù)y=(k≠0)系數(shù)k的幾何意義:從反比例函數(shù)y=(k≠0)圖象上任意一點(diǎn)向x軸和y軸作垂線,垂線與坐標(biāo)軸所圍成的矩形面積為|k|.3、C【解題分析】【分析】首先確定原點(diǎn)位置,進(jìn)而可得C點(diǎn)對(duì)應(yīng)的數(shù).【題目詳解】∵點(diǎn)A、B表示的數(shù)互為相反數(shù),AB=6∴原點(diǎn)在線段AB的中點(diǎn)處,點(diǎn)B對(duì)應(yīng)的數(shù)為3,點(diǎn)A對(duì)應(yīng)的數(shù)為-3,又∵BC=2,點(diǎn)C在點(diǎn)B的左邊,∴點(diǎn)C對(duì)應(yīng)的數(shù)是1,故選C.【題目點(diǎn)撥】本題主要考查了數(shù)軸,關(guān)鍵是正確確定原點(diǎn)位置.4、B【解題分析】

根據(jù)拋物線的對(duì)稱(chēng)軸公式:計(jì)算即可.【題目詳解】解:拋物線y=x2+2x+3的對(duì)稱(chēng)軸是直線故選B.【題目點(diǎn)撥】此題考查的是求拋物線的對(duì)稱(chēng)軸,掌握拋物線的對(duì)稱(chēng)軸公式是解決此題的關(guān)鍵.5、B【解題分析】

根據(jù)旋轉(zhuǎn)的性質(zhì)得出全等,推出∠B=∠D,求出∠B+∠BEF=∠D+∠AED=90°,根據(jù)三角形外角性質(zhì)得出∠CFD=∠B+∠BEF,代入求出即可.【題目詳解】解:∵將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得到△ADE,∴△ABC≌△ADE,∴∠B=∠D,∵∠CAB=∠BAD=90°,∠BEF=∠AED,∠B+∠BEF+∠BFE=180°,∠D+∠BAD+∠AED=180°,∴∠B+∠BEF=∠D+∠AED=180°﹣90°=90°,∴∠CFD=∠B+∠BEF=90°,故選:B.【題目點(diǎn)撥】本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)和判定,三角形內(nèi)角和定理,三角形外角性質(zhì)的應(yīng)用,掌握旋轉(zhuǎn)變換的性質(zhì)是解題的關(guān)鍵.6、D【解題分析】

先化簡(jiǎn),然后再根據(jù)平方根的定義求解即可.【題目詳解】∵=2,2的平方根是±,∴的平方根是±.故選D.【題目點(diǎn)撥】本題考查了平方根的定義以及算術(shù)平方根,先把正確化簡(jiǎn)是解題的關(guān)鍵,本題比較容易出錯(cuò).7、A【解題分析】

∵正方形ABCD與正方形BEFG是以原點(diǎn)O為位似中心的位似圖形,且相似比為,∴=,∵BG=6,∴AD=BC=2,∵AD∥BG,∴△OAD∽△OBG,∴=,∴=,解得:OA=1,∴OB=3,∴C點(diǎn)坐標(biāo)為:(3,2),故選A.8、D【解題分析】

根據(jù)圓心角,弧,弦的關(guān)系定理可以得出===,根據(jù)圓心角和圓周角的關(guān)鍵即可求出的度數(shù),進(jìn)而求出它的余弦值.【題目詳解】解:===,故選D.【題目點(diǎn)撥】本題考查圓心角,弧,弦,圓周角的關(guān)系,熟記特殊角的三角函數(shù)值是解題的關(guān)鍵.9、A【解題分析】

連接OB.在△OAB中,OA=OB(⊙O的半徑),∴∠OAB=∠OBA(等邊對(duì)等角);又∵∠OAB=28°,∴∠OBA=28°;∴∠AOB=180°-2×28°=124°;而∠C=∠AOB(同弧所對(duì)的圓周角是所對(duì)的圓心角的一半),∴∠C=62°;故選A10、C【解題分析】

在復(fù)雜的圖形中具有相等關(guān)系的兩角首先要判斷它們是否是同位角或內(nèi)錯(cuò)角,被判斷平行的兩直線是否由“三線八角”而產(chǎn)生的被截直線.【題目詳解】A、∠C=∠ABE不能判斷出EB∥AC,故本選項(xiàng)錯(cuò)誤;B、∠A=∠EBD不能判斷出EB∥AC,故本選項(xiàng)錯(cuò)誤;C、∠A=∠ABE,根據(jù)內(nèi)錯(cuò)角相等,兩直線平行,可以得出EB∥AC,故本選項(xiàng)正確;D、∠C=∠ABC只能判斷出AB=AC,不能判斷出EB∥AC,故本選項(xiàng)錯(cuò)誤.故選C.【題目點(diǎn)撥】本題考查了平行線的判定,正確識(shí)別“三線八角”中的同位角、內(nèi)錯(cuò)角、同旁內(nèi)角是正確答題的關(guān)鍵,只有同位角相等、內(nèi)錯(cuò)角相等、同旁內(nèi)角互補(bǔ),才能推出兩被截直線平行.11、D【解題分析】分析:根據(jù)冪的乘方計(jì)算法則求出除數(shù),然后根據(jù)同底數(shù)冪的除法法則得出答案.詳解:原式=,故選D.點(diǎn)睛:本題主要考查的是冪的計(jì)算法則,屬于基礎(chǔ)題型.明白冪的計(jì)算法則是解決這個(gè)問(wèn)題的關(guān)鍵.12、B【解題分析】

首先連接OA、OB,根據(jù)圓周角定理,求出∠AOB=2∠ACB=60°,進(jìn)而判斷出△AOB為等邊三角形;然后根據(jù)⊙O的半徑為6,可得AB=OA=OB=6,再根據(jù)三角形的中位線定理,求出EF的長(zhǎng)度;最后判斷出當(dāng)弦GH是圓的直徑時(shí),它的值最大,進(jìn)而求出GE+FH的最大值是多少即可.【題目詳解】解:如圖,連接OA、OB,,∵∠ACB=30°,∴∠AOB=2∠ACB=60°,∵OA=OB,∴△AOB為等邊三角形,∵⊙O的半徑為6,∴AB=OA=OB=6,∵點(diǎn)E,F(xiàn)分別是AC、BC的中點(diǎn),∴EF=AB=3,要求GE+FH的最大值,即求GE+FH+EF(弦GH)的最大值,∵當(dāng)弦GH是圓的直徑時(shí),它的最大值為:6×2=12,∴GE+FH的最大值為:12﹣3=1.故選:B.【題目點(diǎn)撥】本題結(jié)合動(dòng)點(diǎn)考查了圓周角定理,三角形中位線定理,有一定難度.確定GH的位置是解題的關(guān)鍵.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、2≤x<1【解題分析】

分別解兩個(gè)不等式得到x<1和x≥2,然后根據(jù)大小小大中間找確定不等數(shù)組的解集.【題目詳解】解:,解①得x<1,解②得x≥2,所以不等式組的解集為2≤x<1.故答案為2≤x<1.【題目點(diǎn)撥】本題考查了解一元一次不等式組:解一元一次不等式組時(shí),一般先求出其中各不等式的解集,再求出這些解集的公共部分,利用數(shù)軸可以直觀地表示不等式組的解集.解集的規(guī)律:同大取大;同小取?。淮笮⌒〈笾虚g找;大大小小找不到.14、-3【解題分析】設(shè)A(a,a+4),B(c,c+4),則解得:x+4=,即x2+4x?k=0,∵直線y=x+4與雙曲線y=相交于A、B兩點(diǎn),∴a+c=?4,ac=-k,∴(c?a)2=(c+a)2?4ac=16+4k,∵AB=,∴由勾股定理得:(c?a)2+[c+4?(a+4)]2=()2,2(c?a)2=8,(c?a)2=4,∴16+4k=4,解得:k=?3,故答案為?3.點(diǎn)睛:本題考查了一次函數(shù)與反比例函數(shù)的交點(diǎn)問(wèn)題、根與系數(shù)的關(guān)系、勾股定理、圖象上點(diǎn)的坐標(biāo)特征等,題目具有一定的代表性,綜合性強(qiáng),有一定難度.15、40°【解題分析】:在△QOC中,OC=OQ,∴∠OQC=∠OCQ,在△OPQ中,QP=QO,∴∠QOP=∠QPO,又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,∴3∠OCP=120°,∴∠OCP=40°16、1【解題分析】

連接BD.根據(jù)圓周角定理可得.【題目詳解】解:如圖,連接BD.∵AB是⊙O的直徑,∴∠ADB=90°,∴∠B=90°﹣∠DAB=1°,∴∠ACD=∠B=1°,故答案為1.【題目點(diǎn)撥】考核知識(shí)點(diǎn):圓周角定理.理解定義是關(guān)鍵.17、ab(a+b)(a﹣b)【解題分析】

先提取公因式ab,然后再利用平方差公式分解即可.【題目詳解】a3b﹣ab3=ab(a2﹣b2)=ab(a+b)(a﹣b),故答案為ab(a+b)(a﹣b).【題目點(diǎn)撥】本題考查了提公因式法與公式法的綜合運(yùn)用,熟練掌握因式分解的方法是解本題的關(guān)鍵.分解因式的步驟一般為:一提(公因式),二套(公式),三徹底.18、2m【解題分析】

本題是已知圓的直徑,弦長(zhǎng)求油的最大深度其實(shí)就是弧AB的中點(diǎn)到弦AB的距離,可以轉(zhuǎn)化為求弦心距的問(wèn)題,利用垂徑定理來(lái)解決.【題目詳解】解:過(guò)點(diǎn)O作OM⊥AB交AB與M,交弧AB于點(diǎn)E.連接OA.在Rt△OAM中:OA=5m,AM=12根據(jù)勾股定理可得OM=3m,則油的最大深度ME為5-3=2m.【題目點(diǎn)撥】圓中的有關(guān)半徑,弦長(zhǎng),弦心距之間的計(jì)算一般是通過(guò)垂徑定理轉(zhuǎn)化為解直角三角形的問(wèn)題.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)見(jiàn)解析;(2)1【解題分析】

(1)連接AD,如圖,利用圓周角定理得∠ADB=90°,利用切線的性質(zhì)得OD⊥DF,則根據(jù)等角的余角相等得到∠BDF=∠ODA,所以∠OAD=∠BDF,然后證明∠COD=∠OAD得到∠CAB=2∠BDF;

(2)連接BC交OD于H,如圖,利用垂徑定理得到OD⊥BC,則CH=BH,于是可判斷OH為△ABC的中位線,所以O(shè)H=1.5,則HD=1,然后證明四邊形DHCE為矩形得到CE=DH=1.【題目詳解】(1)證明:連接AD,如圖,∵AB為⊙O的直徑,∴∠ADB=90°,∵EF為切線,∴OD⊥DF,∵∠BDF+∠ODB=90°,∠ODA+∠ODB=90°,∴∠BDF=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠OAD=∠BDF,∵D是弧BC的中點(diǎn),∴∠COD=∠OAD,∴∠CAB=2∠BDF;(2)解:連接BC交OD于H,如圖,∵D是弧BC的中點(diǎn),∴OD⊥BC,∴CH=BH,∴OH為△ABC的中位線,∴,∴HD=2.5-1.5=1,∵AB為⊙O的直徑,∴∠ACB=90°,∴四邊形DHCE為矩形,∴CE=DH=1.【題目點(diǎn)撥】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑.若出現(xiàn)圓的切線,必連過(guò)切點(diǎn)的半徑,構(gòu)造定理圖,得出垂直關(guān)系.簡(jiǎn)記作:見(jiàn)切點(diǎn),連半徑,見(jiàn)垂直.也考查了圓周角定理.20、(1)NC∥AB;理由見(jiàn)解析;(2)∠ABC=∠ACN;理由見(jiàn)解析;(3);【解題分析】

(1)根據(jù)△ABC,△AMN為等邊三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°從而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,證明△BAM≌△CAN,即可得到BM=CN.

(2)根據(jù)△ABC,△AMN為等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根據(jù)相似三角形的性質(zhì)得到,利用等腰三角形的性質(zhì)得到∠BAC=∠MAN,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;

(3)如圖3,連接AB,AN,根據(jù)正方形的性質(zhì)得到∠ABC=∠BAC=45°,∠MAN=45°,根據(jù)相似三角形的性質(zhì)得出,得到BM=2,CM=8,再根據(jù)勾股定理即可得到答案.【題目詳解】(1)NC∥AB,理由如下:∵△ABC與△MN是等邊三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,在△ABM與△ACN中,,∴△ABM≌△ACN(SAS),∴∠B=∠ACN=60°,∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,∴CN∥AB;(2)∠ABC=∠ACN,理由如下:∵=1且∠ABC=∠AMN,∴△ABC~△AMN∴,∵AB=BC,∴∠BAC=(180°﹣∠ABC),∵AM=MN∴∠MAN=(180°﹣∠AMN),∵∠ABC=∠AMN,∴∠BAC=∠MAN,∴∠BAM=∠CAN,∴△ABM~△ACN,∴∠ABC=∠ACN;(3)如圖3,連接AB,AN,∵四邊形ADBC,AMEF為正方形,∴∠ABC=∠BAC=45°,∠MAN=45°,∴∠BAC﹣∠MAC=∠MAN﹣∠MAC即∠BAM=∠CAN,∵,∴,∴△ABM~△ACN∴,∴=cos45°=,∴,∴BM=2,∴CM=BC﹣BM=8,在Rt△AMC,AM=,∴EF=AM=2.【題目點(diǎn)撥】本題是四邊形綜合題目,考查了正方形的性質(zhì)、等邊三角形的性質(zhì)、等腰三角形的性質(zhì)、全等三角形的性質(zhì)定理和判定定理、相似三角形的性質(zhì)定理和判定定理等知識(shí);本題綜合性強(qiáng),有一定難度,證明三角形全等和三角形相似是解決問(wèn)題的關(guān)鍵.21、(1)m=﹣1;y=﹣3x﹣1;(2)P1(5,0),P2(,0).【解題分析】

(1)將A代入反比例函數(shù)中求出m的值,即可求出直線解析式,(2)聯(lián)立方程組求出B的坐標(biāo),理由過(guò)兩點(diǎn)之間距離公式求出AB的長(zhǎng),求出P點(diǎn)坐標(biāo),表示出BP長(zhǎng)即可解題.【題目詳解】解:(1)∵點(diǎn)A(m,2)在雙曲線上,∴m=﹣1,∴A(﹣1,2),直線y=kx﹣1,∵點(diǎn)A(﹣1,2)在直線y=kx﹣1上,∴y=﹣3x﹣1.(2),解得或,∴B(,﹣3),∴AB==,設(shè)P(n,0),則有(n﹣)2+32=解得n=5或,∴P1(5,0),P2(,0).【題目點(diǎn)撥】本題考查了一次函數(shù)和反比例函數(shù)的交點(diǎn)問(wèn)題,中等難度,聯(lián)立方程組,會(huì)用兩點(diǎn)之間距離公式是解題關(guān)鍵.22、(1)見(jiàn)解析;(2).【解題分析】

(1)畫(huà)樹(shù)狀圖列舉出所有情況;

(2)讓摸出的兩個(gè)球號(hào)碼之和等于4的情況數(shù)除以總情況數(shù)即為所求的概率.【題目詳解】解:(1)根據(jù)題意,可以畫(huà)出如下的樹(shù)形圖:從樹(shù)形圖可以看出,兩次摸球出現(xiàn)的所有可能結(jié)果共有6種.(2)由樹(shù)狀圖知摸出的兩個(gè)小球號(hào)碼之和等于4的有2種結(jié)果,∴摸出的兩個(gè)小球號(hào)碼之和等于4的概率為=.【題目點(diǎn)撥】本題要查列表法與樹(shù)狀圖法求概率,列出樹(shù)狀圖得出所有等可能結(jié)果是解題關(guān)鍵.23、10【解題分析】【分析】先分別進(jìn)行0次冪的計(jì)算、負(fù)指數(shù)冪的計(jì)算、二次根式以及絕對(duì)值的化簡(jiǎn)、特殊角的三角函數(shù)值,然后再按運(yùn)算順序進(jìn)行計(jì)算即可.【題目詳解】原式=1+9-+4=10-+=10.【題目點(diǎn)撥】本題考查了實(shí)數(shù)的混合運(yùn)算,涉及到0指數(shù)冪、負(fù)指數(shù)冪、特殊角的三角函數(shù)值等,熟練掌握各運(yùn)算的運(yùn)算法則是解題的關(guān)鍵.24、(1)﹣10;(2)∠EFC=72°.【解題分析】

(1)原式利用乘方的意義,立方根定義,乘除法則及家減法法則計(jì)算即可;(2)根據(jù)折疊的性質(zhì)得到一對(duì)角相等,再由已知角的關(guān)系求出結(jié)果即可.【題目詳解】(1)原式=﹣1﹣18+9=﹣10;(2)由折疊得:∠EFM=∠EFC,∵∠EFM=2∠BFM,∴設(shè)∠EFM=∠EFC=x,則有∠BFM=x,∵∠MFB+∠MFE+∠EFC=180°,∴x+x+x=180°,解得:x=72°,則∠EFC=72°.【題目點(diǎn)撥】本題考查了實(shí)數(shù)的性質(zhì)及平行線的性質(zhì),解題的關(guān)鍵是熟練掌握實(shí)數(shù)的運(yùn)算法則及平行線的性質(zhì).25、(1)y=1x﹣1(1)1(3)x>1【解題分析】試題分析:(1)先把A(m,1)代入正比例函數(shù)解析式可計(jì)算出m=1,然后把A(1,1)代入y=kx﹣k計(jì)算出k的值,從而得到一次函數(shù)解析式為y=1x﹣1;(1)先確定B點(diǎn)坐標(biāo),然后根據(jù)三角形面積公式計(jì)算;(3)觀察函數(shù)圖象得到當(dāng)x>1時(shí),直線y=kx﹣k都在y=x的上方,即函數(shù)y=kx﹣k的值大于函數(shù)y=x的值.試題解析:(1)把A(m,1)代入y=x得m=1,則點(diǎn)A的坐標(biāo)為(1,1),把A(1,1)代入y=kx﹣k得1k﹣k=1,解得k=1,所以一次函數(shù)解析式為y=1x﹣1;(1)把x=0代入y=1x﹣1得y=﹣1,則B點(diǎn)坐標(biāo)為(0,﹣1),所以S△AOB=×1×1=1;(3)自變量x的取值范圍是x>1.考點(diǎn):兩條直線相交或平行問(wèn)題26、(1);(2)他們獲獎(jiǎng)機(jī)會(huì)不相等,理由見(jiàn)解析.【解題分析】

(1)根據(jù)正面有2張笑臉、2張哭臉,直接利用概率公式求解即可求得答案;(2)根據(jù)題意分別列出表格,然后由表格即可求得所有等可能的結(jié)果與獲獎(jiǎng)的情況,再利用概率公式求解即可求得他們獲獎(jiǎng)的概率.【題目詳解】(1)∵有4張紙牌,背面都是喜羊羊頭像,正面有2張笑臉、2張哭臉,翻一次牌正面是笑臉的就獲獎(jiǎng),正面是哭臉的不

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論