浙江省部分地區(qū)達標名校2024屆中考適應性考試數(shù)學試題含解析_第1頁
浙江省部分地區(qū)達標名校2024屆中考適應性考試數(shù)學試題含解析_第2頁
浙江省部分地區(qū)達標名校2024屆中考適應性考試數(shù)學試題含解析_第3頁
浙江省部分地區(qū)達標名校2024屆中考適應性考試數(shù)學試題含解析_第4頁
浙江省部分地區(qū)達標名校2024屆中考適應性考試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

浙江省部分地區(qū)達標名校2024屆中考適應性考試數(shù)學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.已知某新型感冒病毒的直徑約為0.000000823米,將0.000000823用科學記數(shù)法表示為()A.8.23×10﹣6 B.8.23×10﹣7 C.8.23×106 D.8.23×1072.已知函數(shù)y=ax2+bx+c的圖象如圖所示,則關于x的方程ax2+bx+c﹣4=0的根的情況是A.有兩個相等的實數(shù)根 B.有兩個異號的實數(shù)根C.有兩個不相等的實數(shù)根 D.沒有實數(shù)根3.如圖,已知射線OM,以O為圓心,任意長為半徑畫弧,與射線OM交于點A,再以點A為圓心,AO長為半徑畫弧,兩弧交于點B,畫射線OB,那么∠AOB的度數(shù)是()A.90° B.60° C.45° D.30°4.某運動會頒獎臺如圖所示,它的主視圖是()A. B. C. D.5.如圖,EF過?ABCD對角線的交點O,交AD于E,交BC于F,若?ABCD的周長為18,,則四邊形EFCD的周長為A.14 B.13 C.12 D.106.去年二月份,某房地產商將房價提高40%,在中央“房子是用來住的,不是用來炒的”指示下達后,立即降價30%.設降價后房價為x,則去年二月份之前房價為()A.(1+40%)×30%x B.(1+40%)(1﹣30%)xC. D.7.下列圖形是我國國產品牌汽車的標識,在這些汽車標識中,是中心對稱圖形的是()A. B. C. D.8.如圖,將含60°角的直角三角板ABC繞頂點A順時針旋轉45°度后得到△AB′C′,點B經過的路徑為弧BB′,若∠BAC=60°,AC=1,則圖中陰影部分的面積是()A. B. C. D.π9.如圖,把一塊含有45°角的直角三角板的兩個頂點放在直尺的對邊上.如果∠1=20°,那么∠2的度數(shù)是()A.30° B.25°C.20° D.15°10.a≠0,函數(shù)y=與y=﹣ax2+a在同一直角坐標系中的大致圖象可能是()A. B.C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數(shù)y=在第一象限的圖象經過點B,則△OAC與△BAD的面積之差S△OAC﹣S△BAD為_______.12.在平面直角坐標系中,點A的坐標為(a,3),點B的坐標是(4,b),若點A與點B關于原點O對稱,則ab=_____.13.如圖,在矩形ABCD中,AB=2,AD=6,E.F分別是線段AD,BC上的點,連接EF,使四邊形ABFE為正方形,若點G是AD上的動點,連接FG,將矩形沿FG折疊使得點C落在正方形ABFE的對角線所在的直線上,對應點為P,則線段AP的長為______.14.在實數(shù)范圍內分解因式:x2y﹣2y=_____.15.中國人最先使用負數(shù),魏晉時期的數(shù)學家劉徽在“正負術”的注文中指出,可將算籌(小棍形狀的記數(shù)工具)正放表示正數(shù),斜放表示負數(shù).如圖,根據(jù)劉徽的這種表示法,觀察圖①,可推算圖②中所得的數(shù)值為_____.16.如圖,與是以點為位似中心的位似圖形,相似比為,,,若點的坐標是,則點的坐標是__________.17.如圖,正五邊形ABCDE和正三角形AMN都是⊙O的內接多邊形,則∠BOM=_______.三、解答題(共7小題,滿分69分)18.(10分)如圖,在四邊形ABCD中,AB∥DC,AB=AD,對角線AC,BD交于點O,AC平分∠BAD,過點C作CE⊥AB交AB的延長線于點E,連接OE.求證:四邊形ABCD是菱形;若AB=,BD=2,求OE的長.19.(5分)先化簡,再求值:,其中x滿足x2-2x-2=0.20.(8分)先化簡,再求值:(x﹣2y)2+(x+y)(x﹣4y),其中x=5,y=.21.(10分)某網(wǎng)店銷售甲、乙兩種羽毛球,已知甲種羽毛球每筒的售價比乙種羽毛球每筒的售價多15元,健民體育活動中心從該網(wǎng)店購買了2筒甲種羽毛球和3筒乙種羽毛球,共花費255元.該網(wǎng)店甲、乙兩種羽毛球每筒的售價各是多少元?根據(jù)健民體育活動中心消費者的需求量,活動中心決定用不超過2550元錢購進甲、乙兩種羽毛球共50筒,那么最多可以購進多少筒甲種羽毛球?22.(10分)如圖,在△ABC中,∠ABC=90°.(1)作∠ACB的平分線交AB邊于點O,再以點O為圓心,OB的長為半徑作⊙O;(要求:不寫做法,保留作圖痕跡)(2)判斷(1)中AC與⊙O的位置關系,直接寫出結果.23.(12分)“分組合作學習”已成為推動課堂教學改革,打造自主高效課堂的重要措施.某中學從全校學生中隨機抽取部分學生對“分組合作學習”實施后的學習興趣情況進行調查分析,統(tǒng)計圖如下:請結合圖中信息解答下列問題:求出隨機抽取調查的學生人數(shù);補全分組后學生學習興趣的條形統(tǒng)計圖;分組后學生學習興趣為“中”的所占的百分比和對應扇形的圓心角.24.(14分)在平面直角坐標系中,拋物線y=(x﹣h)2+k的對稱軸是直線x=1.若拋物線與x軸交于原點,求k的值;當﹣1<x<0時,拋物線與x軸有且只有一個公共點,求k的取值范圍.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解題分析】分析:絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為a×10-n,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.詳解:0.000000823=8.23×10-1.故選B.點睛:本題考查用科學記數(shù)法表示較小的數(shù),一般形式為a×10-n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.2、A【解題分析】

根據(jù)拋物線的頂點坐標的縱坐標為4,判斷方程ax2+bx+c﹣4=0的根的情況即是判斷函數(shù)y=ax2+bx+c的圖象與直線y=4交點的情況.【題目詳解】∵函數(shù)的頂點的縱坐標為4,∴直線y=4與拋物線只有一個交點,∴方程ax2+bx+c﹣4=0有兩個相等的實數(shù)根,故選A.【題目點撥】本題考查了二次函數(shù)與一元二次方程,熟練掌握一元二次方程與二次函數(shù)間的關系是解題的關鍵.3、B【解題分析】

首先連接AB,由題意易證得△AOB是等邊三角形,根據(jù)等邊三角形的性質,可求得∠AOB的度數(shù).【題目詳解】連接AB,根據(jù)題意得:OB=OA=AB,∴△AOB是等邊三角形,∴∠AOB=60°.故答案選:B.【題目點撥】本題考查了等邊三角形的判定與性質,解題的關鍵是熟練的掌握等邊三角形的判定與性質.4、C【解題分析】

從正面看到的圖形如圖所示:,故選C.5、C【解題分析】

∵平行四邊形ABCD,∴AD∥BC,AD=BC,AO=CO,∴∠EAO=∠FCO,∵在△AEO和△CFO中,,∴△AEO≌△CFO,∴AE=CF,EO=FO=1.5,∵C四邊形ABCD=18,∴CD+AD=9,∴C四邊形CDEF=CD+DE+EF+FC=CD+DE+EF+AE=CD+AD+EF=9+3=12.故選C.【題目點撥】本題關鍵在于利用三角形全等,解題關鍵是將四邊形CDEF的周長進行轉化.6、D【解題分析】

根據(jù)題意可以用相應的代數(shù)式表示出去年二月份之前房價,本題得以解決.【題目詳解】由題意可得,去年二月份之前房價為:x÷(1﹣30%)÷(1+40%)=,故選:D.【題目點撥】本題考查了列代數(shù)式,解答本題的關鍵是明確題意,列出相應的代數(shù)式.7、B【解題分析】由中心對稱圖形的定義:“把一個圖形繞一個點旋轉180°后,能夠與自身完全重合,這樣的圖形叫做中心對稱圖形”分析可知,上述圖形中,A、C、D都不是中心對稱圖形,只有B是中心對稱圖形.故選B.8、A【解題分析】試題解析:如圖,∵在Rt△ABC中,∠ACB=90°,∠BAC=60°,AC=1,∴BC=ACtan60°=1×=,AB=2∴S△ABC=AC?BC=.根據(jù)旋轉的性質知△ABC≌△AB′C′,則S△ABC=S△AB′C′,AB=AB′.∴S陰影=S扇形ABB′+S△AB′C′-S△ABC==.故選A.考點:1.扇形面積的計算;2.旋轉的性質.9、B【解題分析】根據(jù)題意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,10、D【解題分析】

分a>0和a<0兩種情況分類討論即可確定正確的選項【題目詳解】當a>0時,函數(shù)y=的圖象位于一、三象限,y=﹣ax2+a的開口向下,交y軸的正半軸,沒有符合的選項,當a<0時,函數(shù)y=的圖象位于二、四象限,y=﹣ax2+a的開口向上,交y軸的負半軸,D選項符合;故選D.【題目點撥】本題考查了反比例函數(shù)的圖象及二次函數(shù)的圖象的知識,解題的關鍵是根據(jù)比例系數(shù)的符號確定其圖象的位置,難度不大.二、填空題(共7小題,每小題3分,滿分21分)11、【解題分析】

設△OAC和△BAD的直角邊長分別為a、b,結合等腰直角三角形的性質及圖像可得出B的坐標,根據(jù)三角形的面積公式結合反比例函數(shù)系數(shù)k的幾何意義即可求解.【題目詳解】設△OAC和△BAD的直角邊長分別為a、b,則B點坐標為(a+b,a-b)∵點B在反比例函數(shù)y=在第一象限的圖象上,∴(a+b)(a-b)=a2-b2=3∴S△OAC﹣S△BAD=a2-b2=【題目點撥】此題主要考查等腰直角三角形的面積求法和反比例函數(shù)k值的定義,解題的關鍵是熟知等腰直角三角形的性質及反比例函數(shù)k值的性質.12、1【解題分析】【分析】直接利用關于原點對稱點的性質得出a,b的值,進而得出答案.【題目詳解】∵點A的坐標為(a,3),點B的坐標是(4,b),點A與點B關于原點O對稱,∴a=﹣4,b=﹣3,則ab=1,故答案為1.【題目點撥】本題考查了關于原點對稱的點的坐標,熟知關于原點對稱的兩點的橫、縱坐標互為相反數(shù)是解題的關鍵.13、1或1﹣2【解題分析】

當點P在AF上時,由翻折的性質可求得PF=FC=1,然后再求得正方形的對角線AF的長,從而可得到PA的長;當點P在BE上時,由正方形的性質可知BP為AF的垂直平分線,則AP=PF,由翻折的性質可求得PF=FC=1,故此可得到AP的值.【題目詳解】解:如圖1所示:由翻折的性質可知PF=CF=1,∵ABFE為正方形,邊長為2,∴AF=2.∴PA=1﹣2.如圖2所示:由翻折的性質可知PF=FC=1.∵ABFE為正方形,∴BE為AF的垂直平分線.∴AP=PF=1.故答案為:1或1﹣2.【題目點撥】本題主要考查的是翻折的性質、正方形的性質的應用,根據(jù)題意畫出符合題意的圖形是解題的關鍵.14、y(x+)(x﹣)【解題分析】

先提取公因式y(tǒng)后,再把剩下的式子寫成x2-()2,符合平方差公式的特點,可以繼續(xù)分解.【題目詳解】x2y-2y=y(x2-2)=y(x+)(x-).故答案為y(x+)(x-).【題目點撥】本題考查實數(shù)范圍內的因式分解,因式分解的步驟為:一提公因式;二看公式.在實數(shù)范圍內進行因式分解的式子的結果一般要分到出現(xiàn)無理數(shù)為止.15、【解題分析】試題分析:根據(jù)有理數(shù)的加法,可得圖②中表示(+2)+(﹣5)=﹣1,故答案為﹣1.考點:正數(shù)和負數(shù)16、(2,2)【解題分析】分析:首先解直角三角形得出A點坐標,再利用位似是特殊的相似,若兩個圖形與是以點為位似中心的位似圖形,相似比是k,上一點的坐標是則在中,它的對應點的坐標是或,進而求出即可.詳解:與是以點為位似中心的位似圖形,,,若點的坐標是,過點作交于點E.點的坐標為:與的相似比為,點的坐標為:即點的坐標為:故答案為:點睛:考查位似圖形的性質,熟練掌握位似圖形的性質是解題的關鍵.17、48°【解題分析】

連接OA,分別求出正五邊形ABCDE和正三角形AMN的中心角,結合圖形計算即可.【題目詳解】連接OA,∵五邊形ABCDE是正五邊形,∴∠AOB==72°,∵△AMN是正三角形,∴∠AOM==120°,∴∠BOM=∠AOM-∠AOB=48°,故答案為48°.點睛:本題考查的是正多邊形與圓的有關計算,掌握正多邊形的中心角的計算公式是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1)見解析;(1)OE=1.【解題分析】

(1)先判斷出∠OAB=∠DCA,進而判斷出∠DAC=∠DAC,得出CD=AD=AB,即可得出結論;

(1)先判斷出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出結論.【題目詳解】解:(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC為∠DAB的平分線,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四邊形ABCD是平行四邊形,∵AD=AB,∴?ABCD是菱形;(1)∵四邊形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=1,∴OB=BD=1,在Rt△AOB中,AB=,OB=1,∴OA==1,∴OE=OA=1.【題目點撥】此題主要考查了菱形的判定和性質,平行四邊形的判定和性質,角平分線的定義,勾股定理,判斷出CD=AD=AB是解本題的關鍵19、【解題分析】分析:先根據(jù)分式的混合運算順序和運算法則化簡原式,再由x2-2x-2=0得x2=2x+2=2(x+1),整體代入計算可得.詳解:原式===,∵x2-2x-2=0,∴x2=2x+2=2(x+1),則原式=.點睛:本題主要考查分式的化簡求值,解題的關鍵是掌握分式的混合運算順序和運算法則.20、2x2﹣7xy,1【解題分析】

根據(jù)完全平方公式及多項式的乘法法則展開,然后合并同類項進行化簡,然后把x、y的值代入求值即可.【題目詳解】原式=x2﹣4xy+4y2+x2﹣4xy+xy﹣4y2=2x2﹣7xy,當x=5,y=時,原式=50﹣7=1.【題目點撥】完全平方公式和多項式的乘法法則是本題的考點,能夠正確化簡多項式是解題的關鍵.21、(1)該網(wǎng)店甲種羽毛球每筒的售價為60元,乙種羽毛球每筒的售價為45元;(2)最多可以購進1筒甲種羽毛球.【解題分析】

(1)設該網(wǎng)店甲種羽毛球每筒的售價為x元,乙種羽毛球每筒的售價為y元,根據(jù)“甲種羽毛球每筒的售價比乙種羽毛球每筒的售價多15元,購買了2筒甲種羽毛球和3筒乙種羽毛球共花費255元”,即可得出關于x,y的二元一次方程組,解之即可得出結論;(2)設購進甲種羽毛球m筒,則購進乙種羽毛球(50﹣m)筒,根據(jù)總價=單價×數(shù)量結合總費用不超過2550元,即可得出關于m的一元一次不等式,解之取其最大值即可得出結論.【題目詳解】(1)設該網(wǎng)店甲種羽毛球每筒的售價為x元,乙種羽毛球每筒的售價為y元,依題意,得:,解得:.答:該網(wǎng)店甲種羽毛球每筒的售價為60元,乙種羽毛球每筒的售價為45元.(2)設購進甲種羽毛球m筒,則購進乙種羽毛球(50﹣m)筒,依題意,得:60m+45(50﹣m)≤2550,解得:m≤1.答:最多可以購進1筒甲種羽毛球.【題目點撥】本題考查了二元一次方程組的應用以及一元一次不等式的應用,解題的關鍵是:(1)找準等量關系,正確列出二元一次方程組;(2)根據(jù)各數(shù)量之間的關系,正確列出一元一次不等式.22、(1)見解析(2)相切【解題分析】

(1)首先利用角平分線的作法得出CO,進而以點O為圓心,OB為半徑作⊙O即可;(2)利用角平分線的性質以及直線與圓的位置關系進而求出即可.【題目詳解】(1)如圖所示:;(2)相切;過O點作OD⊥AC于D點,∵CO平分∠ACB,∴OB=OD,即d=r,∴⊙O與直線AC相切,【題目點撥】此題主要考查了復雜作圖以及角平分線的性質與作法和直線與圓的位

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論