吉林省伊通滿族自治縣重點中學(xué)2024屆中考適應(yīng)性考試數(shù)學(xué)試題含解析_第1頁
吉林省伊通滿族自治縣重點中學(xué)2024屆中考適應(yīng)性考試數(shù)學(xué)試題含解析_第2頁
吉林省伊通滿族自治縣重點中學(xué)2024屆中考適應(yīng)性考試數(shù)學(xué)試題含解析_第3頁
吉林省伊通滿族自治縣重點中學(xué)2024屆中考適應(yīng)性考試數(shù)學(xué)試題含解析_第4頁
吉林省伊通滿族自治縣重點中學(xué)2024屆中考適應(yīng)性考試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

吉林省伊通滿族自治縣重點中學(xué)2024屆中考適應(yīng)性考試數(shù)學(xué)試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,△ABC中,∠CAB=65°,在同一平面內(nèi),將△ABC繞點A旋轉(zhuǎn)到△AED的位置,使得DC∥AB,則∠BAE等于()A.30° B.40° C.50° D.60°2.如圖,矩形ABCD中,AB=8,BC=1.點E在邊AB上,點F在邊CD上,點G、H在對角線AC上.若四邊形EGFH是菱形,則AE的長是()A.2 B.3 C.5 D.63.函數(shù)y=中自變量x的取值范圍是A.x≥0 B.x≥4 C.x≤4 D.x>44.一個布袋內(nèi)只裝有1個黑球和2個白球,這些球除顏色不同外其余都相同,隨機(jī)摸出一個球后放回攪勻,再隨機(jī)摸出一個球,則兩次摸出的球都是黑球的概率是()A. B. C. D.5.如圖,直線AB∥CD,AE平分∠CAB,AE與CD相交于點E,∠ACD=40°,則∠DEA=()A.40° B.110° C.70° D.140°6.下列計算正確的是(

).A.(x+y)2=x2+y2 B.(-xy2)3=-x3y6C.x6÷x3=x2 D.=27.如圖,在△ABC中,AC=BC,∠ACB=90°,點D在BC上,BD=3,DC=1,點P是AB上的動點,則PC+PD的最小值為()A.4 B.5 C.6 D.78.如圖,l1∥l2,AF:FB=3:5,BC:CD=3:2,則AE:EC=()A.5:2 B.4:3 C.2:1 D.3:29.如圖,在矩形ABCD中,AB=2,BC=1.若點E是邊CD的中點,連接AE,過點B作BF⊥AE交AE于點F,則BF的長為()A. B. C. D.10.我國作家莫言獲得諾貝爾文學(xué)獎之后,他的代表作品《蛙》的銷售量就比獲獎之前增長了180倍,達(dá)到2100000冊.把2100000用科學(xué)記數(shù)法表示為()A.0.21×108 B.21×106 C.2.1×107 D.2.1×10611.如圖在△ABC中,AC=BC,過點C作CD⊥AB,垂足為點D,過D作DE∥BC交AC于點E,若BD=6,AE=5,則sin∠EDC的值為()A. B. C. D.12.某自行車廠準(zhǔn)備生產(chǎn)共享單車4000輛,在生產(chǎn)完1600輛后,采用了新技術(shù),使得工作效率比原來提高了20%,結(jié)果共用了18天完成任務(wù),若設(shè)原來每天生產(chǎn)自行車x輛,則根據(jù)題意可列方程為()A.+=18 B.=18C.+=18 D.=18二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在△ABC中,∠ABC=90°,AB=CB,F(xiàn)為AB延長線上一點,點E在BC上,且AE=CF,若∠CAE=32°,則∠ACF的度數(shù)為__________°.14.閱讀下面材料:在數(shù)學(xué)課上,老師提出如下問題:小亮的作法如下:老師說:“小亮的作法正確”請回答:小亮的作圖依據(jù)是______.15.菱形ABCD中,,其周長為32,則菱形面積為____________.16.觀察下列一組數(shù):,它們是按一定規(guī)律排列的,那么這一組數(shù)的第n個數(shù)是_____.17.如圖,拋物線交軸于,兩點,交軸于點,點關(guān)于拋物線的對稱軸的對稱點為,點,分別在軸和軸上,則四邊形周長的最小值為__________.18.如圖,⊙O的半徑為2,AB為⊙O的直徑,P為AB延長線上一點,過點P作⊙O的切線,切點為C.若PC=2,則BC的長為______.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)下面是小星同學(xué)設(shè)計的“過直線外一點作已知直線的平行線”的尺規(guī)作圖過程:已知:如圖,直線l和直線l外一點A求作:直線AP,使得AP∥l作法:如圖①在直線l上任取一點B(AB與l不垂直),以點A為圓心,AB為半徑作圓,與直線l交于點C.②連接AC,AB,延長BA到點D;③作∠DAC的平分線AP.所以直線AP就是所求作的直線根據(jù)小星同學(xué)設(shè)計的尺規(guī)作圖過程,使用直尺和圓規(guī),補(bǔ)全圖形(保留作圖痕跡)完成下面的證明證明:∵AB=AC,∴∠ABC=∠ACB(填推理的依據(jù))∵∠DAC是△ABC的外角,∴∠DAC=∠ABC+∠ACB(填推理的依據(jù))∴∠DAC=2∠ABC∵AP平分∠DAC,∴∠DAC=2∠DAP∴∠DAP=∠ABC∴AP∥l(填推理的依據(jù))20.(6分)如圖,四邊形ABCD的頂點在⊙O上,BD是⊙O的直徑,延長CD、BA交于點E,連接AC、BD交于點F,作AH⊥CE,垂足為點H,已知∠ADE=∠ACB.(1)求證:AH是⊙O的切線;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若,求證:CD=DH.21.(6分)如圖所示,內(nèi)接于圓O,于D;(1)如圖1,當(dāng)AB為直徑,求證:;(2)如圖2,當(dāng)AB為非直徑的弦,連接OB,則(1)的結(jié)論是否成立?若成立請證明,不成立說明由;(3)如圖3,在(2)的條件下,作于E,交CD于點F,連接ED,且,若,,求CF的長度.22.(8分)如圖,在△ABC中,AD是BC邊上的高,BE平分∠ABC交AC邊于E,∠BAC=60°,∠ABE=25°.求∠DAC的度數(shù).23.(8分)某學(xué)校環(huán)保志愿者協(xié)會對該市城區(qū)的空氣質(zhì)量進(jìn)行調(diào)查,從全年365天中隨機(jī)抽取了80天的空氣質(zhì)量指數(shù)(AQI)數(shù)據(jù),繪制出三幅不完整的統(tǒng)計圖表,請根據(jù)圖表中提供的信息解答下列問題:AQI指數(shù)質(zhì)量等級天數(shù)(天)0-50優(yōu)m51-100良44101-150輕度污染n151-200中度污染4201-300重度污染2300以上嚴(yán)重污染2(1)統(tǒng)計表中m=,n=,扇形統(tǒng)計圖中,空氣質(zhì)量等級為“良”的天數(shù)占%;(2)補(bǔ)全條形統(tǒng)計圖,并通過計算估計該市城區(qū)全年空氣質(zhì)量等級為“優(yōu)”和“良”的天數(shù)共多少?24.(10分)如圖,△ABC,△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,點E在AB上,求證:△CDA≌△CEB.25.(10分)列方程解應(yīng)用題:某景區(qū)一景點要限期完成,甲工程隊單獨做可提前一天完成,乙工程隊獨做要誤期6天,現(xiàn)由兩工程隊合做4天后,余下的由乙工程隊獨做,正好如期完成,則工程期限為多少天?26.(12分)小明家的洗手盆上裝有一種抬啟式水龍頭(如圖1),完全開啟后,把手AM的仰角α=37°,此時把手端點A、出水口B和點落水點C在同一直線上,洗手盆及水龍頭的相關(guān)數(shù)據(jù)如圖2.(參考數(shù)據(jù):sin37°=

,cos37°=

,tan37°=

(1)求把手端點A到BD的距離;

(2)求CH的長.

27.(12分)如圖,⊙O是△ABC的外接圓,BC為⊙O的直徑,點E為△ABC的內(nèi)心,連接AE并延長交⊙O于D點,連接BD并延長至F,使得BD=DF,連接CF、BE.(1)求證:DB=DE;(2)求證:直線CF為⊙O的切線;(3)若CF=4,求圖中陰影部分的面積.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解題分析】試題分析:∵DC∥AB,∴∠DCA=∠CAB=65°.∵△ABC繞點A旋轉(zhuǎn)到△AED的位置,∴∠BAE=∠CAD,AC=AD.∴∠ADC=∠DCA="65°."∴∠CAD=180°﹣∠ADC﹣∠DCA="50°."∴∠BAE=50°.故選C.考點:1.面動旋轉(zhuǎn)問題;2.平行線的性質(zhì);3.旋轉(zhuǎn)的性質(zhì);4.等腰三角形的性質(zhì).2、C【解題分析】試題分析:連接EF交AC于點M,由四邊形EGFH為菱形可得FM=EM,EF⊥AC;利用”AAS或ASA”易證△FMC≌△EMA,根據(jù)全等三角形的性質(zhì)可得AM=MC;在Rt△ABC中,由勾股定理求得AC=,且tan∠BAC=;在Rt△AME中,AM=AC=,tan∠BAC=可得EM=;在Rt△AME中,由勾股定理求得AE=2.故答案選C.考點:菱形的性質(zhì);矩形的性質(zhì);勾股定理;銳角三角函數(shù).3、B【解題分析】

根據(jù)二次根式的性質(zhì),被開方數(shù)大于等于0,列不等式求解.【題目詳解】根據(jù)題意得:x﹣1≥0,解得x≥1,則自變量x的取值范圍是x≥1.故選B.【題目點撥】本題主要考查函數(shù)自變量的取值范圍的知識點,注意:二次根式的被開方數(shù)是非負(fù)數(shù).4、D【解題分析】試題分析:列表如下

白1

白2

(黑,黑)

(白1,黑)

(白2,黑)

白1

(黑,白1)

(白1,白1)

(白2,白1)

白2

(黑,白2)

(白1,白2)

(白2,白2)

由表格可知,隨機(jī)摸出一個球后放回攪勻,再隨機(jī)摸出一個球所以的結(jié)果有9種,兩次摸出的球都是黑球的結(jié)果有1種,所以兩次摸出的球都是黑球的概率是.故答案選D.考點:用列表法求概率.5、B【解題分析】

先由平行線性質(zhì)得出∠ACD與∠BAC互補(bǔ),并根據(jù)已知∠ACD=40°計算出∠BAC的度數(shù),再根據(jù)角平分線性質(zhì)求出∠BAE的度數(shù),進(jìn)而得到∠DEA的度數(shù).【題目詳解】∵AB∥CD,∴∠ACD+∠BAC=180°,∵∠ACD=40°,∴∠BAC=180°﹣40°=140°,∵AE平分∠CAB,∴∠BAE=∠BAC=×140°=70°,∴∠DEA=180°﹣∠BAE=110°,故選B.【題目點撥】本題考查了平行線的性質(zhì)和角平分線的定義,解題的關(guān)鍵是熟練掌握兩直線平行,同旁內(nèi)角互補(bǔ).6、D【解題分析】分析:根據(jù)完全平方公式、積的乘方法則、同底數(shù)冪的除法法則和算術(shù)平方根的定義計算,判斷即可.詳解:(x+y)2=x2+2xy+y2,A錯誤;(-xy2)3=-x3y6,B錯誤;x6÷x3=x3,C錯誤;==2,D正確;故選D.點睛:本題考查的是完全平方公式、積的乘方、同底數(shù)冪的除法以及算術(shù)平方根的計算,掌握完全平方公式、積的乘方法則、同底數(shù)冪的除法法則和算術(shù)平方根的定義是解題的關(guān)鍵.7、B【解題分析】試題解析:過點C作CO⊥AB于O,延長CO到C′,使OC′=OC,連接DC′,交AB于P,連接CP.此時DP+CP=DP+PC′=DC′的值最?。逥C=1,BC=4,∴BD=3,連接BC′,由對稱性可知∠C′BE=∠CBE=41°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=41°,∴BC=BC′=4,根據(jù)勾股定理可得DC′===1.故選B.8、D【解題分析】

依據(jù)平行線分線段成比例定理,即可得到AG=3x,BD=5x,CD=BD=2x,再根據(jù)平行線分線段成比例定理,即可得出AE與EC的比值.【題目詳解】∵l1∥l2,∴,設(shè)AG=3x,BD=5x,∵BC:CD=3:2,∴CD=BD=2x,∵AG∥CD,∴.故選D.【題目點撥】本題考查了平行線分線段成比例:三條平行線截兩條直線,所得的對應(yīng)線段成比例.平行于三角形的一邊,并且和其他兩邊(或兩邊的延長線)相交的直線,所截得的三角形的三邊與原三角形的三邊對應(yīng)成比例.9、B【解題分析】

根據(jù)S△ABE=S矩形ABCD=1=?AE?BF,先求出AE,再求出BF即可.【題目詳解】如圖,連接BE.∵四邊形ABCD是矩形,∴AB=CD=2,BC=AD=1,∠D=90°,在Rt△ADE中,AE===,∵S△ABE=S矩形ABCD=1=?AE?BF,∴BF=.故選:B.【題目點撥】本題考查矩形的性質(zhì)、勾股定理、三角形的面積公式等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會用面積法解決有關(guān)線段問題,屬于中考常考題型.10、D【解題分析】2100000=2.1×106.點睛:對于一個絕對值較大的數(shù),用科學(xué)記數(shù)法寫成的形式,其中,n是比原整數(shù)位數(shù)少1的數(shù).11、A【解題分析】

由等腰三角形三線合一的性質(zhì)得出AD=DB=6,∠BDC=∠ADC=90°,由AE=5,DE∥BC知AC=2AE=10,∠EDC=∠BCD,再根據(jù)正弦函數(shù)的概念求解可得.【題目詳解】∵△ABC中,AC=BC,過點C作CD⊥AB,∴AD=DB=6,∠BDC=∠ADC=90°,∵AE=5,DE∥BC,∴AC=2AE=10,∠EDC=∠BCD,∴sin∠EDC=sin∠BCD=,故選:A.【題目點撥】本題主要考查解直角三角形,解題的關(guān)鍵是熟練掌握等腰三角形三線合一的性質(zhì)和平行線的性質(zhì)及直角三角形的性質(zhì)等知識點.12、B【解題分析】

根據(jù)前后的時間和是18天,可以列出方程.【題目詳解】若設(shè)原來每天生產(chǎn)自行車x輛,根據(jù)前后的時間和是18天,可以列出方程.故選B【題目點撥】本題考核知識點:分式方程的應(yīng)用.解題關(guān)鍵點:根據(jù)時間關(guān)系,列出分式方程.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、58【解題分析】

根據(jù)HL證明Rt△CBF≌Rt△ABE,推出∠FCB=∠EAB,求出∠CAB=∠ACB=45°,求出∠BCF=∠BAE=13°,即可求出答案.【題目詳解】解:∵∠ABC=90°,∴∠ABE=∠CBF=90°,在Rt△CBF和Rt△ABE中∴Rt△CBF≌Rt△ABE(HL),∴∠FCB=∠EAB,∵AB=BC,∠ABC=90°,∴∠CAB=∠ACB=45°.∵∠BAE=∠CAB﹣∠CAE=45°﹣32°=13°,∴∠BCF=∠BAE=13°,∴∠ACF=∠BCF+∠ACB=45°+13°=58°故答案為58【題目點撥】本題考查了全等三角形的性質(zhì)和判定,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的性質(zhì)是全等三角形的對應(yīng)邊相等,對應(yīng)角相等.14、兩點確定一條直線;同圓或等圓中半徑相等【解題分析】

根據(jù)尺規(guī)作圖的方法,兩點之間確定一條直線的原理即可解題.【題目詳解】解:∵兩點之間確定一條直線,CD和AB都是圓的半徑,∴AB=CD,依據(jù)是兩點確定一條直線;同圓或等圓中半徑相等.【題目點撥】本題考查了尺規(guī)作圖:一條線段等于已知線段,屬于簡單題,熟悉尺規(guī)作圖方法是解題關(guān)鍵.15、【解題分析】分析:根據(jù)菱形的性質(zhì)易得AB=BC=CD=DA=8,AC⊥BD,OA=OC,OB=OD,再判定△ABD為等邊三角形,根據(jù)等邊三角形的性質(zhì)可得AB=BD=8,從而得OB=4,在Rt△AOB中,根據(jù)勾股定理可得OA=4,繼而求得AC=2AO=,再由菱形的面積公式即可求得菱形ABCD的面積.詳解:∵菱形ABCD中,其周長為32,∴AB=BC=CD=DA=8,AC⊥BD,OA=OC,OB=OD,∵,∴△ABD為等邊三角形,∴AB=BD=8,∴OB=4,在Rt△AOB中,OB=4,AB=8,根據(jù)勾股定理可得OA=4,∴AC=2AO=,∴菱形ABCD的面積為:=.點睛:本題考查了菱形性質(zhì):1.菱形的四個邊都相等;2.菱形對角線相互垂直平分,并且每一組對角線平分一組對角;3.菱形面積公式=對角線乘積的一半.16、【解題分析】試題解析:根據(jù)題意得,這一組數(shù)的第個數(shù)為:故答案為點睛:觀察已知一組數(shù)發(fā)現(xiàn):分子為從1開始的連續(xù)奇數(shù),分母為從2開始的連續(xù)正整數(shù)的平方,寫出第個數(shù)即可.17、【解題分析】

根據(jù)拋物線解析式求得點D(1,4)、點E(2,3),作點D關(guān)于y軸的對稱點D′(﹣1,4)、作點E關(guān)于x軸的對稱點E′(2,﹣3),從而得到四邊形EDFG的周長=DE+DF+FG+GE=DE+D′F+FG+GE′,當(dāng)點D′、F、G、E′四點共線時,周長最短,據(jù)此根據(jù)勾股定理可得答案.【題目詳解】如圖,在y=﹣x2+2x+3中,當(dāng)x=0時,y=3,即點C(0,3),∵y=﹣x2+2x+3=﹣(x-1)2+4,∴對稱軸為x=1,頂點D(1,4),則點C關(guān)于對稱軸的對稱點E的坐標(biāo)為(2,3),作點D關(guān)于y軸的對稱點D′(﹣1,4),作點E關(guān)于x軸的對稱點E′(2,﹣3),連結(jié)D′、E′,D′E′與x軸的交點G、與y軸的交點F即為使四邊形EDFG的周長最小的點,四邊形EDFG的周長=DE+DF+FG+GE=DE+D′F+FG+GE′=DE+D′E′==∴四邊形EDFG周長的最小值是.【題目點撥】本題主要考查拋物線的性質(zhì)以及兩點間的距離公式,解題的關(guān)鍵是熟練掌握拋物線的性質(zhì),利用數(shù)形結(jié)合得出答案.18、2【解題分析】

連接OC,根據(jù)勾股定理計算OP=4,由直角三角形30度的逆定理可得∠OPC=30°,則∠COP=60°,可得△OCB是等邊三角形,從而得結(jié)論.【題目詳解】連接OC,∵PC是⊙O的切線,∴OC⊥PC,∴∠OCP=90°,∵PC=2,OC=2,∴OP===4,∴∠OPC=30°,∴∠COP=60°,∵OC=OB=2,∴△OCB是等邊三角形,∴BC=OB=2,故答案為2【題目點撥】本題考查切線的性質(zhì)、等腰三角形的性質(zhì)、等邊三角形的判定等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,屬于中考??碱}型.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)詳見解析;(2)(等邊對等角),(三角形外角性質(zhì)),(同位角相等,兩直線平行).【解題分析】

(1)根據(jù)角平分線的尺規(guī)作圖即可得;

(2)分別根據(jù)等腰三角形的性質(zhì)、三角形外角的性質(zhì)和平行線的判定求解可得.【題目詳解】解:(1)如圖所示,直線AP即為所求.(2)證明:∵AB=AC,∴∠ABC=∠ACB(等邊對等角),∵∠DAC是△ABC的外角,∴∠DAC=∠ABC+∠ACB(三角形外角性質(zhì)),∴∠DAC=2∠ABC,∵AP平分∠DAC,∴∠DAC=2∠DAP,∴∠DAP=∠ABC,∴AP∥l(同位角相等,兩直線平行),故答案為(等邊對等角),(三角形外角性質(zhì)),(同位角相等,兩直線平行).【題目點撥】本題主要考查作圖能力,解題的關(guān)鍵是掌握角平分線的尺規(guī)作圖、等腰三角形的性質(zhì)、三角形外角的性質(zhì)和平行線的判定.20、(1)證明見解析;(2);(3)證明見解析.【解題分析】

(1)連接OA,證明△DAB≌△DAE,得到AB=AE,得到OA是△BDE的中位線,根據(jù)三角形中位線定理、切線的判定定理證明;(2)利用正弦的定義計算;(3)證明△CDF∽△AOF,根據(jù)相似三角形的性質(zhì)得到CD=CE,根據(jù)等腰三角形的性質(zhì)證明.【題目詳解】(1)證明:連接OA,由圓周角定理得,∠ACB=∠ADB,∵∠ADE=∠ACB,∴∠ADE=∠ADB,∵BD是直徑,∴∠DAB=∠DAE=90°,在△DAB和△DAE中,,∴△DAB≌△DAE,∴AB=AE,又∵OB=OD,∴OA∥DE,又∵AH⊥DE,∴OA⊥AH,∴AH是⊙O的切線;(2)解:由(1)知,∠E=∠DBE,∠DBE=∠ACD,∴∠E=∠ACD,∴AE=AC=AB=1.在Rt△ABD中,AB=1,BD=8,∠ADE=∠ACB,∴sin∠ADB==,即sin∠ACB=;(3)證明:由(2)知,OA是△BDE的中位線,∴OA∥DE,OA=DE.∴△CDF∽△AOF,∴=,∴CD=OA=DE,即CD=CE,∵AC=AE,AH⊥CE,∴CH=HE=CE,∴CD=CH,∴CD=DH.【題目點撥】本題考查的是圓的知識的綜合應(yīng)用,掌握圓周角定理、相似三角形的判定定理和性質(zhì)定理、三角形中位線定理是解題的關(guān)鍵.21、(1)見解析;(2)成立;(3)【解題分析】

(1)根據(jù)圓周角定理求出∠ACB=90°,求出∠ADC=90°,再根據(jù)三角形內(nèi)角和定理求出即可;(2)根據(jù)圓周角定理求出∠BOC=2∠A,求出∠OBC=90°-∠A和∠ACD=90°-∠A即可;(3)分別延長AE、CD交⊙O于H、K,連接HK、CH、AK,在AD上取DG=BD,延長CG交AK于M,延長KO交⊙O于N,連接CN、AN,求出關(guān)于a的方程,再求出a即可.【題目詳解】(1)證明:∵AB為直徑,∴,∵于D,∴,∴,,∴;(2)成立,證明:連接OC,由圓周角定理得:,∵,∴,∵,∴,∴;(3)分別延長AE、CD交⊙O于H、K,連接HK、CH、AK,∵,,∴,∴,,∵,∴,∵根據(jù)圓周角定理得:,∴,∴由三角形內(nèi)角和定理得:,∴,∴,同理,∵,∴,在AD上取,延長CG交AK于M,則,,∴,∴,延長KO交⊙O于N,連接CN、AN,則,∴,∵,∴,∴四邊形CGAN是平行四邊形,∴,作于T,則T為CK的中點,∵O為KN的中點,∴,∵,,∴由勾股定理得:,∴,作直徑HS,連接KS,∵,,∴由勾股定理得:,∴,∴,設(shè),,∴,,∵,∴,解得:,∴,∴.【題目點撥】本題考查了垂徑定理、解直角三角形、等腰三角形的性質(zhì)、圓周角定理、勾股定理等知識點,能綜合運用知識點進(jìn)行推理是解此題的關(guān)鍵,綜合性比較強(qiáng),難度偏大.22、∠DAC=20°.【解題分析】

根據(jù)角平分線的定義可得∠ABC=2∠ABE,再根據(jù)直角三角形兩銳角互余求出∠BAD,然后根據(jù)∠DAC=∠BAC﹣∠BAD計算即可得解.【題目詳解】∵BE平分∠ABC,∴∠ABC=2∠ABE=2×25°=50°.∵AD是BC邊上的高,∴∠BAD=90°﹣∠ABC=90°﹣50°=40°,∴∠DAC=∠BAC﹣∠BAD=60°﹣40°=20°.【題目點撥】本題考查了三角形的內(nèi)角和定理,角平分線的定義,準(zhǔn)確識圖理清圖中各角度之間的關(guān)系是解題的關(guān)鍵.23、(1)m=20,n=8;55;(2)答案見解析.【解題分析】

(1)由A占25%,即可求得m的值,繼而求得n的值,然后求得空氣質(zhì)量等級為“良”的天數(shù)占的百分比;(2)首先由(1)補(bǔ)全統(tǒng)計圖,然后利用樣本估計總體的知識求解即可求得答案.【題目詳解】(1)∵m=80×25%=20,n=80-20-44-4-2-2=8,∴空氣質(zhì)量等級為“良”的天數(shù)占:×100%=55%.故答案為20,8,55;(2)估計該市城區(qū)全年空氣質(zhì)量等級為“優(yōu)”和“良”的天數(shù)共:365×(25%+55%)=292(天),答:估計該市城區(qū)全年空氣質(zhì)量等級為“優(yōu)”和“良”的天數(shù)共292天;補(bǔ)全統(tǒng)計圖:【題目點撥】此題考查了條形圖與扇形圖的知識.讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.24、見解析.【解題分析】試題分析:根據(jù)等腰直角三角形的性質(zhì)得出CE=CD,BC=AC,再利用全等三角形的判定證明即可.試題解析:證明:∵△ABC、△CDE均為等腰直角三角形

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論