




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
連接控制圖方法與流程改進(jìn)方法 LinkControlChartmethodstotheProcessImprovementMethodologyTM
討論不同類型的變差
Discussdifferenttypesofvariation介紹各種類型的控制圖
IntroducevarioustypesofControlCharts討論如何解釋控制圖 DiscusstheinterpretationofControlCharts目的
Objectives.2023/12/71.2023/12/72我們是否應(yīng)該采取行動?Shouldwetakeaction?
每天我們都被數(shù)據(jù)淹沒,而且不得不作出決定Everydaywearefloodedbydataandweareforcedtomakedecisions工廠產(chǎn)量下降4%Plant’sOutputDecreasesBy4%美國貿(mào)易赤字增加400億USTradeDeficitRisesBy$40Billion某公司獲利比上季度降低2.4億CompanyX’sEarningsAreOff$240MillionFromPreviousQuarter我們需要解釋數(shù)據(jù)的方法
WeNeedWaystoInterpretData.2023/12/73今天采集什么樣的數(shù)據(jù)?
WhatTypeOfDataIsCollectedToday?制造業(yè)Manufacturing: _____________________________________非制造業(yè)
Non-Manufacturing
___________________________________如何分析數(shù)據(jù)?
HowIsItAnalyzed?制造業(yè)
Manufacturing
: _____________________________________非制造業(yè)
Non-Manufacturing
___________________________________得知數(shù)據(jù)好壞后該當(dāng)如何?
WhatHappensIfItIsBad/Good?制造業(yè)
Manufacturing
: _____________________________________非制造業(yè)
Non-Manufacturing
___________________________________.2023/12/74客戶需求下限Lower“Customer”Requirement這一方法THISMETHOD告訴你關(guān)于客戶的需求Tellsyouwhereyouareinregardstocustomer’sneeds不告訴你怎么滿足用戶需求及下一步怎么辦
ItwillNOTtellyouhowyougotthereorwhattodonext客戶需求上限Upper“Customer”Requirement我們管理數(shù)據(jù)的方式-過去(歷史來講)的方式
TheWayWeManageData–Historically不用管它,不會壞的LeaveItAlone.ItAin’tBroke痛苦,受累Pain&Suffering痛苦,受累Pain&Suffering.2023/12/75這一方法導(dǎo)致何種管理行為?Thismethodcauseswhattypeofmanagementbehavior?客戶需求下限Lower“Customer”Requirement客戶需求上限Upper“Customer”Requirement我們管理數(shù)據(jù)的方式-歷史來講的方式
TheWayWeManageData–Historically不用管它,不會壞的LeaveItAlone.ItAin’tBroke痛苦,受累Pain&Suffering痛苦,受累Pain&Suffering.2023/12/7623ScrapLevel(%)廢品率11996CelebrationTime工廠廢品率為年度最低的2% Thefactoryscraplevelisatayearlowof2%經(jīng)理給工廠頒獎(jiǎng) Managerpresentsanawardtotheplant在餐廳進(jìn)行慶祝:每人都可分享免費(fèi)皮薩餅和飲料
Ceremonyinthecafeteria:pizzaandrefreshmentsforall!“每人都應(yīng)為他們的成就驕傲.” “Everyoneshouldbeproudofwhatthey’veaccomplished”.
DerivedfromUnderstandingVariation:TheKeyToManagingChaos,DonaldJ.Wheeler,SPCPress.1993.1996年4月
APRIL1996JFMA.2023/12/772311996經(jīng)理希望能將發(fā)出去的獎(jiǎng)收回來Managerwantstotakebackaward廢品率連續(xù)三個(gè)月持續(xù)增長 Threeconsecutivemonthsofscrapincreases.經(jīng)理希望能將發(fā)出去的獎(jiǎng)收回來 Managerwisheshecouldtakebacktheaward經(jīng)理考慮要采取行動了
ManageristhinkingabouttakingactionScrapLevel(%)廢品率1996年6月
JUNE1996DerivedfromUnderstandingVariation:TheKeyToManagingChaos,DonaldJ.Wheeler,SPCPress.1993.JFMAMJ.2023/12/782311996Nomore“NiceGuy”不再充好人了廢品率上升到2.6%
Scraprisestoavalueof2.6%
經(jīng)理決定采取行動 Managerdecidestotakeaction召開一個(gè)“特別會議”來尋求一個(gè)永久性的解決方案 A“specialmeeting”iscalledtosolvethisproblemonceandforall.經(jīng)理在長篇大論次品率多么重要后離開了.雇員們不知道該干什么.另外,他們有其他更重要的評估標(biāo)準(zhǔn).于是,他們什么也沒做.
Afterasoundlectureontheimportanceofscrap,themanagerleaves.Employeesaren’tsurewhattodo.Besides,theyhaveothermetricswhichhavemoreimportance.Sotheydonothing.ScrapLevel(%)廢品率1996年11月NOVEMBER1996DerivedfromUnderstandingVariation:TheKeyToManagingChaos,DonaldJ.Wheeler,SPCPress.1993.JFMAMJJASON.2023/12/79經(jīng)理看到從去年開始廢品率持續(xù)下降
Managerhasseenreducedscraplevelssincetheendoflastyear教訓(xùn):“嚴(yán)格的管理會出成效!”
TheLearning:“Atoughmanagementstylegetsresults!”
Managerconcludes:
“ToughLoveMakesThingsHappen”23119961997ScrapLevel(%)廢品率1997年6月
JUNE1997DerivedfromUnderstandingVariation:TheKeyToManagingChaos,DonaldJ.Wheeler,SPCPress.1993.JFMAMJJASONDJFMAMJ.2023/12/710DerivedfromUnderstandingVariation:TheKeyToManagingChaos,DonaldJ.Wheeler,SPCPress.1993.將數(shù)據(jù)置于統(tǒng)計(jì)流程控制圖中
PuttingTheDataInASPCChart23119961997ScrapLevel(%)廢品率JFMAMJJASONDJFMAMJUCLLCL.2023/12/711統(tǒng)計(jì)流程控制圖顯示不同的解釋,可為什么呢?
SPCTellsADifferentStory.ButWhy?23119961997ScrapLevel(%)廢品率JFMAMJJASONDJFMAMJUCLLCL.2023/12/712“人們已知的最佳方式之一是如不能使用控制圖分析數(shù)據(jù)會:增加成本,浪費(fèi)的努力和降低士氣;"-DonaldJ.Wheeler
博士“Failuretousecontrolchartstoanalyzedataisoneofthebestwaysknowntomankindto:increasecostswasteeffortandlowermorale.”
-Dr.DonaldJ.Wheeler統(tǒng)計(jì)流程控制圖顯示不同的解釋,可為什么呢?
SPCTellsADifferentStory,ButWhy?.2023/12/713S=
統(tǒng)計(jì)技術(shù):檢查偏差StatisticaltechniquesusedtoexamineprocessvariationC=
控制過程通過積極管理ControllingtheprocessthroughactivemanagementP=
過程,任何過程Process,ANYProcess現(xiàn)在我們管理數(shù)據(jù)的方法-SPC
TheWayWeManageData-Today
SPC顯示過程偏差隨時(shí)間變化的圖形.2023/12/714控制圖方法 ControlChartsMethod
它從哪里來的? WhereDidItComeFrom?19世紀(jì)20年代-西部電器的WalterShewhart博士: 1920’s-WesternElectric/Dr.WalterShewhart慣于確認(rèn)受控的&未受控的偏差UsedtoidentifyControlled&UncontrolledVariation
受控制的:普通原因或固有偏差
Controlled:CommonCauseorInherentVariation未控制的:特殊起因或可指定的偏差
Uncontrolled:SpecialCauseorAssignableVariation在背景噪聲中試圖發(fā)現(xiàn)由特殊原因造成的偏差
Triestofindthespecialcausevariationinallofthebackgroundnoise使用控制圖作為主要工具 UsesControlChartsasmaintool.2023/12/715FiveMainUsesofControlCharts
控制圖的5個(gè)主要用途Toreducescrapandreworkandforimprovingproductivity.為了減少廢品和返工及提高生產(chǎn)力Defectprevention.Incontrolmeanslesschanceofnonconformingunitsproduced.預(yù)防缺陷Preventsunnecessaryprocessadjustmentsbydistinguishingbetweencommoncausevariationandspecialorassignablecausevariation.預(yù)防不必要的過程調(diào)整Providesdiagnosticinformationsothatanexperiencedoperatorcandeterminethestateoftheprocessbylookingatpatternswithinthedata.Theoperatorcanthenmakethenecessarychangestoimprovetheprocessperformance.提供過程診斷信息Providesinformationaboutimportantprocessparametersovertime.
提供過程重要參數(shù)隨時(shí)間推移的信息.2023/12/716
差異類型-“普遍VS特別”
TypesofVariation“Commonvs.Special”普遍原因 COMMONCAUSE呈現(xiàn)在每個(gè)過程中Ispresentineveryprocess
自然的
Natural隨機(jī)的Random可能被去除和或變小,但在過程上要求一個(gè)根本變化 Canberemovedand/orlessenedbutrequiresafundamentalchangeintheprocess穩(wěn)定的,可重復(fù)的過程偏差來源.存在于每一個(gè)操作/過程由過程本身造成的(由我們做事的方式?jīng)Q定的)一般來說,通過管理可以控制.2023/12/717特殊原因 SPECIALCAUSE不可預(yù)見的 Unpredictable與普通偏差比較大TypicallylargeincomparisontoCommonCausevariation可以由基本的過程控制和監(jiān)視去除或變小Canberemoved/lessenedbybasicprocesscontrolandmonitoring
偏差類型“普遍VS特別"
TypesofVariation“Commonvs.Special”時(shí)不時(shí)地存在于大多數(shù)操作/過程,并且持續(xù)地存在于某些過程.由一個(gè)或一系列的干擾造成的.一般來說,通過操作者可以控制(至少可以發(fā)覺).我們認(rèn)為如果過程中有特別原因偏差,它們就是失控和不穩(wěn)定的.
AprocessexhibitingSpecialCausevariationissaidtobeOut-of-ControlandUnstable.2023/12/718練習(xí)
Exercise當(dāng)它與你的項(xiàng)目有關(guān)系時(shí),確認(rèn)某種“普通原因”和“特別原因”偏差可能的形式 Asitrelatestoyourproject,identifysomepossibleformsof“commoncause”and“specialcause”variation普遍原因 CommonCause特殊原因 SpecialCause
.2023/12/719Minitab–控制圖
ControlCharts.2023/12/720Minitab–控制圖練習(xí)
ControlChartsExercise我們用一些隨機(jī)的數(shù)據(jù) Let’susesomeRandomdata從您的生意中,
我們使用一些代表性的數(shù)值和正態(tài)偏差創(chuàng)造25行任意正常數(shù)據(jù),
Create25rowsofrandomnormaldatausingsomerepresentativevaluesforMeanandStdDevfromyourbusiness繪制單獨(dú)圖PlotanIndividualschart注意監(jiān)視時(shí)間和價(jià)值被繪制在Y軸 NotethatmonitoringovertimeandthevalueisplottedintheYaxis.2023/12/721隨時(shí)間變化的數(shù)據(jù)DATAPLOTTEDOVERTIMEMONITOREDCHARACTERISTICUCLCenterLineLCLUCL=UpperControlLimit/LCL=LowerControlLimitPlottedData主要部分-控制圖
KeyComponent-ControlCharts
.2023/12/722Definitions定義InControl受控Nospecialcausevariationpresent在波動中沒有特殊原因引入Allvariationisrandom所有的波動都是隨機(jī)的OutofControl失控Atleastonespecialcauseispresent至少有一個(gè)特殊原因引入Somevariationisnon-random一些波動不是隨機(jī)的關(guān)于測試我們建議Thetestswesuggest:MINITAB測試Minitabtests:全部測試 AllTests(測試1-8Test01through08)樣品規(guī)則Patternrule:如果你看到一個(gè)樣品,過程已經(jīng)失控Ifyouseeapattern,theprocessisoutofcontrol.2023/12/723
1Sigma2Sigma3Sigma1Sigma2Sigma3Sigma60-75%90-98%99-99.9%%ofDataPointsUCLLCL時(shí)間TIME我們測量的項(xiàng)目
TheItemWeAreMeasuring標(biāo)準(zhǔn)偏差的規(guī)則 RulesofStandardDeviation
數(shù)據(jù)應(yīng)該在哪? “Whereshouldthedatalie?”.2023/12/724Minitab測試TestsTest#1Test#2.2023/12/725過程控制測試標(biāo)準(zhǔn)
ProcessControlTests我們建議使用。。。全部測試 Wesuggestusingalltests..2023/12/726在控制下還是失控?InControlorOutofControl?
如果在控制以外,打破了什么規(guī)則或表現(xiàn)出什么條件?
IfoutofControl,whichrule(s)isbrokenorcondition(s)ispresent?.2023/12/727在控制下還是失控?InControlorOutofControl?
如果在控制以外,打破了什么規(guī)則或表現(xiàn)出什么條件?
IfoutofControl,whichrule(s)isbrokenorcondition(s)ispresent?.2023/12/728在控制下還是失控?InControlorOutofControl?
如果在控制以外,打破了什么規(guī)則或表現(xiàn)出什么條件?
IfoutofControl,whichrule(s)isbrokenorcondition(s)ispresent?.2023/12/729.2023/12/730失控意味什么?WhatdoesOut-of-Controlmean?查出控制的缺陷
DetectingLackofControl.2023/12/731如果您確定您的過程是“失控”你應(yīng)該做什么?Whatshouldyoudoifyoudeterminethatyourprocessis“OutofControl?”查出控制的缺陷
DetectingLackofControl.2023/12/732因此,根據(jù)現(xiàn)在你所知道的,如果你的過程在控制下,在控制上限和下限之間百分之多少數(shù)據(jù)點(diǎn)將會下降?Therefore,basedonwhatyouknowsofar,whatpercentofdatapointsshouldfallbetweentheuppercontrollimit(UCL)andlowercontrollimit(LCL)ifyourprocessisin-control?
UCLLCLTIME控制極限VS規(guī)格限制
ControlLimitsvs.SpecificationLimits.2023/12/733如果點(diǎn)落在上限之外或控制下限之下,是否意味著我們?yōu)轭櫩妥隽艘粋€(gè)缺陷產(chǎn)品?
Ifapointfallsbeyondtheupperorlowercontrollimitdoesthismeanwearemakingadefectforthecustomer?控制極限VS規(guī)格限制
ControlLimitsvs.SpecificationLimits
UCLLCLTIME.2023/12/734控制極限對規(guī)格限制
ControlLimitsvs.SpecificationLimits過程控制極限是由過程能力決定的
ProcessControlLimitsarecalculatedbasedondatafromtheprocessitself他們根據(jù)+/-3s(99.73%我們期望過程偏差落在這些極限之間) Theyarebasedon+/-3s(99.73%oftheprocessvariationisexpectedtofallbetweentheselimits)產(chǎn)品規(guī)格極限規(guī)范極限是由客戶的要求決定的,
不是在控制圖上發(fā)現(xiàn)的
ProductSpecificationLimitsARENOTfoundonthecontrolchart很重要一點(diǎn)是要了解程序控制與顧客要求如何吻合.
UnderstandinghowtheprocessmatchesupagainstcustomerrequirementsIS
importanttoknow確定過程執(zhí)行如何滿足顧客期望,需要進(jìn)行過程能力研究。TodeterminehowtheprocessperformstoCustomerExpectations,aProcessCapabilityStudyisrequired..2023/12/735把規(guī)格限制放在在控制圖上
PuttingspecificationlimitsonaControlChart把控制上限和控制下限當(dāng)做規(guī)格限制 TreatingUCLandasaspecificationlimit2個(gè)控制圖的大錯(cuò)誤TWOBIGCONTROLCHARTERRORS控制極限對規(guī)格限制
ControlLimitsvs.SpecificationLimits當(dāng)你把任意上下限作為監(jiān)視工具時(shí),他就不再是個(gè)控制圖.LCLWhenyoudoeitherofthesethecontrolchartbecomesjustaninspectiontool-it’snolongeracontrolchart.控制上限和控制下限并不直接與客戶缺陷有聯(lián)系!
UCL/LCLarenotdirectlytiedtocustomerdefects!.2023/12/736如何收集數(shù)據(jù)HowtoCollectData合理分組
Rationalsubgroups
通過合理分組,使各組只包括普遍原因collectdatasothatsubgroupscontainonlycommoncausevariation.Thesameasincapabilityanalysis.通過合理分組,使各組盡可能包括更多信息Chooserationalsubgroupstogainasmuchinformationaspossibleabouttheprocess.過程偏移
Todetectprocessshifts:每組盡可能在相同時(shí)間獲取測量結(jié)果eachsubgroupshouldconsistofmeasurementstakenatapproximatelythesametime.
選擇樣本時(shí)盡可能獲取組內(nèi)各樣本間最大的波動可能性Chooseasamplesothatitmaximizesthelikelihoodofdetectingvariabilitybetweenthesamples.2023/12/737抽樣Sampling樣本大小Samplesize
過程容量越大,對于關(guān)鍵CTQ特性的測量就越容易越簡單。ThehighertheprocessvolumeandtheeasierandcheaperthemeasurementsoftheCTQcharacteristic,themorelikelyyouaretoselectanXandRchart(typically3-5datapointspersample)overanIndividualandMovingRangechart(IandMR).抽樣頻率
Frequencyofsampling 考慮到每時(shí)、每天、每班、每月、每年、每批次等等。過程質(zhì)量水平越高,所需樣本越小。
Considerhourly,daily,shifts,monthly,annually,lots,andsoon.Thebetteryourprocessisperforming,thelessfrequentlyyouwillneedtosample. 當(dāng)前產(chǎn)業(yè)標(biāo)準(zhǔn)趨向于小批量多頻率的抽樣。Currentindustrystandardtendstofavorsmaller,morefrequentsamples.如果采取消除特別起因行動(穩(wěn)定過程)并且能力被證明,100%監(jiān)視可能被取消(但是要知道客戶的特殊檢查計(jì)劃).2023/12/738
建立和維護(hù)控制限SettingUpandMaintainingControlLimits用20-25個(gè)樣本計(jì)算控制限,每個(gè)樣本大小為3-5。 Calculatethecontrollimitswith20-25samples(e.g.,fortheXandRchartthatwouldmean20-25samplesofsize3-5).如果受控進(jìn)入最后一步。Ifprocessisincontrol,gotothelaststep.
如果不受控,找出特殊原因Ifprocessisnotincontrol,trytoidentifyspecialcause.消除特殊原因,重新收集數(shù)據(jù),重新計(jì)算控制限,直到過程受控Removespecialcause,recollectdata,recalculatecontrollimits,…untilyoufindtheprocessisincontrol.在未來的監(jiān)測中不要隨意的改變控制限,除非過程有永久和渴望的改變。Forfuturemonitoring,donotchangethelimitsunlessapermanent,desiredchangehasbeenmadetotheprocess..2023/12/739兩種數(shù)據(jù)類型控制圖
TwoGeneralKindsofData屬性控制圖ATTRIBUTE
使用離散,可計(jì)的數(shù)據(jù) Pass/Fail,Good/Bad,Go/No-GoInformation合格/不合格,好/壞,通過/不通過等信息CanBeManyCharacteristicsPerChart一張圖可以同時(shí)描述許多特性
LessExpensive,ButLessInformation需要較少的資源,所含信息量亦較少
Ex: 1,2,3,4etc… Good/Bad Machine1,2,3...變量控制圖VARIABLES
使用連續(xù),可測量的數(shù)據(jù) Continuous,MeasuredDataCycleTime,Lengths,Diameters,Drops,etc周期,長度,直徑,體積,等等GenerallyOneCharacteristicPerChart通常每張圖描述一種特性
MoreExpensive,ButMoreInformation需要更多的資源,但所含信息量更多
Ex: Weight=10.2Lbs Thickness=11.211inches.2023/12/740螺釘扭矩在每個(gè)裝配線傳輸?shù)淖笄敖请x開
Bolttorqueonthefrontleftcornerofeverytransmissioncomingofftheassemblyline每個(gè)螺釘離開裝配線傳輸?shù)钠骄ぞ?Averagebolttorqueofeveryboltforeachtransmissioncomingofftheassemblyline(3) 每個(gè)發(fā)動機(jī)所缺的螺釘數(shù) #ofmissingboltsperengine(4) 每個(gè)銷售合同的排字?jǐn)?shù) #oftypospersalescontract每月生產(chǎn)缺陷發(fā)動機(jī)的數(shù)目
Numberofengineswithdefectsinmonthlyproduction每月生產(chǎn)缺陷發(fā)動機(jī)的的百分比數(shù) %ofdefectiveenginesinmonthlyproduction根據(jù)應(yīng)收帳款,收回它的時(shí)間 Peraccountsreceivable,amountoftimeittakestocloseit每100個(gè)發(fā)動機(jī)的缺陷數(shù) Numberofengineswithdefectsper100built練習(xí):什么類型的數(shù)據(jù)?
Exercise:WhatTypeofData?.2023/12/741屬性型變量連續(xù)型變量數(shù)據(jù)類型?連續(xù)變量VS屬性變量數(shù)據(jù)分組還是單個(gè)數(shù)據(jù)?缺陷數(shù)VS缺陷比例?GROUPS(Averages)(n>1)INDIVIDUALVALUES(n=1)X-BarRX-BarSIndividualsMovingRange缺陷數(shù)缺陷比例IsTheProbabilityOfADefectLow?IfYouKnowHowManyAreBad,DoYouKnowHowManyAreGood?PoissonDistributionBinomialDistributionIndividualsMovingRangeNOYESYES樣本大小一定?YESNOcChartuChart樣本大小一定?npChartNOYESpChart如何選擇控制圖
ChoosingtheCorrectControlChart
NOTE:X-BarSisappropriateforsubgroupsizes(n)of>10.2023/12/742控制圖的主要類型
MajorTypesofControlCharts變量圖 VariablesChartsI-MR(個(gè)體 individuals)X-Bar(平均 average)特性圖 AttributeChartsNP (有缺陷的數(shù)字 Numberdefective)P (有缺陷的比率 Proportiondefective)C (過失數(shù)量 Numberofdefects)U (每個(gè)單位的過失數(shù)量Numberofdefects/unit).2023/12/743練習(xí):選擇什么類型的控制圖?
Exercise:WhatTypeofControlChart?螺釘扭矩在每個(gè)裝配線傳輸?shù)淖笄敖请x開
Bolttorqueonthefrontleftcornerofeverytransmissioncomingofftheassemblyline每個(gè)螺釘離開裝配線傳輸?shù)钠骄ぞ?Averagebolttorqueofeveryboltforeachtransmissioncomingofftheassemblyline(3) 每個(gè)發(fā)動機(jī)所缺的螺釘數(shù) #ofmissingboltsperengine(4) 每個(gè)銷售合同的排字?jǐn)?shù) #oftypospersalescontract每月生產(chǎn)缺陷發(fā)動機(jī)的數(shù)目
Numberofengineswithdefectsinmonthlyproduction每月生產(chǎn)缺陷發(fā)動機(jī)的的百分比數(shù) %ofdefectiveenginesinmonthlyproduction根據(jù)應(yīng)收帳款,收回它的時(shí)間 Peraccountsreceivable,amountoftimeittakestocloseit每100個(gè)發(fā)動機(jī)的缺陷數(shù) Numberofengineswithdefectsper100built.2023/12/744VariableControlCharts連續(xù)數(shù)據(jù)控制圖
X-barRChart平均值和極差圖
(Xbar-R圖).2023/12/745屬性型變量連續(xù)型變量數(shù)據(jù)類型?連續(xù)變量VS屬性變量數(shù)據(jù)分組還是單個(gè)數(shù)據(jù)?缺陷數(shù)VS缺陷比例?GROUPS(Averages)(n>1)INDIVIDUALVALUES(n=1)X-BarRX-BarSIndividualsMovingRange缺陷數(shù)缺陷比例IsTheProbabilityOfADefectLow?IfYouKnowHowManyAreBad,DoYouKnowHowManyAreGood?PoissonDistributionBinomialDistributionIndividualsMovingRangeNOYESYES樣本大小一定?YESNOcChartuChart樣本大小一定?npChartNOYESpChart如何選擇控制圖
ChoosingtheCorrectControlChart
NOTE:X-BarSisappropriateforsubgroupsizes(n)of>10.2023/12/746有效的連續(xù)數(shù)據(jù)控制圖包括...
AValidVariableControlChartHas…
Dataintimeorproductionsequence以時(shí)間或生產(chǎn)順序排序的數(shù)據(jù)toshowstability,time-to-timevariation表示穩(wěn)定性,隨時(shí)間的波動Ameasureofcentraltendency對居中趨勢的測量toportraybehaviorofprocesscenter描述過程的居中Ameasureofvariability對離散程度的測量Controllimits控制極限toallowseparatingcommoncausefromassignablecause可用來區(qū)分通常原因和特殊原因(可歸因原因)
X-Bar-Rcharts(Xbar-R圖)XBarChart:aplotofthesamplemeansovertime.
Xbar圖:反映樣本平均值隨時(shí)間的變化RChart:aplotoftherange(differencebetweenhighestandlowestvalues)ofasampleovertime.R圖:反映樣本的極差(樣本中最大值和最小值的差)隨時(shí)間的變化.2023/12/747Xbar-R圖實(shí)例
MinitabFile:Xbar_r.mtwcontainsmeasureddataforamainshaftO.D.—seecolumn1(C1)=NC_Lathe.Thedataisinsubgroupsofsize3.Minitab文件:Xbar_r.mtw包含主軸的測量數(shù)據(jù),數(shù)據(jù)見C1欄(NC_Lathe).數(shù)據(jù)子樣為3.TheO.D.specificationsare.060+/-.003.產(chǎn)品的規(guī)范是.060+/-.003.=============1.Checkstabilitywitharunchart.用趨勢圖檢驗(yàn)過程的穩(wěn)定性2.Checkfornormality.檢驗(yàn)過程是否是正態(tài)分布3.UsingMinitab,createanXbarandRChart—whatareyourobservations?
用Minitab畫出Xbar-R圖,你得出什么觀察結(jié)論?4.Dothegivenspecifications(specs)“relate”totheControlLimitsontheXbarChart?Ifso,how?
給出的產(chǎn)品規(guī)范與Xbar圖的控制極限相關(guān)嗎?如果是的話,如何相關(guān)?5.HowdoesProcessControl“relate”toProcessCapability?
過程控制如何與過程能力相關(guān)?.2023/12/748MINITABFILE:Xbar_r.mtwMINITAB文件:Xbar_r.mtwXbar-R圖實(shí)例.2023/12/7491.DoubleClick“C1.”雙擊“C1.”2.Typeina3forSubgroupsize.子樣大小為3.3.Click“OK.”
點(diǎn)擊“OK.”Notethat3.0SLdenotesa3sigmalimit=ControlLimit注意3.0SL表示控制極限=3sigma水平Donotconfusethiswithspecificationlimits.不要將控制極限與規(guī)范極限混淆Xbar-R圖實(shí)例.2023/12/750Thecontrollimitsareforaverages,notindividualvalues.控制極限是根據(jù)平均值計(jì)算得出的Mostspecificationsareforindividualvalues.大多數(shù)規(guī)范是關(guān)于個(gè)體數(shù)值的USLUCLLCLLSLXbar-R圖實(shí)例.2023/12/751VariableControlCharts:I&MRChart
連續(xù)數(shù)據(jù)控制圖:I-MR圖.2023/12/752離散型變量連續(xù)型變量數(shù)據(jù)類型?連續(xù)變量VS屬性變量數(shù)據(jù)分組還是單個(gè)數(shù)據(jù)?缺陷數(shù)VS缺陷比例?GROUPS(Averages)(n>1)INDIVIDUALVALUES(n=1)X-BarRX-BarSIndividualsMovingRange缺陷數(shù)缺陷比例IsTheProbabilityOfADefectLow?IfYouKnowHowManyAreBad,DoYouKnowHowManyAreGood?PoissonDistributionBinomialDistributionIndividualsMovingRangeNOYESYES樣本大小一定?YESNOcChartuChart樣本大小一定?npChartNOYESpChart如何選擇控制圖
ChoosingtheCorrectControlChart
NOTE:X-BarSisappropriateforsubgroupsizes(n)of>10.2023/12/753I-MR圖Moreusefulinlowvolume,intermittentoperations
在數(shù)據(jù)量較少,間歇性操作時(shí)更有用SimilartoXbar&RCharts,Except…除以下幾點(diǎn)外,與Xbar-R圖相似SingleValues,NotSubgroups單個(gè)數(shù)值,不是子樣平均值RangeValuesMustBeArtificiallyConstructed極差值需要人工計(jì)算Somewhat“Noisier”BecauseOfLossOf“Damping”由于使用個(gè)體數(shù)值,與Xbar-R圖比較更易受干擾
IMChartsIM圖IndividualsChart:aplotoftheindividualvaluesovertime.
個(gè)體圖(I圖):反映個(gè)體數(shù)值隨時(shí)間的變化MovingRangeChart:aplotofthemovingrange(fortwosamples|Xi-Xi-1|)overtime.
移動極差圖(MR圖):反映兩個(gè)連續(xù)樣本的移動極差隨時(shí)間的變化
.2023/12/754IndividualData個(gè)體數(shù)據(jù)
MovingRange移動極差55 N/A56 ABS(55-56)=159 ABS(56-59)=355 ABS(59-55)=4605958575655Individuals個(gè)體43210MovingRange移動極差建立I-MR圖.2023/12/7552023/12/756Datafromashaftdiameterturningoperationareenteredonthecontrolchartformonthenextpagefor25consecutivepiecesofproduct,inproductionsequence.
數(shù)據(jù)是按照生產(chǎn)次序排列的25個(gè)連續(xù)的轉(zhuǎn)軸產(chǎn)品的直徑ThedataisinMinitabFile:Imr.mtw,columnshaft_OD.UsingMinitab,createtheI-MRchart.數(shù)據(jù)在Minitab文件:Imr.mtw的shaft_OD.欄中,用Minitab畫I-MR圖Analyzeyourresults.Arethereout-of-controlindications?Listtheindications,ifany,bytypeandbyplotpointnumbers.分析結(jié)果,過程是否有失控的征兆?根據(jù)征兆類型及其編號,列出失控征兆
Whatishappeningintheprocess?過程出現(xiàn)了什么情況?I-MR圖實(shí)例.2023/12/757MINITABFILE:Imr.mtwMINITAB文件:Imr.mtwI-MR圖實(shí)例.2023/12/7581.Doubleclickon“Shaft_OD.”
雙擊“Shaft_OD.”2.Click“Tests.”
點(diǎn)擊“Tests.”3.Clickon“Performalleighttests.”
點(diǎn)擊“Performalleighttests.”I-MR圖實(shí)例.2023/12/759I-MR圖實(shí)例.2023/12/760
連續(xù)數(shù)據(jù)控制圖小結(jié)
TakeAways—VariableControlCharts
Variablecontrolchartscanbeusedwithcontinuousdatatotellwhenaprocessis:連續(xù)數(shù)據(jù)控制圖可以用來區(qū)分過程狀態(tài):experiencingonlycommoncausevariationandworkingatitsintendedbest過程只包含通常原因引起的偏差,處于受控狀態(tài)
whentheprocessisdisturbedandneedscorrectiveaction過程受到干擾,需要采取糾正行動控制圖:timeorderedplotofdata描繪數(shù)據(jù)隨時(shí)間的變化reflecttheexpectedrangeofvariationofthedata反映所期望的數(shù)據(jù)波動的范圍
identifieswhenaspecialcauseappearstobeinfluencingthedata識別何時(shí)特殊原因出現(xiàn),影響數(shù)據(jù)分布
X-Bar&Rchartsareusedforplottingmeansandrangesofsubgroupsovertime.Xbar-R圖用來描述子樣的平均值和極差隨時(shí)間的變化
I&MRchartsareusedforplottingindividualvaluesandmovingrangesovertime.I-MR圖用來描述個(gè)體的數(shù)值和移動極差隨時(shí)間的變化
.2023/12/761Controllimitsaretypicallycalculatedas3standarddeviationsawayfromthemeanoftheprocess.
控制極限一般是按過程中心值+/-3個(gè)標(biāo)準(zhǔn)偏差計(jì)算出來的Controllimitsandspecificationlimitsarenotthesame.控制極限和規(guī)范極限是不一樣的
Controllimitsarecalculatedfromthesampledata;theyareinternaltotheprocess控制極限是根據(jù)樣本數(shù)據(jù)計(jì)算得出的;是過程的內(nèi)部特征
Specificationlimitsaredeterminedbyyourperformancestandard;theyareexternaltotheprocess規(guī)范極限是由執(zhí)行的標(biāo)準(zhǔn)決定的;是過程的外部特征
Knowwhenaprocessisoutofcontrol:WesternElectricRules.知道過程何時(shí)失控:WesternElectric規(guī)則Controlchartsareonlyasgoodastheactionsthatyoutaketokeeptheprocessundercontrol.控制圖和采取的糾正行動共同使過程保持受控
連續(xù)數(shù)據(jù)控制圖小結(jié)
TakeAways—VariableControlCharts
.2023/12/762AttributeControlCharts
邏輯數(shù)據(jù)控制圖
.2023/12/763屬性型變量連續(xù)型變量數(shù)據(jù)類型?連續(xù)變量VS屬性變量數(shù)據(jù)分組還是單個(gè)數(shù)據(jù)?缺陷數(shù)VS缺陷比例?GROUPS(Averages)(n>1)INDIVIDUALVALUES(n=1)X-BarRX-BarSIndividualsMovingRange缺陷數(shù)缺陷比例IsTheProbabilityOfADefectLow?IfYouKnowHowManyAreBad,DoYouKnowHowManyAreGood?PoissonDistributionBinomialDistributionIndividualsMovingRangeNOYESYES樣本大小一定?YESNOcChartuChart樣本大小一定?npChartNOYESpChart如何選擇控制圖
ChoosingtheCorrectControlChart
NOTE:X-BarSisappropriateforsubgroupsizes(n)of>10.2023/12/764重要定義
ImportantDefinitionsADefect(缺陷)Asinglecharacteristicthatdoesnotmeetrequirements
不滿足要求的單一特性ADefective(缺陷率)AunitthatcontainsoneormoreDEFECTS
包含單個(gè)或多個(gè)缺陷的單位AttributeChartsCanConsiderEitherCaseDependingOnTheChartTypeChosen根據(jù)所選擇的控制圖類型,邏輯數(shù)據(jù)控制圖可以考慮兩者之一的情形.2023/12/765邏輯數(shù)據(jù)控制圖的分類
ClassificationofAttributeChartTypes
cunppConstantLot/UnitSize樣本數(shù)不變VariableLot/UnitSize樣本數(shù)變化Defects缺陷數(shù)Poisson泊松分布Binomial兩項(xiàng)式分布Defective缺陷率.2023/12/766AttributeControlChart
邏輯數(shù)據(jù)控制圖
C-Chart(C圖).2023/12/767屬性型變量連續(xù)型變量數(shù)據(jù)類型?連續(xù)變量VS屬性變量數(shù)據(jù)分組還是單個(gè)數(shù)據(jù)?缺陷數(shù)VS缺陷比例?GROUPS(Averages)(n>1)INDIVIDUALVALUES(n=1)X-BarRX-BarSIndividualsMovingRange缺陷數(shù)缺陷比例IsTheProbabilityOfADefectLow?IfYouKnowHowManyAreBad,DoYouKnowHowManyAreGood?PoissonDistributionBinomialDistributionIndividualsMovingRangeNOYESYES樣本大小一定?YESNOcChartuChart樣本大小一定?npChartNOYESpChart如何選擇控制圖
ChoosingtheCorrectControlChart
NOTE:X-BarSisappropriateforsubgroupsizes(n)of>10.2023/12/768C-Chart(C圖)Chartfordefectsperunit(subgroup)
描述每單位或子群所包含的缺陷的控制圖BasedonPoissondistribution
根據(jù)泊松分布而來Highprobabilityoffindingdefectofsometype.Largesamplesareneededifdefectprobabilitiesarelow.
發(fā)現(xiàn)某些缺陷的可能性高;如果缺陷概率低的話,需要大樣本。Lowerprobabilityofadefectofagiventype特定類型缺陷發(fā)生的可能性低Worksbestoncomplexunitofproduct
在產(chǎn)品單元復(fù)雜時(shí)效果最佳Constantsubgroup/lotsize
子樣大小為常數(shù).2023/12/769C圖實(shí)例AttributeData邏輯數(shù)據(jù)ManufacturingdataindicatesthatasignificantlossoccursfromweldingnonconformancesonpartAdetectedatNDT.ThedataonthenumberandgeneraltypeofnonconformityforeachparttestedismaintainedbyserialnumberintheNDTlogbooks.生產(chǎn)數(shù)據(jù)表明部件A的焊接不合格造成了可觀的損失,測試的每個(gè)部件不合格的數(shù)目和類型都有相應(yīng)的記錄。
TodeterminethecurrentperformanceoftheweldingprocesswewillplotthenumberofnonconformitiespersubgroupoftwopartsonaC-Chartusingthedatafromthelogbook:
為了確定目前焊接過程的表現(xiàn),根據(jù)記錄的數(shù)據(jù)用C圖畫出每一子樣(2個(gè)部件)的不合格數(shù)
Date日期 6/1 6/2 6/3 6/4 6/5 6/8 6/9Numberof4 2 5 6 10 5 6Nonconf. 3 2 8 5 7 6per 7 4 9 9 Subgroup每一子樣的不合格數(shù) 7 5 7 4 5 6 6 7ExamplePartI.實(shí)例第一部分:ThefileC_chart,columnweld_I,containsthedatagivenabove.以上數(shù)據(jù)在文件C_chart中的weld_I列1. UsingMinitab,createaC-Chart.用Minitab畫出C圖2. Isthehighlevelofnonconformanceweareexperiencingduetoanassignablecauseorrandomvariation?
目前的高水平的不合格品是由可歸因原因還是隨機(jī)原因引起的偏差3. Whataresomeactionsforconsiderationtoreducethelevelofnonconformancesgeneratedbythisprocess?
為了降低過程的不合格水平,需要考慮采取什么措施?4.WhatistheProcessCapability?過程能力怎樣.2023/12/770MINITABFILE:C
chart.mtwMINITAB文件:C
chart.mtwC圖實(shí)例.2023/12/771C圖實(shí)例.2023/12/772AttributeControlCharts
邏輯數(shù)據(jù)控制圖
U-Chart(U圖).2023/12/773屬性型變量連續(xù)型變量數(shù)據(jù)類型?連續(xù)變量VS屬性變量數(shù)據(jù)分組還是單個(gè)數(shù)據(jù)?缺陷數(shù)VS缺陷比例?GROUPS(Averages)(n>1)INDIVIDUALVALUES(n=1)X-BarRX-BarSIndividualsMovingRange缺陷數(shù)缺陷比例IsTheProbabilityOfADefectLow?IfYouKnowHowManyAreBad,DoYouKnowHowManyAreGood?PoissonDistributionBinomialDistributionIndividualsMovingRangeNOYESYES樣本大小一定?YESNOcChartuChart樣本大小一定?npChartNOYESpChart如何選擇控制圖
ChoosingtheCorrectControlChart
NOTE:X-BarSisappropriateforsubgroupsizes(n)of>10.2023/12/774U-Chart-defectsperunit,variablelot(subgroup)sizeU圖描述子樣數(shù)變化時(shí)每單元的缺陷數(shù)SamelogicasC-Chart,exceptvariablelot(subgroup)size(n)
除了子樣數(shù)n可變外,原理與C圖相同U圖.2023/12/775InfileU_chart.mtw,column“errors”containstimeorderdataofcustomerpartsorderdefectsfoundeachday.Adefectisdefinedtobeinaccurateinformationfoundonapartsorderrequisition.Boththenumberofdefectsandthedailynumbe
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T-ZZB 3624-2024 1000kV交流架空輸電線路金具
- T-ZHCA 031-2024 淋洗類化妝品溫和性評價(jià) 重建表皮模型組織活力法
- 二零二五年度房屋代管及租戶租賃合同終止通知協(xié)議
- 二零二五年度公共設(shè)施配套拆遷房產(chǎn)分割及公益基金合同
- 2025年度門面轉(zhuǎn)讓及獨(dú)家代理權(quán)合同
- 二零二五年度合資公司股權(quán)合作協(xié)議書
- 2025年度網(wǎng)絡(luò)安全責(zé)任方合作協(xié)議范本(適用于互聯(lián)網(wǎng)企業(yè))
- 二零二五年度車輛抵押抵貨款金融創(chuàng)新服務(wù)協(xié)議
- 二零二五年度銷售團(tuán)隊(duì)市場分析聘用協(xié)議
- 二零二五年度農(nóng)村房屋租賃與農(nóng)村社區(qū)文化活動合作協(xié)議
- 第07講 兩個(gè)基本計(jì)數(shù)原理(七大題型)(解析版)
- 武漢大學(xué)高等工程數(shù)學(xué)課件
- 加油站自動化控制系統(tǒng)
- 健康教育知識講座高血壓
- BLM(含樣例)教學(xué)課件
- 企業(yè)數(shù)字化轉(zhuǎn)型之路燈塔工廠專題報(bào)告
- 低溫恒溫槽日常維護(hù)保養(yǎng)
- 市政道路工程城市道路施工組織設(shè)計(jì)
- 動物免疫接種技術(shù)課件
- 最全食堂菜譜、-公司食堂菜譜大全、-大鍋菜:522道菜+35道湯
- 線下庭審申請書
評論
0/150
提交評論