版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
北京市西城區(qū)北京師范大第二附屬中學2024屆中考數(shù)學全真模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在?ABCD中,用直尺和圓規(guī)作∠BAD的平分線AG交BC于點E.若BF=8,AB=5,則AE的長為()A.5 B.6 C.8 D.122.點是一次函數(shù)圖象上一點,若點在第一象限,則的取值范圍是().A. B. C. D.3.如圖,在Rt△ABC中,∠ACB=90°,點D,E分別是AB,BC的中點,點F是BD的中點.若AB=10,則EF=()A.2.5 B.3 C.4 D.54.如圖,在矩形ABCD中,連接BD,點O是BD的中點,若點M在AD邊上,連接MO并延長交BC邊于點M’,連接MB,DM’則圖中的全等三角形共有()A.3對 B.4對 C.5對 D.6對5.如圖,在中,面積是16,的垂直平分線分別交邊于點,若點為邊的中點,點為線段上一動點,則周長的最小值為()A.6 B.8 C.10 D.126.關(guān)于x的一元二次方程x2-4x+k=0有兩個相等的實數(shù)根,則k的值是()A.2 B.-2 C.4 D.-47.袋子中裝有4個黑球和2個白球,這些球的形狀、大小、質(zhì)地等完全相同,在看不到球的條件下,隨機地從袋子中摸出三個球.下列事件是必然事件的是()A.摸出的三個球中至少有一個球是黑球B.摸出的三個球中至少有一個球是白球C.摸出的三個球中至少有兩個球是黑球D.摸出的三個球中至少有兩個球是白球8.用五個完全相同的小正方體組成如圖所示的立體圖形,從正面看到的圖形是()A. B. C. D.9.若=1,則符合條件的m有()A.1個 B.2個 C.3個 D.4個10.共享單車為市民短距離出行帶來了極大便利.據(jù)2017年“深圳互聯(lián)網(wǎng)自行車發(fā)展評估報告”披露,深圳市日均使用共享單車2590000人次,其中2590000用科學記數(shù)法表示為()A.259×104 B.25.9×105 C.2.59×106 D.0.259×107二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,小量角器的零度線在大量角器的零度線上,且小量角器的中心在大量角器的外緣邊上.如果它們外緣邊上的公共點P在小量角器上對應(yīng)的度數(shù)為65°,那么在大量角器上對應(yīng)的度數(shù)為_____度(只需寫出0°~90°的角度).12.如果分式的值是0,那么x的值是______.13.已知,那么__.14.如圖,在△ABC中,AB=3+,∠B=45°,∠C=105°,點D、E、F分別在AC、BC、AB上,且四邊形ADEF為菱形,若點P是AE上一個動點,則PF+PB的最小值為_____.15.用半徑為6cm,圓心角為120°的扇形圍成一個圓錐,則圓錐的底面圓半徑為_______cm.16.內(nèi)接于圓,設(shè),圓的半徑為,則所對的劣弧長為_____(用含的代數(shù)式表示).三、解答題(共8題,共72分)17.(8分)如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點C(0,4),與x軸交于點A和點B,其中點A的坐標為(﹣2,0),拋物線的對稱軸x=1與拋物線交于點D,與直線BC交于點E.(1)求拋物線的解析式;(2)若點F是直線BC上方的拋物線上的一個動點,是否存在點F使四邊形ABFC的面積最大,若存在,求出點F的坐標和最大值;若不存在,請說明理由;(3)平行于DE的一條動直線l與直線BC相較于點P,與拋物線相交于點Q,若以D、E、P、Q為頂點的四邊形是平行四邊形,求P點的坐標.18.(8分)如圖1,圖2…、圖m是邊長均大于2的三角形、四邊形、…、凸n邊形.分別以它們的各頂點為圓心,以1為半徑畫弧與兩鄰邊相交,得到3條弧、4條弧…、n條?。?1)圖1中3條弧的弧長的和為,圖2中4條弧的弧長的和為;(2)求圖m中n條弧的弧長的和(用n表示).19.(8分)如圖,在Rt△ABC中,∠C=90°,O、D分別為AB、AC上的點,經(jīng)過A、D兩點的⊙O分別交于AB、AC于點E、F,且BC與⊙O相切于點D.(1)求證:DF=(2)當AC=2,CD=1時,求⊙O的面積.20.(8分)在⊙O中,弦AB與弦CD相交于點G,OA⊥CD于點E,過點B作⊙O的切線BF交CD的延長線于點F.(I)如圖①,若∠F=50°,求∠BGF的大?。唬↖I)如圖②,連接BD,AC,若∠F=36°,AC∥BF,求∠BDG的大?。?1.(8分)矩形ABCD一條邊AD=8,將矩形ABCD折疊,使得點B落在CD邊上的點P處.(1)如圖1,已知折痕與邊BC交于點O,連接AP、OP、OA.①求證:△OCP∽△PDA;②若△OCP與△PDA的面積比為1:4,求邊AB的長.(2)如圖2,在(1)的條件下,擦去AO和OP,連接BP.動點M在線段AP上(不與點P、A重合),動點N在線段AB的延長線上,且BN=PM,連接MN交PB于點F,作ME⊥BP于點E.試問動點M、N在移動的過程中,線段EF的長度是否發(fā)生變化?若不變,求出線段EF的長度;若變化,說明理由.22.(10分)《如果想毀掉一個孩子,就給他一部手機!》這是2017年微信圈一篇熱傳的文章.國際上,法國教育部宣布從2018年9月新學期起小學和初中禁止學生使用手機.為了解學生手機使用情況,某學校開展了“手機伴我健康行”主題活動,他們隨機抽取部分學生進行“使用手機目的”和“每周使用手機的時間”的問卷調(diào)查,并繪制成如圖①,②的統(tǒng)計圖,已知“查資料”的人數(shù)是40人.請你根據(jù)以上信息解答下列問題:在扇形統(tǒng)計圖中,“玩游戲”對應(yīng)的百分比為,圓心角度數(shù)是度;補全條形統(tǒng)計圖;該校共有學生2100人,估計每周使用手機時間在2小時以上(不含2小時)的人數(shù).23.(12分)小明和小剛玩“石頭、剪刀、布”的游戲,每一局游戲雙方各自隨機做出“石頭”、“剪刀”、“布”三種手勢的一種,規(guī)定“石頭”勝“剪刀”,“剪刀”勝“布”,“布”勝“石頭”,相同的手勢是和局.(1)用樹形圖或列表法計算在一局游戲中兩人獲勝的概率各是多少?(2)如果兩人約定:只要誰率先勝兩局,就成了游戲的贏家.用樹形圖或列表法求只進行兩局游戲便能確定贏家的概率.24.如圖,Rt△ABC中,∠C=90°,∠A=30°,BC=1.(1)實踐操作:尺規(guī)作圖,不寫作法,保留作圖痕跡.①作∠ABC的角平分線交AC于點D.②作線段BD的垂直平分線,交AB于點E,交BC于點F,連接DE、DF.(2)推理計算:四邊形BFDE的面積為.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解題分析】試題分析:由基本作圖得到AB=AF,AG平分∠BAD,故可得出四邊形ABEF是菱形,由菱形的性質(zhì)可知AE⊥BF,故可得出OB=4,再由勾股定理即可得出OA=3,進而得出AE=2AO=1.故選B.考點:1、作圖﹣基本作圖,2、平行四邊形的性質(zhì),3、勾股定理,4、平行線的性質(zhì)2、B【解題分析】試題解析:把點代入一次函數(shù)得,.∵點在第一象限上,∴,可得,因此,即,故選B.3、A【解題分析】
先利用直角三角形的性質(zhì)求出CD的長,再利用中位線定理求出EF的長.【題目詳解】∵∠ACB=90°,D為AB中點∴CD=1∵點E、F分別為BC、BD中點∴EF=1故答案為:A.【題目點撥】本題考查的知識點是直角三角形的性質(zhì)和中位線定理,解題關(guān)鍵是尋找EF與題目已知長度的線段的數(shù)量關(guān)系.4、D【解題分析】
根據(jù)矩形的對邊平行且相等及其對稱性,即可寫出圖中的全等三角形的對數(shù).【題目詳解】圖中圖中的全等三角形有△ABM≌△CDM’,△ABD≌△CDB,△OBM≌△ODM’,△OBM’≌△ODM,△M’BM≌△MDM’,△DBM≌△BDM’,故選D.【題目點撥】此題主要考查矩形的性質(zhì)及全等三角形的判定,解題的關(guān)鍵是熟知矩形的對稱性.5、C【解題分析】
連接AD,AM,由于△ABC是等腰三角形,點D是BC的中點,故,在根據(jù)三角形的面積公式求出AD的長,再根據(jù)EF是線段AC的垂直平分線可知,點A關(guān)于直線EF的對稱點為點C,,推出,故AD的長為BM+MD的最小值,由此即可得出結(jié)論.【題目詳解】連接AD,MA∵△ABC是等腰三角形,點D是BC邊上的中點∴∴解得∵EF是線段AC的垂直平分線∴點A關(guān)于直線EF的對稱點為點C∴∵∴AD的長為BM+MD的最小值∴△CDM的周長最短故選:C.【題目點撥】本題考查了三角形線段長度的問題,掌握等腰三角形的性質(zhì)、三角形的面積公式、垂直平分線的性質(zhì)是解題的關(guān)鍵.6、C【解題分析】
對于一元二次方程a+bx+c=0,當Δ=-4ac=0時,方程有兩個相等的實數(shù)根.即16-4k=0,解得:k=4.考點:一元二次方程根的判別式7、A【解題分析】
根據(jù)必然事件的概念:在一定條件下,必然發(fā)生的事件叫做必然事件分析判斷即可.【題目詳解】A、是必然事件;B、是隨機事件,選項錯誤;C、是隨機事件,選項錯誤;D、是隨機事件,選項錯誤.故選A.8、A【解題分析】從正面看第一層是三個小正方形,第二層左邊一個小正方形,故選:A.9、C【解題分析】
根據(jù)有理數(shù)的乘方及解一元二次方程-直接開平方法得出兩個有關(guān)m的等式,即可得出.【題目詳解】=1m2-9=0或m-2=1即m=3或m=3,m=1m有3個值故答案選C.【題目點撥】本題考查的知識點是有理數(shù)的乘方及解一元二次方程-直接開平方法,解題的關(guān)鍵是熟練的掌握有理數(shù)的乘方及解一元二次方程-直接開平方法.10、C【解題分析】
絕對值大于1的正數(shù)可以科學計數(shù)法,a×10n,即可得出答案.【題目詳解】n由左邊第一個不為0的數(shù)字前面的0的個數(shù)決定,所以此處n=6.【題目點撥】本題考查了科學計數(shù)法的運用,熟悉掌握是解決本題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、1.【解題分析】
設(shè)大量角器的左端點是A,小量角器的圓心是B,連接AP,BP,則∠APB=90°,∠ABP=65°,因而∠PAB=90°﹣65°=25°,在大量角器中弧PB所對的圓心角是1°,因而P在大量角器上對應(yīng)的度數(shù)為1°.故答案為1.12、1.【解題分析】
根據(jù)分式為1的條件得到方程,解方程得到答案.【題目詳解】由題意得,x=1,故答案是:1.【題目點撥】本題考查分式的值為零的條件,分式為1需同時具備兩個條件:(1)分子為1;(2)分母不為1.這兩個條件缺一不可.13、【解題分析】
根據(jù)比例的性質(zhì),設(shè)x=5a,則y=2a,代入原式即可求解.【題目詳解】解:∵,∴設(shè)x=5a,則y=2a,那么.故答案為:.【題目點撥】本題主要考查了比例的性質(zhì),根據(jù)比例式用同一個未知數(shù)得出的值進而求解是解題關(guān)鍵.14、【解題分析】
如圖,連接OD,BD,作DH⊥AB于H,EG⊥AB于G.由四邊形ADEF是菱形,推出F,D關(guān)于直線AE對稱,推出PF=PD,推出PF+PB=PA+PB,由PD+PB≥BD,推出PF+PB的最小值是線段BD的長.【題目詳解】如圖,連接OD,BD,作DH⊥AB于H,EG⊥AB于G.∵四邊形ADEF是菱形,∴F,D關(guān)于直線AE對稱,∴PF=PD,∴PF+PB=PA+PB,∵PD+PB≥BD,∴PF+PB的最小值是線段BD的長,∵∠CAB=180°-105°-45°=30°,設(shè)AF=EF=AD=x,則DH=EG=x,F(xiàn)G=x,∵∠EGB=45°,EG⊥BG,∴EG=BG=x,∴x+x+x=3+,∴x=2,∴DH=1,BH=3,∴BD==,∴PF+PB的最小值為,故答案為.【題目點撥】本題考查軸對稱-最短問題,菱形的性質(zhì)等知識,解題的關(guān)鍵是學會用轉(zhuǎn)化的思想思考問題,學會利用軸對稱解決最短問題.15、1.【解題分析】
解:設(shè)圓錐的底面圓半徑為r,根據(jù)題意得1πr=,解得r=1,即圓錐的底面圓半徑為1cm.故答案為:1.【題目點撥】本題考查圓錐的計算,掌握公式正確計算是解題關(guān)鍵.16、或【解題分析】
分0°<x°≤90°、90°<x°≤180°兩種情況,根據(jù)圓周角定理求出∠DOC,根據(jù)弧長公式計算即可.【題目詳解】解:當0°<x°≤90°時,如圖所示:連接OC,
由圓周角定理得,∠BOC=2∠A=2x°,
∴∠DOC=180°-2x°,
∴∠OBC所對的劣弧長=,
當90°<x°≤180°時,同理可得,∠OBC所對的劣弧長=.
故答案為:或.【題目點撥】本題考查了三角形的外接圓與外心、弧長的計算,掌握弧長公式、圓周角定理是解題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)、y=-+x+4;(2)、不存在,理由見解析.【解題分析】試題分析:(1)、首先設(shè)拋物線的解析式為一般式,將點C和點A意見對稱軸代入求出函數(shù)解析式;(2)、本題利用假設(shè)法來進行證明,假設(shè)存在這樣的點,然后設(shè)出點F的坐標求出FH和FG的長度,然后得出面積與t的函數(shù)關(guān)系式,根據(jù)方程無解得出結(jié)論.試題解析:(1)、∵拋物線y=a+bx+c(a≠0)過點C(0,4)∴C=4①∵-=1∴b=-2a②∵拋物線過點A(-2,0)∴4a-2b+c="0"③由①②③解得:a=-,b=1,c=4∴拋物線的解析式為:y=-+x+4(2)、不存在假設(shè)存在滿足條件的點F,如圖所示,連結(jié)BF、CF、OF,過點F作FH⊥x軸于點H,F(xiàn)G⊥y軸于點G.設(shè)點F的坐標為(t,+t+4),其中0<t<4則FH=+t+4FG=t∴△OBF的面積=OB·FH=×4×(+t+4)=-+2t+8△OFC的面積=OC·FG=2t∴四邊形ABFC的面積=△AOC的面積+△OBF的面積+△OFC的面積=-+4t+12令-+4t+12=17即-+4t-5=0△=16-20=-4<0∴方程無解∴不存在滿足條件的點F考點:二次函數(shù)的應(yīng)用18、(1)π,2π;(2)(n﹣2)π.【解題分析】
(1)利用弧長公式和三角形和四邊形的內(nèi)角和公式代入計算;(2)利用多邊形的內(nèi)角和公式和弧長公式計算.【題目詳解】(1)利用弧長公式可得=π,因為n1+n2+n3=180°.同理,四邊形的==2π,因為四邊形的內(nèi)角和為360度;(2)n條?。剑?n﹣2)π.【題目點撥】本題考查了多邊形的內(nèi)角和定理以及扇形的面積公式和弧長的計算公式,理解公式是關(guān)鍵.19、(1)證明見解析;(2)2516【解題分析】
(1)連接OD,由BC為圓O的切線,得到OD垂直于BC,再由AC垂直于BC,得到OD與AC平行,利用兩直線平行得到一對內(nèi)錯角相等,再由OA=OD,利用等邊對等角得到一對角相等,等量代換得到AD為角平分線,利用相等的圓周角所對的弧相等即可得證;
(2)連接ED,在直角三角形ACD中,由AC與CD的長,利用勾股定理求出AD的長,由(1)得出的兩個圓周角相等,及一對直角相等得到三角形ACD與三角形ADE相似,由相似得比例求出AE的長,進而求出圓的半徑,即可求出圓的面積.【題目詳解】證明:連接OD,∵BC為圓O的切線,∴OD⊥CB,∵AC⊥CB,∴OD∥AC,∴∠CAD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠OAD,則DF=(2)解:連接ED,在Rt△ACD中,AC=2,CD=1,根據(jù)勾股定理得:AD=5,∵∠CAD=∠OAD,∠ACD=∠ADE=90°,∴△ACD∽△ADE,∴ADAE=AC∴AE=52,即圓的半徑為5則圓的面積為25π16【題目點撥】此題考查了切線的性質(zhì),圓周角定理,相似三角形的判定與性質(zhì),以及勾股定理,熟練掌握相關(guān)性質(zhì)是解本題的關(guān)鍵.20、(I)65°;(II)72°【解題分析】
(I)如圖①,連接OB,先利用切線的性質(zhì)得∠OBF=90°,而OA⊥CD,所以∠OED=90°,利用四邊形內(nèi)角和可計算出∠AOB=130°,然后根據(jù)等腰三角形性質(zhì)和三角形內(nèi)角和計算出∠1=∠A=25°,從而得到∠2=65°,最后利用三角形內(nèi)角和定理計算∠BGF的度數(shù);(II)如圖②,連接OB,BO的延長線交AC于H,利用切線的性質(zhì)得OB⊥BF,再利用AC∥BF得到BH⊥AC,與(Ⅰ)方法可得到∠AOB=144°,從而得到∠OBA=∠OAB=18°,接著計算出∠OAH=54°,然后根據(jù)圓周角定理得到∠BDG的度數(shù).【題目詳解】解:(I)如圖①,連接OB,∵BF為⊙O的切線,∴OB⊥BF,∴∠OBF=90°,∵OA⊥CD,∴∠OED=90°,∴∠AOB=180°﹣∠F=180°﹣50°=130°,∵OA=OB,∴∠1=∠A=(180°﹣130°)=25°,∴∠2=90°﹣∠1=65°,∴∠BGF=180°﹣∠2﹣∠F=180°﹣65°﹣50°=65°;(II)如圖②,連接OB,BO的延長線交AC于H,∵BF為⊙O的切線,∴OB⊥BF,∵AC∥BF,∴BH⊥AC,與(Ⅰ)方法可得到∠AOB=180°﹣∠F=180°﹣36°=144°,∵OA=OB,∴∠OBA=∠OAB=(180°﹣144°)=18°,∵∠AOB=∠OHA+∠OAH,∴∠OAH=144°﹣90°=54°,∴∠BAC=∠OAH+∠OAB=54°+18°=72°,∴∠BDG=∠BAC=72°.【題目點撥】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.若出現(xiàn)圓的切線,必連過切點的半徑,構(gòu)造定理圖,得出垂直關(guān)系.也考查了圓周角定理.21、(1)①證明見解析;②10;(2)線段EF的長度不變,它的長度為25..【解題分析】試題分析:(1)先證出∠C=∠D=90°,再根據(jù)∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可證出△OCP∽△PDA;根據(jù)△OCP與△PDA的面積比為1:4,得出CP=12(2)作MQ∥AN,交PB于點Q,求出MP=MQ,BN=QM,得出MP=MQ,根據(jù)ME⊥PQ,得出EQ=12PQ,根據(jù)∠QMF=∠BNF,證出△MFQ≌△NFB,得出QF=12QB,再求出EF=12試題解析:(1)如圖1,∵四邊形ABCD是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折疊可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C,∴△OCP∽△PDA;∵△OCP與△PDA的面積比為1:4,∴OPPA=CPDA=14(2)作MQ∥AN,交PB于點Q,如圖2,∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP,∴MP=MQ,∵BN=PM,∴BN=QM.∵MP=MQ,ME⊥PQ,∴EQ=12PQ.∵MQ∥AN,∴∠QMF=∠BNF,在△MFQ和△NFB中,∵∠QFM=∠NFB,∠QMF=∠BNF,MQ=BN,∴△MFQ≌△NFB(AAS),∴QF=12QB,∴EF=EQ+QF=12PQ+12QB=12PB,由(1)中的結(jié)論可得:PC=4,BC=8,∠C=90°,∴PB=82+42考點:翻折變換(折疊問題);矩形的性質(zhì);相似形綜合題.22、(1)35%,126;(2)見解析;(3)1344人【解題分析】
(1)由扇形統(tǒng)計圖其他的百分比求出“玩游戲”的百分比,乘以360即可得到結(jié)果;(2)求出3小時以上的人數(shù),補全條形統(tǒng)計圖即可;(3)由每周使用手機時間在2小時以上(不含2小時)的百分比乘以2100即可得到結(jié)果.【題目詳解】(1)根據(jù)題意得:1﹣(40%+18%+7%)=35%,則“玩游戲”對應(yīng)的圓心角度數(shù)是360°×35%=126°,故答案為35%,126;(2)根據(jù)題意得:40÷40%=100(人),∴3小時以上的人數(shù)為100﹣(2+16+18+32)=32(人),補全圖形如下:;(3)根據(jù)題意得:2100×=1344(人),則每周使用手機時間在2小時以上
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度柴油交易平臺建設(shè)與運營合同樣本4篇
- 2025年度旅游度假區(qū)場地租賃及旅游服務(wù)合同11篇
- 2024年高端住宅小區(qū)二零二四年度飲用水品質(zhì)提升合同3篇
- 個性化珠寶訂制及保養(yǎng)服務(wù)合同書
- 2024藥店藥品銷售經(jīng)理聘用合同范本3篇
- 2025年度酒店餐飲場地租賃轉(zhuǎn)讓意向協(xié)議范本4篇
- 專業(yè)家務(wù)助理合作協(xié)議(2024規(guī)范版)
- 2025年智慧城市建設(shè)項目土地租賃合同樣本8篇
- 2025年度違法建筑拆除與歷史文化遺產(chǎn)保護合同4篇
- 2025年茶山茶葉加工廠租賃合作協(xié)議范本4篇
- (二統(tǒng))大理州2025屆高中畢業(yè)生第二次復習統(tǒng)一檢測 物理試卷(含答案)
- 影視作品價值評估-洞察分析
- 公司員工出差車輛免責協(xié)議書
- 2023年浙江杭州師范大學附屬醫(yī)院招聘聘用人員筆試真題
- 江蘇某小區(qū)園林施工組織設(shè)計方案
- 口腔執(zhí)業(yè)醫(yī)師定期考核試題(資料)帶答案
- 2024人教版高中英語語境記單詞【語境記單詞】新人教版 選擇性必修第2冊
- 能源管理總結(jié)報告
- 藥店醫(yī)保政策宣傳與執(zhí)行制度
- 勘察工作質(zhì)量及保證措施
- 體外膜肺氧合(ECMO)并發(fā)癥及護理
評論
0/150
提交評論