版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學年青海省西寧市部分學校高一上數(shù)學期末聯(lián)考試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.已知是自然對數(shù)的底數(shù),函數(shù)的零點為,函數(shù)的零點為,則下列不等式中成立的是A. B.C. D.2.若角的終邊上一點,則的值為()A. B.C. D.3.若方程在區(qū)間內(nèi)有兩個不同的解,則A. B.C. D.4.已知,,滿足,則()A. B.C. D.5.給出下列四種說法:①若平面,直線,則;②若直線,直線,直線,則;③若平面,直線,則;④若直線,,則.其中正確說法的個數(shù)為()A.個 B.個C.個 D.個6.已知集合A={x∈N|1<x<log2k},集合A中至少有2個元素,則()A.k≥4 B.k>4C.k≥8 D.k>87.已知,且,則的值為()A. B.C. D.8.北京2022年冬奧會新增了女子單人雪車、短道速滑混合團體接力、跳臺滑雪混合團體、男子自由式滑雪大跳臺、女子自由式滑雪大跳臺、自由式滑雪空中技巧混合團體和單板滑雪障礙追逐混合團體等7個比賽小項,現(xiàn)有甲、乙兩名志愿者分別從7個比賽小項中各任選一項參加志愿服務工作,且甲、乙兩人的選擇互不影響,那么甲、乙兩名志愿者選擇同一個比賽小項進行志愿服務工作的概率是()A.249 B.C.17 D.9.下列四個函數(shù)中,在整個定義域內(nèi)單調(diào)遞減是A. B.C. D.10.函數(shù)的部分圖象如圖所示,則函數(shù)的解析式為()A. B.C. D.11.已知,,,則,,大小關(guān)系為()A. B.C. D.12.在區(qū)間上任取一個數(shù),則函數(shù)在上的最大值是3的概率為()A. B.C. D.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.已知,則________14.如圖,在正六邊形ABCDEF中,記向量,,則向量______.(用,表示)15.命題“,”的否定形式為__________________________.16.等于_______.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.一種藥在病人血液中的含量不低于2克時,它才能起到有效治療的作用,已知每服用且克的藥劑,藥劑在血液中的含量(克)隨著時間(小時)變化的函數(shù)關(guān)系式近似為,其中(1)若病人一次服用9克的藥劑,則有效治療時間可達多少小時?(2)若病人第一次服用6克的藥劑,6個小時后再服用3m克的藥劑,要使接下來的2小時中能夠持續(xù)有效治療,試求m的最小值18.已知函數(shù)的最小正周期為(1)求當為偶函數(shù)時的值;(2)若的圖象過點,求的單調(diào)遞增區(qū)間19.已知正三棱柱,是的中點求證:(1)平面;(2)平面平面20.已知二次函數(shù).若當時,的最大值為4,求實數(shù)的值.21.已知函數(shù)(1)當時,在上恒成立,求的取值范圍;(2)當時,解關(guān)于的不等式22.已知全集,求:(1);(2).
參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、A【解析】解:由f(x)=ex+x﹣2=0得ex=2﹣x,由g(x)=lnx+x﹣2=0得lnx=2﹣x,作出函數(shù)y=ex,y=lnx,y=2﹣x的圖象如圖:∵函數(shù)f(x)=ex+x﹣2的零點為a,函數(shù)g(x)=lnx+x﹣2的零點為b,∴y=ex與y=2﹣x的交點的橫坐標為a,y=lnx與y=2﹣x交點的橫坐標為b,由圖象知a<1<b,故選A考點:函數(shù)的零點2、B【解析】由三角函數(shù)的定義即可得到結(jié)果.【詳解】∵角的終邊上一點,∴,∴,故選:B【點睛】本題考查三角函數(shù)的定義,考查誘導公式及特殊角的三角函數(shù)值,屬于基礎題.3、C【解析】由,得,所以函數(shù)的圖象在區(qū)間內(nèi)的對稱軸為故當方程在區(qū)間內(nèi)有兩個不同的解時,則有選C4、A【解析】將轉(zhuǎn)化為是函數(shù)的零點問題,再根據(jù)零點存在性定理即可得的范圍,進而得答案.【詳解】解:因為函數(shù)在上單調(diào)遞減,所以;;因為滿足,即是方程的實數(shù)根,所以是函數(shù)的零點,易知函數(shù)f(x)在定義域內(nèi)是減函數(shù),因為,,所以函數(shù)有唯一零點,即.所以.故選:A.【點睛】本題考查對數(shù)式的大小,函數(shù)零點的取值范圍,考查化歸轉(zhuǎn)化思想,是中檔題.本題解題的關(guān)鍵在于將滿足轉(zhuǎn)化為是函數(shù)的零點,進而根據(jù)零點存在性定理即可得的范圍.5、D【解析】根據(jù)線面關(guān)系舉反例否定命題,根據(jù)面面平行定義證命題正確性.【詳解】若平面,直線,則可異面;若直線,直線,直線,則可相交,此時平行兩平面交線;若直線,,則可相交,此時平行兩平面交線;若平面,直線,則無交點,即;選D.【點睛】本題考查線面平行關(guān)系,考查空間想象能力以及簡單推理能力.6、D【解析】首先確定集合A,由此得到log2k>3,即可求k的取值范圍.【詳解】∵集合A={x∈N|1<x<log2k},集合A中至少有2個元素,∴A={2,3},則log2k>3,可得k>8.故選:D.7、B【解析】先通過誘導公式把轉(zhuǎn)化成,再結(jié)合平方關(guān)系求解.【詳解】,又,.故選:B.8、C【解析】根據(jù)古典概型概率的計算公式直接計算.【詳解】由題意可知甲、乙兩名志愿者分別從7個比賽小項中各任選一項參加志愿服務工作共有7×7=49種情況,其中甲、乙兩名志愿者選擇同一個比賽小項進行志愿服務工作共7種,所以甲、乙兩名志愿者選擇同一個比賽小項進行志愿服務工作的概率是749故選:C.9、C【解析】根據(jù)指數(shù)函數(shù)的性質(zhì)判斷,利用特殊值判斷,利用對數(shù)函數(shù)的性質(zhì)判斷,利用偶函數(shù)的性質(zhì)判斷【詳解】對于,,是指數(shù)函數(shù),在整個定義域內(nèi)單調(diào)遞增,不符合題意;對于,,有,,不是減函數(shù),不符合題意;對于,為對數(shù)函數(shù),整個定義域內(nèi)單調(diào)遞減,符合題意;對于,,為偶函數(shù),整個定義域內(nèi)不是單調(diào)函數(shù),不符合題意,故選C【點睛】本題主要考查指數(shù)函數(shù)的性質(zhì)、單調(diào)性是定義,對數(shù)函數(shù)的性質(zhì)以及偶函數(shù)的性質(zhì),意在考查綜合利用所學知識解答問題的能力,屬于中檔題10、B【解析】由圖像求出周期再根據(jù)可得,再由,代入可求,進而可求出解析式.【詳解】由圖象可知,,得,又∵,∴.當時,,即,解得.又,則,∴函數(shù)的解析式為.故選:B.【點睛】本題主要考查了由三角函數(shù)的圖像求函數(shù)解析式,需熟記正弦型三角函數(shù)的周期公式,屬于基礎題.11、C【解析】由對數(shù)的性質(zhì),分別確定的大致范圍,即可得出結(jié)果.【詳解】因為,所以,,所以,,,所以.故選:C.12、A【解析】設函數(shù),求出時的取值范圍,再根據(jù)討論的取值范圍,判斷是否能取得最大值,從而求出對應的概率值【詳解】在區(qū)間上任取一個數(shù),基本事件空間對應區(qū)間的長度是,由,得,∴,∴的最大值是或,即最大值是或;令,得,解得;又,∴;∴當時,,∴在上的最大值是,滿足題意;當時,,∴函數(shù)在上的最大值是,由,得,的最大值不是;二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、【解析】利用和的齊次分式,表示為表示的式子,即可求解.【詳解】.故答案為:14、##【解析】由正六邊形的性質(zhì):三條不相鄰的三邊經(jīng)過平移可成等邊三角形,即可得,進而得到結(jié)果.【詳解】由正六邊形的性質(zhì)知:,∴.故答案為:.15、##【解析】根據(jù)全稱量詞命題的否定直接得出結(jié)果.【詳解】命題“”的否定為:,故答案為:16、【解析】直接利用誘導公式即可求解.【詳解】由誘導公式得:.故答案為:.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1);(2)【解析】(1)分兩段解不等式,解得結(jié)果即可得解;(2)求出當時,,再根據(jù)函數(shù)的單調(diào)性求出最小值為,解不等式可得解.【詳解】(1)由題意,當可得,當時,,解得,此時;當時,,解得,此時,綜上可得,所以病人一次服用9克的藥劑,則有效治療時間可達小時;(2)當時,,由,在均為減函數(shù),可得在遞減,即有,由,可得,可得m的最小值為【點睛】本題考查了分段函數(shù)的應用,正確求出分段函數(shù)解析式是解題關(guān)鍵,屬于中檔題.18、(1);(2).【解析】(1)由為偶函數(shù),求出的值,結(jié)合的范圍,即可求解;(2)由函數(shù)的周期求出值,將點代入解析式,結(jié)合的范圍,求出,根據(jù)正弦函數(shù)的單調(diào)遞增區(qū)間,整體代換,即可求出結(jié)論.【詳解】(1)當為偶函數(shù)時,,;(2)函數(shù)的最小正周期為,,當時,,將點代入得,,,單調(diào)遞增需滿足,,,所以單調(diào)遞增是;當時,,將點代入得,,的值不存在,綜上,的單調(diào)遞增區(qū)間.【點睛】本題考查函數(shù)的性質(zhì),利用三角函數(shù)值求角,要注意角的范圍,考查計算求解能力,不要忽略的正負分類討論,是本題的易錯點,屬于中檔題.19、(1)見解析(2)見解析【解析】(1)連接,交于點,連結(jié),由棱柱的性質(zhì)可得點是的中點,根據(jù)三角形中位線定理可得,利用線面平行的判定定理可得平面;(2)由正棱柱的性質(zhì)可得平面,于是,再由正三角形的性質(zhì)可得,根據(jù)線面垂直的判定定理可得平面,從而根據(jù)面面垂直的判定定理可得結(jié)論.試題解析:(1)連接,交于點,連結(jié),因為正三棱柱,所以側(cè)面是平行四邊形,故點是的中點,又因為是的中點,所以,又因為平面,平面,所以平面(2)因為正三棱柱,所以平面,又因為平面,所以,因為正三棱柱,是的中點,是的中點,所以,又因為,所以平面,又因為平面,所以平面平面【方法點晴】本題主要考查線面平行的判定定理、線面垂直及面面垂直的證明,屬于中檔題.證明線面平行的常用方法:①利用線面平行的判定定理,使用這個定理的關(guān)鍵是設法在平面內(nèi)找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質(zhì)或者構(gòu)造平行四邊形、尋找比例式證明兩直線平行.②利用面面平行的性質(zhì),即兩平面平行,在其中一平面內(nèi)的直線平行于另一平面.本題(1)是就是利用方法①證明的.20、或.【解析】分函數(shù)的對稱軸和兩種情況,分別建立方程,解之可得答案.【詳解】二次函數(shù)的對稱軸為直線,當,即時,當時,取得最大值4,,解得,滿足;當,即時,當時,取得最大值4,,解得,滿足.故:實數(shù)的值為或.21、(1)(2)答案不唯一,具體見解析【解析】(1)利用參變量分離法可求得實數(shù)的取值范圍;(2)分、、、四種情況討論,結(jié)合二次不等式的解法可求得原不等式的解集.【小問1詳解】由題意得,當時,在上恒成立,即當時,在上恒成立,不等式可變?yōu)椋?/p>
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年蕪湖辦理客運從業(yè)資格證版試題
- 2024年山西客運駕駛員考試試卷及答案詳解
- 2024年哈爾濱客運資格證考試題庫答案
- 2024年廣東客運從業(yè)資格證
- 人教部編版二年級語文上冊第7課《媽媽睡了》精美課件
- 吉首大學《功能材料》2021-2022學年第一學期期末試卷
- 吉首大學《散打格斗運動5》2021-2022學年第一學期期末試卷
- 吉林藝術(shù)學院《素描實訓II》2021-2022學年第一學期期末試卷
- 2024年供應貨品合作合同范本
- 吉林師范大學《中小學書法課程與教學論》2021-2022學年第一學期期末試卷
- 二次配線標準工藝規(guī)范守則
- 網(wǎng)站服務合同域名續(xù)費與維護
- 單喇叭互通立交設計主要技術(shù)問題分析
- 燈具材料樣本確認單
- 《鉗工技能訓練》實訓教案
- 新加坡科技創(chuàng)新體系架構(gòu)及對我市科技發(fā)展的啟示
- 中國卡丁車錦標賽暨中國青少年卡丁車錦標賽【比賽規(guī)則】
- 安全教育培訓記錄運輸車輛安全技術(shù)要求
- Minitab操作教程
- 巖漿礦床實習報告(四川攀枝花釩鈦磁鐵礦礦床)
- 燃氣管道-流量-流速-口徑計算公式
評論
0/150
提交評論