版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學(xué)年山東省莒縣實驗中學(xué)高一上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12小題,共60分)1.下列函數(shù)是奇函數(shù),且在區(qū)間上是增函數(shù)的是A. B.C. D.2.設(shè)命題:,則的否定為()A. B.C. D.3.如圖所示,在中,D、E分別為線段、上的兩點,且,,,則的值為().A. B.C. D.4.已知扇形的圓心角為,面積為,則扇形的半徑為()A. B.C. D.5.若集合,則()A.或 B.或C.或 D.或6.已知,則的值為()A. B.C. D.7.設(shè)、是兩個非零向量,下列結(jié)論一定成立的是()A.若,則B.若,則存在實數(shù),使得C若,則D.若存在實數(shù),使得,則|8.已知第二象限角的終邊上有異于原點的兩點,,且,若,則的最小值為()A. B.3C. D.49.直線l1:x+ay+1=0與l2:(a﹣3)x+2y﹣5=0(a∈R)互相垂直,則直線l2的斜率為()A. B.C.1 D.﹣110.已知函數(shù),若,則實數(shù)的取值范圍是A. B.C. D.11.設(shè)定義在上的函數(shù)滿足:當時,總有,且,則不等式的解集為()A. B.C. D.12.如圖,在中,點是線段及、的延長線所圍成的陰影區(qū)域內(nèi)(含邊界)的任意一點,且,則在直角坐標平面上,實數(shù)對所表示的區(qū)域在直線的右下側(cè)部分的面積是()A. B.C. D.不能求二、填空題(本大題共4小題,共20分)13.已知函數(shù)滿足下列四個條件中的三個:①函數(shù)是奇函數(shù);②函數(shù)在區(qū)間上單調(diào)遞增;③;④在y軸右側(cè)函數(shù)的圖象位于直線上方,寫出一個符合要求的函數(shù)________________________.14.已知一個圓錐的母線長為1,其高與母線的夾角為45°,則該圓錐的體積為____________.15.11分制乒乓球比賽,每贏一球得1分,當某局打成后,每球交換發(fā)球權(quán),先多得2分的一方獲勝,該局比賽結(jié)束.甲乙兩位同學(xué)進行單打比賽,假設(shè)甲發(fā)球時甲得分的概率為0.5,乙發(fā)球時乙得分的概率為0.6,各球的結(jié)果相互獨立.在某局打成后,甲先發(fā)球,乙以獲勝的概率為______.16.下列四個命題中:①若奇函數(shù)在上單調(diào)遞減,則它在上單調(diào)遞增②若偶函數(shù)在上單調(diào)遞減,則它在上單調(diào)遞增;③若函數(shù)為奇函數(shù),那么函數(shù)的圖象關(guān)于點中心對稱;④若函數(shù)為偶函數(shù),那么函數(shù)的圖象關(guān)于直線軸對稱;正確的命題的序號是___________.三、解答題(本大題共6小題,共70分)17.已知函數(shù))的最大值為2(1)求m的值;(2)求使成立的x的取值集合;(3)將的圖象上所有點的橫坐標變?yōu)樵瓉淼模┍叮v坐標不變),得到函數(shù)的圖象,若是的一個零點,求t的最大值18.某學(xué)校高一學(xué)生有1000名學(xué)生參加一次數(shù)學(xué)小測驗,隨機抽取200名學(xué)生的測驗成績得如圖所示的頻率分布直方圖:(1)求該學(xué)校高一學(xué)生隨機抽取的200名學(xué)生的數(shù)學(xué)平均成績和標準差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值做代表);(2)試估計該校高一學(xué)生在這一次的數(shù)學(xué)測驗成績在區(qū)間之內(nèi)的概率是多少?測驗成績在區(qū)間之外有多少位學(xué)生?(參考數(shù)據(jù):)19.如圖,平行四邊形中,,分別是,的中點,為與的交點,若,,試以,為基底表示、、20.(1)已知:,若是第四象限角,求,的值;(2)已知,求的值.21.已知函數(shù)是定義在上的奇函數(shù).(1)若,且,求函數(shù)的解析式;(2)若函數(shù)在上是增函數(shù),且,求實數(shù)的取值范圍.22.函數(shù)在一個周期內(nèi)的圖象如圖所示,O為坐標原點,M,N為圖象上相鄰的最高點與最低點,也在該圖象上,且(1)求的解析式;(2)的圖象向左平移1個單位后得到的圖象,試求函數(shù)在上的最大值和最小值
參考答案一、選擇題(本大題共12小題,共60分)1、B【解析】逐一考查所給函數(shù)的單調(diào)性和奇偶性即可.【詳解】逐一考查所給函數(shù)的性質(zhì):A.,函數(shù)為奇函數(shù),在區(qū)間上不具有單調(diào)性,不合題意;B.,函數(shù)為奇函數(shù),在區(qū)間上是增函數(shù),符合題意;C.,函數(shù)為非奇非偶函數(shù),在區(qū)間上是增函數(shù),不合題意;D.,函數(shù)為奇函數(shù),在區(qū)間上不具有單調(diào)性,不合題意;本題選擇B選項.【點睛】本題主要考查函數(shù)的單調(diào)性,函數(shù)的奇偶性等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.2、B【解析】本題根據(jù)題意直接寫出命題的否定即可.【詳解】解:因為命題:,所以的否定:,故選:B【點睛】本題考查含有一個量詞的命題的否定,是基礎(chǔ)題.3、C【解析】由向量的線性運算可得=+,可得,又A,M,D三點共線,則存在b∈R,使得,則可建立關(guān)于a,b的方程組,即可求得a值,從而可得λ,μ,進而得解【詳解】解:因為,,所以,,所以,所以,又A,M,D三點共線,則存在b∈R,使得,所以,解得,所以,因為,所以由平面向量基本定理可得λ=,μ=,所以λ+μ=故選:C4、C【解析】利用扇形的面積公式即可求解.【詳解】設(shè)扇形的半徑為,則扇形的面積,解得:,故選:C5、B【解析】根據(jù)補集的定義,即可求得的補集.【詳解】∵,∴或,故選:B【點睛】本小題主要考查補集的概念和運算,屬于基礎(chǔ)題.6、B【解析】在所求分式的分子和分母中同時除以,結(jié)合兩角差的正切公式可求得結(jié)果.【詳解】.故選:B.7、B【解析】利用向量共線定理、垂直數(shù)量積為0來綜合判斷.【詳解】A:當、方向相反且時,就可成立,A錯誤;B:若,則、方向相反,故存在實數(shù),使得,B正確;C:若,則說明,不一定有,C錯誤;D:若存在實數(shù),使得,則,D錯誤.故選:B8、B【解析】根據(jù),得到,從而得到,進而得到,再利用“1”的代換以及基本不等式求解.【詳解】解:因為,所以,又第二象限角的終邊上有異于原點的兩點,,所以,則,因為,所以,所以,當且僅當,即時,等號成立,故選:B9、C【解析】利用直線l1:x+ay+1=0與l2:(a﹣3)x+2y﹣5=0(a∈R)互相垂直,則,解出即可.【詳解】因為直線l1:x+ay+1=0與l2:(a﹣3)x+2y﹣5=0(a∈R)互相垂直.所以,即.解得:.故選:C【點睛】本題考查由兩條直線互相垂直求參數(shù)的問題,屬于基礎(chǔ)題10、D【解析】畫出圖象可得函數(shù)在實數(shù)集R上單調(diào)遞增,故由,可得,即,解得或故實數(shù)的取值范圍是.選D11、A【解析】將不等式變形后再構(gòu)造函數(shù),然后利用單調(diào)性解不等式即可.【詳解】由,令,可知當時,,所以在定義域上單調(diào)遞減,又,即,所以由單調(diào)性解得.故選:A12、A【解析】由點是由線段及、的延長線所圍成的陰影區(qū)域內(nèi)(含邊界)的任意一點,作的平行線,把中、所滿足的不等式表示出來,然后作出不等式組所表示的可行域,并計算出可行域在直線的右下側(cè)部分的面積即可.【詳解】如下圖,過作,交的延長線于,交的延長線于,設(shè),,,,則,所以,得,所以.作出不等式組對應(yīng)的可行域,如下圖中陰影部分所示,故所求面積為,故選:A.【點睛】本題考查二元一次不等式組與平面區(qū)域的關(guān)系,考查轉(zhuǎn)化思想,是難題.解決本題的關(guān)鍵是建立、的不等式組,將問題轉(zhuǎn)化為線性規(guī)劃問題求解.二、填空題(本大題共4小題,共20分)13、【解析】滿足①②④的一個函數(shù)為,根據(jù)奇偶性以及單調(diào)性,結(jié)合反比例函數(shù)的性質(zhì)證明①②④.【詳解】滿足①②④對于①,函數(shù)的定義域為關(guān)于原點對稱,且,即為奇函數(shù);對于②,任取,且因為,所以,即函數(shù)在區(qū)間上單調(diào)遞增;對于④,令,當時,,即在y軸右側(cè)函數(shù)的圖象位于直線上方故答案為:【點睛】關(guān)鍵點睛:解決本題的關(guān)鍵在于利用定義證明奇偶性以及單調(diào)性.14、##【解析】由題可得,然后利用圓錐的體積公式即得.【詳解】設(shè)圓錐的底面半徑為r,高為h,由圓錐的母線長為1,其高與母線的夾角為45°,∴,∴該圓錐的體積為.故答案為:.15、15【解析】依題意還需進行四場比賽,其中前兩場乙輸一場、最后兩場乙贏,根據(jù)相互獨立事件概率公式計算可得;【詳解】解:依題意還需進行四場比賽,其中前兩場乙輸一場、最后兩場乙贏,其中發(fā)球方分別是甲、乙、甲、乙;所以乙以獲勝的概率故答案為:16、②③【解析】根據(jù)奇函數(shù)、偶函數(shù)的性質(zhì)可判斷①②,結(jié)合平移變換可判斷③④.【詳解】奇函數(shù)在關(guān)于原點對稱的兩個區(qū)間上具有相同的單調(diào)性,偶函數(shù)在關(guān)于原點對稱的兩個區(qū)間上具有相反的單調(diào)性,故①錯誤,②正確;因為函數(shù)為奇函數(shù),圖象關(guān)于原點對稱,的圖象可以由的圖象向右平移1個單位長度得到,故的圖象關(guān)于點對稱,故③正確;函數(shù)的圖象可以由函數(shù)的圖象向左平移1個單位長度得到,因為為偶函數(shù),圖象關(guān)于y軸對稱,所以的圖象關(guān)于直線軸對稱,故④錯誤.故答案為:②③三、解答題(本大題共6小題,共70分)17、(1)(2)(3)【解析】(1)將函數(shù)解析式化簡整理,然后求出最值,進而得到,即可求出結(jié)果;(2)結(jié)合正弦型函數(shù)圖象,解三角不等式即可求出結(jié)果;(3)結(jié)合伸縮變換求出函數(shù)的解析式,進而求出零點,然后結(jié)合題意即可求出結(jié)果.【小問1詳解】因為的最大值為1,所以的最大值為,依題意,,解得【小問2詳解】由(1)知,由,得所以解得所以,使成立的x取值集合為【小問3詳解】依題意,,因為是的一個零點,所以,所以所以,因為,所以,所以t的最大值為18、(1)平均數(shù),樣本標準差.(2)概率為0.9356,全校測驗成績在區(qū)間之外約有64(人)【解析】(1)根據(jù)頻率分布直方圖中平均數(shù)小矩形底邊中點乘以小矩形的面積之和;利用方差公式可求方差,進而可求標準差.(2)由(1)知,由頻率分布直方圖求出的概率即可求解.【詳解】(1)數(shù)學(xué)成績的樣本平均數(shù)為:,數(shù)學(xué)成績的樣本方差為:.所以估計這批產(chǎn)品質(zhì)量指標值的樣本平均數(shù),樣本標準差.(2)由(1)知,則,所以(人)所以估計該學(xué)校在這一次的數(shù)學(xué)測驗中成績在區(qū)間之內(nèi)的概率為0.9356,全校測驗成績在區(qū)間之外約有64(人).【點睛】本題考查了頻率分布直方圖,根據(jù)頻率分布直方圖求出樣本數(shù)據(jù)特征,需掌握公式,屬于基礎(chǔ)題.19、【解析】分析:直接利用共線向量的性質(zhì)、向量加法與減法的三角形法則求解即可.詳解:由題意,如圖,,連接,則是的重心,連接交于點,則是的中點,∴點在上,∴,故答案為;;∴點睛:向量的運算有兩種方法,一是幾何運算往往結(jié)合平面幾何知識和三角函數(shù)知識解答,運算法則是:(1)平行四邊形法則(平行四邊形的對角線分別是兩向量的和與差);(2)三角形法則(兩箭頭間向量是差,箭頭與箭尾間向量是和);二是坐標運算:建立坐標系轉(zhuǎn)化為解析幾何問題解答(求最值與范圍問題,往往利用坐標運算比較簡單)20、(1),;(2)【解析】(1)由同角間的三角函數(shù)關(guān)系計算;(2)弦化切后代入計算【詳解】(1)因為,若是第四象限角,所以,;(2),則21、(1)(2)【解析】【試題分析】(1)利用可求得的值,利用,可求得的值.(2)利用奇函數(shù)的性質(zhì),將圓不等式轉(zhuǎn)化為然后利用函數(shù)的單調(diào)性列不等式來求解.【試題解析】(Ⅰ)是定義在上的奇
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 咨詢工程師(投資)《宏觀經(jīng)濟政策與發(fā)展規(guī)劃》考前沖刺必會試題及答案
- 研究生考試考研教育學(xué)專業(yè)基礎(chǔ)(311)試卷及答案指導(dǎo)(2024年)
- 2024年度設(shè)備保修服務(wù)協(xié)議細則
- 2024年商業(yè)買賣合作協(xié)議精簡
- 2024年合作伙伴保密協(xié)議
- 2024年監(jiān)理協(xié)議延期實施細則協(xié)議
- 2024年餐廳室內(nèi)裝潢工程協(xié)議
- 2024公司間短期資金借貸協(xié)議范本
- 2024年度多孔磚訂購協(xié)議
- 2024年高校畢業(yè)實習(xí)生勞動協(xié)議
- 護士工作站系統(tǒng)發(fā)生故障時的應(yīng)急預(yù)案與流程
- 【教師必備】部編版四上語文上冊第第五單元【集體備課】
- 附件3-“三高共管六病同防”醫(yī)防融合慢性病管理工作臺賬(參考模板)
- 石化項目設(shè)備及管道防腐保溫施工方案
- Unit 1 Food comments 課件-高中英語外研版(2019)必修第二冊
- 《安徒生童話》讀書分享名著導(dǎo)讀ppt
- 蘇教版(SJ)2022~2023學(xué)年四年級數(shù)學(xué)(上冊)期中質(zhì)量檢測試卷
- 提高六年級數(shù)學(xué)教學(xué)成績的建議
- 安全隱患排查記錄表
- 運動員個人信息表格
- 養(yǎng)老護理員中級培訓(xùn)精編ppt
評論
0/150
提交評論