2024屆金昌市重點中學高一數(shù)學第一學期期末綜合測試試題含解析_第1頁
2024屆金昌市重點中學高一數(shù)學第一學期期末綜合測試試題含解析_第2頁
2024屆金昌市重點中學高一數(shù)學第一學期期末綜合測試試題含解析_第3頁
2024屆金昌市重點中學高一數(shù)學第一學期期末綜合測試試題含解析_第4頁
2024屆金昌市重點中學高一數(shù)學第一學期期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆金昌市重點中學高一數(shù)學第一學期期末綜合測試試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.圓的圓心到直線的距離是()A. B.C.1 D.2.如果全集,,則A. B.C. D.3.設(shè)函數(shù)(),,則方程在區(qū)間上的解的個數(shù)是A. B.C. D.4.已知,,,則a、b、c的大小關(guān)系為()A. B.C. D.5.已知函數(shù),若,則函數(shù)的單調(diào)遞減區(qū)間是A. B.C. D.6.如圖,在中,為邊上的中線,,設(shè),若,則的值為A. B.C. D.7.已知,則的大小關(guān)系為()A B.C. D.8.已知集合,或,則()A.或 B.C. D.或9.滿足2,的集合A的個數(shù)是A.2 B.3C.4 D.810.已知集合,集合B滿足,則滿足條件的集合B有()個A.2 B.3C.4 D.111.已知冪函數(shù)的圖象過點,則A. B.C.1 D.212.奇函數(shù)在內(nèi)單調(diào)遞減且,則不等式的解集為()A. B.C. D.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.若實數(shù)x,y滿足,則的最小值為___________14.《九章算術(shù)》中將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬.已知陽馬,底面,,,,則此陽馬的外接球的表面積為______.15.直線l與平面α所成角為60°,l∩α=A,則m與l所成角的取值范圍是_______.16.在區(qū)間上隨機地取一個實數(shù),若實數(shù)滿足的概率為,則________.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.已知向量=(3,4),=(1,2),=(-2,-2)(1)求||,||的值;(2)若=m+n,求實數(shù)m,n的值;(3)若(+)∥(-+k),求實數(shù)k的值18.已知點,,動點P滿足若點P為曲線C,求此曲線的方程;已知直線l在兩坐標軸上的截距相等,且與中的曲線C只有一個公共點,求直線l的方程19.已知函數(shù)f(x)=lg,(1)求f(x)的定義域并判斷它的奇偶性(2)判斷f(x)的單調(diào)性并用定義證明(3)解關(guān)于x的不等式f(x)+f(2x2﹣1)<020.已知函數(shù)(且).(1)判斷函數(shù)的奇偶性,并證明;(2)若,不等式在上恒成立,求實數(shù)的取值范圍;(3)若且在上最小值為,求m的值.21.如圖,甲、乙是邊長為4a的兩塊正方形鋼板,現(xiàn)要將甲裁剪焊接成一個正四棱柱,將乙裁剪焊接成一個正四棱錐,使它們的全面積都等于一個正方形的面積(不計焊接縫的面積)(1)將你的裁剪方法用虛線標示在圖中,并作簡要說明;(2)試比較你所制作的正四棱柱與正四棱錐體積的大小,并證明你的結(jié)論22.若向量的最大值為(1)求的值及圖像的對稱中心;(2)若不等式在上恒成立,求的取值范圍

參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、A【解析】根據(jù)圓的方程得出圓心坐標(1,0),直接依據(jù)點到直線的距離公式可以得出答案.【詳解】圓的圓心坐標為(1,0),∴圓心到直線的距離為.故選:A.【點睛】本題考查點到直線距離公式,屬于基礎(chǔ)題型.2、C【解析】首先確定集合U,然后求解補集即可.【詳解】由題意可得:,結(jié)合補集的定義可知.本題選擇C選項.【點睛】本題主要考查集合的表示方法,補集的定義等知識,意在考查學生的轉(zhuǎn)化能力和計算求解能力.3、A【解析】由題意得,方程在區(qū)間上的解的個數(shù)即函數(shù)與函數(shù)的圖像在區(qū)間上的交點個數(shù)在同一坐標系內(nèi)畫出兩個函數(shù)圖像,注意當時,恒成立,易得交點個數(shù)為.選A點睛:函數(shù)零點的求解與判斷方法:(1)直接求零點:令f(x)=0,如果能求出解,則有幾個解就有幾個零點(2)零點存在性定理:利用定理不僅要函數(shù)在區(qū)間[a,b]上是連續(xù)不斷的曲線,且f(a)·f(b)<0,還必須結(jié)合函數(shù)的圖象與性質(zhì)(如單調(diào)性、奇偶性)才能確定函數(shù)有多少個零點(3)利用圖象交點的個數(shù):將函數(shù)變形為兩個函數(shù)的差,畫兩個函數(shù)的圖象,看其交點的橫坐標有幾個不同的值,就有幾個不同的零點.但在應用圖象解題時要注意兩個函數(shù)圖象在同一坐標系內(nèi)的相對位置,要做到觀察仔細,避免出錯4、A【解析】利用指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)的知識判斷出a、b、c的范圍即可.【詳解】因為,,所以故選:A5、D【解析】由判斷取值范圍,再由復合函數(shù)單調(diào)性的原則求得函數(shù)的單調(diào)遞減區(qū)間【詳解】,所以,則為單調(diào)增函數(shù),又因為在上單調(diào)遞減,在上單調(diào)遞增,所以的單調(diào)減區(qū)間為,選擇D【點睛】復合函數(shù)的單調(diào)性判斷遵循“同增異減”的原則,所以需先判斷構(gòu)成復合函數(shù)的兩個函數(shù)的單調(diào)性,再判斷原函數(shù)的單調(diào)性6、C【解析】分析:求出,,利用向量平行的性質(zhì)可得結(jié)果.詳解:因為所以,因為,則,有,,由可知,解得.故選點睛:本題主要考查平面向量的運算,屬于中檔題.向量的運算有兩種方法,一是幾何運算往往結(jié)合平面幾何知識和三角函數(shù)知識解答,運算法則是:(1)平行四邊形法則(平行四邊形的對角線分別是兩向量的和與差);(2)三角形法則(兩箭頭間向量是差,箭頭與箭尾間向量是和);二是坐標運算:建立坐標系轉(zhuǎn)化為解析幾何問題解答(求最值與范圍問題,往往利用坐標運算比較簡單)7、B【解析】觀察題中,不妨先構(gòu)造函數(shù)比較大小,再利用中間量“1”比較與大小即可得出答案.【詳解】由題意得,,由函數(shù)在上是增函數(shù)可得,由對數(shù)性質(zhì)可知,,所以,故選:B8、A【解析】應用集合的并運算求即可.【詳解】由題設(shè),或或.故選:A9、C【解析】由條件,根據(jù)集合的子集的概念與運算,即可求解【詳解】由題意,可得滿足2,的集合A為:,,,2,,共4個故選C【點睛】本題主要考查了集合的定義,集合與集合的包含關(guān)系的應用,其中熟記集合的子集的概念,準確利用列舉法求解是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題10、C【解析】寫出滿足題意的集合B,即得解.【詳解】因為集合,集合B滿足,所以集合B={3},{1,3},{2,3},{1,2,3}.故選:C【點睛】本題主要考查集合的并集運算,意在考查學生對這些知識的理解掌握水平.11、B【解析】先利用待定系數(shù)法求出冪函數(shù)的表達式,然后將代入求得的值.【詳解】設(shè),將點代入得,解得,則,所以,答案B.【點睛】主要考查冪函數(shù)解析式的求解以及函數(shù)值求解,屬于基礎(chǔ)題.12、A【解析】由已知可作出函數(shù)的大致圖象,結(jié)合圖象可得到答案.【詳解】因為函數(shù)在上單調(diào)遞減,,所以當時,,當,,又因為是奇函數(shù),圖象關(guān)于原點對稱,所以在上單調(diào)遞減,,所以當時,,當時,,大致圖象如下,由得或,解得,或,或,故選:A.【點睛】本題考查了抽象函數(shù)的單調(diào)性和奇偶性,解題的關(guān)鍵點是由題意分析出的大致圖象,考查了學生分析問題、解決問題的能力.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、【解析】由對數(shù)的運算性質(zhì)可求出的值,再由基本不等式計算即可得答案【詳解】由題意,得:,則(當且僅當時,取等號)故答案為:14、【解析】將該幾何體放入長方體中,即可求得外接球的半徑,再由球的表面積公式即可得解.【詳解】將該幾何體放入長方體中,如圖,易知該長方體的長、寬、高分別為、、,所以該幾何體的外接球半徑,所以該球的表面積.故答案為:.15、【解析】根據(jù)直線l與平面α所成角是直線l與平面α內(nèi)所有直線成的角中最小的一個,直線l與平面α所成角的范圍,即可求出結(jié)果【詳解】由于直線l與平面α所成角為60°,直線l與平面α所成角是直線l與平面α內(nèi)所有直線成的角中最小的一個,而異面直線所成角的范圍是(0,],直線m在平面α內(nèi),且與直線l異面,故m與l所成角的取值范圍是.故答案為【點睛】本題考查直線和平面所成的角的定義和范圍,判斷直線與平面所成角是直線與平面α內(nèi)所有直線成的角中最小的一個,是解題的關(guān)鍵16、1【解析】利用幾何概型中的長度比即可求解.【詳解】實數(shù)滿足,解得,,解得,故答案為:1【點睛】本題考查了幾何概率的應用,屬于基礎(chǔ)題.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1)||=5;;(2);(3).【解析】(1)利用向量的模長的坐標公式即得;(2)利用向量的線性坐標表示即得;(3)利用向量平行的坐標表示即求.【小問1詳解】∵向量=(3,4),=(1,2),∴||=5,;【小問2詳解】∵=(3,4),=(1,2),=(-2,-2),=m+n,∴(3,4)=m(1,2)+n(-2,-2)=(m-2n,2m-2n),所以,得;【小問3詳解】∵(+)∥(-+k),又-+k=(-1-2k,-2-2k),+=(4,6),∴6(-1-2k)=4(-2-2k),解得,故實數(shù)k的值為.18、(1)(2)或【解析】設(shè),由動點P滿足,列出方程,即可求出曲線C的方程設(shè)直線l在坐標軸上的截距為a,當時,直線l與曲線C有兩個公共點,已知矛盾;當時,直線方程與圓的方程聯(lián)立方程組,根據(jù)由直線l與曲線C只有一個公共點,即可求出直線l的方程【詳解】設(shè),點,,動點P滿足,整理得:,曲線C方程為設(shè)直線l的橫截距為a,則直線l的縱截距也為a,當時,直線l過,設(shè)直線方程為把代入曲線C的方程,得:,,直線l與曲線C有兩個公共點,已知矛盾;當時,直線方程為,把代入曲線C的方程,得:,直線l與曲線C只有一個公共點,,解得,直線l的方程為或【點睛】本題主要考查了曲線軌跡方程的求法,以及直線與圓的位置關(guān)系的應用,其中解答中熟記直接法求軌跡的方法,以及合理使用直線與圓的位置關(guān)系是解答的關(guān)鍵,著重考查了推理與運算能力,以及轉(zhuǎn)化思想的應用,屬于基礎(chǔ)題19、(1)奇函數(shù)(2)見解析(3)【解析】(1)先求函數(shù)f(x)的定義域,然后檢驗與f(x)的關(guān)系即可判斷;(2)利用單調(diào)性的定義可判斷f(x)在(﹣1,1)上單調(diào)性;(3)結(jié)合(2)中函數(shù)的單調(diào)性及函數(shù)的定義域,建立關(guān)于x的不等式,可求【詳解】(1)的定義域為(-1,1)因為,所以為奇函數(shù)(2)為減函數(shù).證明如下:任取兩個實數(shù),且,===<0<0,所以在(-1,1)上為單調(diào)減函數(shù)(3)由題意:,由(1)、(2)知是定義域內(nèi)單調(diào)遞減的奇函數(shù)即不等式的解集為(,)【點睛】本題主要考查了函數(shù)單調(diào)性及奇偶性的定義的應用,及函數(shù)單調(diào)性在求解不等式中的應用20、(1)為奇函數(shù),證明見解析.(2).(3).【解析】(1)根據(jù)函數(shù)的奇偶性的定義可得證;(2)由(1)得出是定義域為的奇函數(shù),再判斷出是上的單調(diào)遞增,進而轉(zhuǎn)化為,進而可求解;(3)利用,可得到,所以,令,則,進而對二次函數(shù)對稱軸討論求得最值即可求出的值.【小問1詳解】解:函數(shù)的定義域為,又,∴為奇函數(shù).【小問2詳解】解:,∵,∴,或(舍).∴單調(diào)遞增.又∵為奇函數(shù),定義域為R,∴,∴所以不等式等價于,,,∴.故的取值范圍為.【小問3詳解】解:,解得(舍),,令,∵,∴,,當時,,解得(舍),當時,,解得(舍),綜上,.21、(1)見解析(2)正四棱柱的體積比正四棱錐的體積大【解析】1該四棱柱的底面為正方體,側(cè)棱垂直底面,可知其由兩個一樣的正方形和四個完全相同的長方形組成,對圖形進行切割,畫出圖形即可,畫法不唯一;2正四棱柱的底面邊長為2a,高為a,正四棱錐的底面邊長為2a,高為h=(3a)解析:(1)將正方形甲按圖中虛線剪開,以兩個正方形為底面,四個長方形為側(cè)面,焊接成一個底面邊長為2a,高為a的正四棱柱將正方形乙按圖中虛線剪開,以兩個長方形焊接成邊長為2a的正方形為底面,三個等腰三角形為側(cè)面,兩個直角三角形合拼成為一側(cè)面,焊接成一個底面板長為2a,斜高為3a的正四棱錐(2)∵正四棱柱的底面邊長為2a,高為a,∴其體積V1又∵正四棱錐的底面邊長為2a,高為h=(3a)∴其體積V∵42即4>823,4故所制作的正四棱柱的體積比正四棱錐的體積大(說明:裁剪方式不唯一,計算的體積也不一定相等)點睛:本題考查了四棱錐和四棱柱的知識,需要掌握二者的特征以及其體積的求法,對于圖形進行分割,畫出圖形即可,注意畫法不唯一,結(jié)合體積公式求得體積,然后比較大小即完成解答22、(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論