2024屆山東省棲霞二中高一數(shù)學(xué)第一學(xué)期期末達標(biāo)檢測模擬試題含解析_第1頁
2024屆山東省棲霞二中高一數(shù)學(xué)第一學(xué)期期末達標(biāo)檢測模擬試題含解析_第2頁
2024屆山東省棲霞二中高一數(shù)學(xué)第一學(xué)期期末達標(biāo)檢測模擬試題含解析_第3頁
2024屆山東省棲霞二中高一數(shù)學(xué)第一學(xué)期期末達標(biāo)檢測模擬試題含解析_第4頁
2024屆山東省棲霞二中高一數(shù)學(xué)第一學(xué)期期末達標(biāo)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆山東省棲霞二中高一數(shù)學(xué)第一學(xué)期期末達標(biāo)檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.已知,函數(shù)在上單調(diào)遞減,則的取值范圍是()A. B.C. D.2.在中,,BC邊上的高等于,則()A. B.C. D.3.已知函數(shù),且f(5a﹣2)>﹣f(a﹣2),則a的取值范圍是()A.(0,+∞) B.(﹣∞,0)C. D.4.將整體一分為二,較大部分與整體部分的比值等于較小部分與較大部分的比值,這樣的分割被稱為黃金分割,黃金分割蘊藏著豐富的數(shù)學(xué)知識和美學(xué)價值,被廣泛運用于藝術(shù)創(chuàng)作、工藝設(shè)計等領(lǐng)域.黃金分制的比值為無理數(shù),該值恰好等于,則()A. B.C. D.5.已知,則的值為()A. B.C. D.6.下列各角中與角終邊相同的角是()A.-300° B.-60°C.600° D.1380°7.已知實數(shù)滿足,則函數(shù)的零點在下列哪個區(qū)間內(nèi)A. B.C. D.8.關(guān)于x的一元二次不等式對于一切實數(shù)x都成立,則實數(shù)k滿足()A. B.C. D.9.已知函數(shù).若,,,則的大小關(guān)系為()A. B.C. D.10.已知不等式的解集為,則不等式的解集是()A. B.C.或 D.或11.已知是減函數(shù),則a的取值范圍是()A. B.C. D.12.等邊三角形ABC的邊長為1,則()A. B.C. D.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.已知實數(shù)滿足,則________14.定義在上的奇函數(shù)滿足:對于任意有,若,則的值為__________.15.現(xiàn)采用隨機模擬的方法估計某運動員射擊4次,至少擊中3次的概率:先由計算器給出0到9之間取整數(shù)值的隨機數(shù),指定0,1表示沒有擊中目標(biāo),2,3,4,5,6,7,8,9表示擊中目標(biāo),以4個隨機數(shù)為一組,代表射擊4次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了20組隨機數(shù):75270293714098570347437386366947141746980371623326168045601136619597742476104281根據(jù)以上數(shù)據(jù)估計該射擊運動員射擊4次至少擊中3次的概率為__________16.已知,則___________三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.已知函數(shù)的圖象時兩條相鄰對稱軸之間的距離為,將的圖象向右平移個單位后,所得函數(shù)的圖象關(guān)于y軸對稱.(1)求函數(shù)的解析式;(2)若,求值.18.為保護環(huán)境,污水進入河流前都要進行凈化處理.我市工業(yè)園區(qū)某工廠的污水先排入凈化池,然后加入凈化劑進行凈化處理.根據(jù)實驗得出,在一定范圍內(nèi),每放入1個單位的凈化劑,在污水中釋放的濃度y(單位:毫克/立方米)隨著時間x(單位:小時)變化的函數(shù)關(guān)系式近似為.若多次加進凈化劑,則某一時刻凈化劑在污水中釋放的濃度為每次投放的凈化劑在相應(yīng)時刻所釋放的濃度之和.由實驗知,當(dāng)凈化劑在污水中釋放的濃度不低于4(毫克/立方米)時,它才能起到凈化污水的作用.(1)若投放1個單位的凈化劑4小時后,求凈化劑在污水中釋放的濃度;(2)若一次投放4個單位的凈化劑并起到凈化污水的作用,則凈化時間約達幾小時?(結(jié)果精確到0.1,參考數(shù)據(jù):,)(3)若第一次投放1個單位的凈化劑,3小時后再投放2個單位的凈化劑,設(shè)第二次投放t小時后污水中凈化劑濃度為(毫克/立方米),其中,求的表達式和濃度的最小值.19.函數(shù)的定義域為,定義域為.(1)求;(2)若,求實數(shù)的取值范圍.20.如圖,、分別是的邊、上的點,且,,交于.(1)若,求的值;(2)若,,,求的值.21.已知,(1)求的值;(2)求的值;(3)求的值.22.已知定義域為的函數(shù)是奇函數(shù).(1)求實數(shù)a的值;(2)若不等式在有解,求實數(shù)m取值范圍.

參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、A【解析】由題意可得,,,,.故A正確考點:三角函數(shù)單調(diào)性2、C【解析】設(shè),故選C.考點:解三角形.3、D【解析】由定義可求函數(shù)的奇偶性,進而將所求不等式轉(zhuǎn)化為f(5a﹣2)>f(﹣a+2),結(jié)合函數(shù)的單調(diào)性可得關(guān)于a的不等式,從而可求出a的取值范圍.【詳解】解:根據(jù)題意,函數(shù),其定義域為R,又由f(﹣x)f(x),f(x)為奇函數(shù),又,函數(shù)y=9x+1為增函數(shù),則f(x)在R上單調(diào)遞增;f(5a﹣2)>﹣f(a﹣2)?f(5a﹣2)>f(﹣a+2)?5a﹣2>﹣a+2,解可得,故選:D.【點睛】關(guān)鍵點睛:本題的關(guān)鍵是由奇偶性轉(zhuǎn)化已知不等式,再求出函數(shù)單調(diào)性求出關(guān)于a的不等式.4、C【解析】根據(jù)余弦二倍角公式即可計算求值.【詳解】∵=,∴,∴.故選:C.5、C【解析】利用余弦的二倍角公式即可求解.【詳解】.故選:C.6、A【解析】與角終邊相同的角為:.當(dāng)時,即為-300°.故選A7、B【解析】由3a=5可得a值,分析函數(shù)為增函數(shù),依次分析f(﹣2)、f(﹣1)、f(0)的值,由函數(shù)零點存在性定理得答案【詳解】根據(jù)題意,實數(shù)a滿足3a=5,則a=log35>1,則函數(shù)為增函數(shù),且f(﹣2)=(log35)﹣2+2×(﹣2)﹣log53<0,f(﹣1)=(log35)﹣1+2×(﹣1)﹣log53=﹣2<0,f(0)=(log35)0﹣log53=1﹣log53>0,由函數(shù)零點存在性可知函數(shù)f(x)的零點在區(qū)間(﹣1,0)上,故選B【點睛】本題考查函數(shù)零點存在性定理的應(yīng)用,分析函數(shù)的單調(diào)性是關(guān)鍵8、C【解析】只需要滿足條件即可.【詳解】由題意,解得.故選:C.9、C【解析】由函數(shù)的奇偶性結(jié)合單調(diào)性即可比較大小.【詳解】根據(jù)題意,f(x)=x2﹣2|x|+2019=f(﹣x),則函數(shù)f(x)為偶函數(shù),則a=f(﹣log25)=f(log25),當(dāng)x≥0,f(x)=x2﹣2x+2019=(x﹣1)2+2018,在(0,1)上為減函數(shù),在(1,+∞)上為增函數(shù);又由1<20.8<2<log25,則.則有b<a<c;故選C【點睛】本題考查函數(shù)的奇偶性與單調(diào)性的判斷以及性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.10、A【解析】由不等式的解集為,可得的根為,由韋達定理可得的值,代入不等式解出其解集即可.【詳解】的解集為,則的根為,即,,解得,則不等式可化為,即為,解得或,故選:A.11、D【解析】利用分段函數(shù)在上單調(diào)遞減的特征直接列出不等式組求解即得.【詳解】因函數(shù)是定義在上的減函數(shù),則有,解得,所以的取值范圍是.故選:D12、A【解析】直接利用向量的數(shù)量積定義進行運算,即可得到答案;詳解】,故選:A二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、4【解析】方程的根與方程的根可以轉(zhuǎn)化為函數(shù)與函數(shù)交點的橫坐標(biāo)和函數(shù)與函數(shù)交點的橫坐標(biāo),再根據(jù)與互為反函數(shù),關(guān)于對稱,即可求出答案.【詳解】,,令,,此方程的解即為函數(shù)與函數(shù)交點的橫坐標(biāo),設(shè)為,如下圖所示;,此方程的解即為函數(shù)與函數(shù)交點的橫坐標(biāo),設(shè)為,如下圖所示,與互反函數(shù),關(guān)于對稱,聯(lián)立方程,解得,即,.故答案為:4.14、【解析】由可得,則可化簡,利用可得,由是在上的奇函數(shù)可得,由此【詳解】由題,因為,所以,由,則,則,因為,令,則,所以,因為是在上的奇函數(shù),所以,所以,故答案:0【點睛】本題考查函數(shù)奇偶性、周期性的應(yīng)用,考查由正切值求正、余弦值15、【解析】根據(jù)數(shù)據(jù)統(tǒng)計擊中目標(biāo)的次數(shù),再用古典概型概率公式求解.【詳解】由數(shù)據(jù)得射擊4次至少擊中3次的次數(shù)有15,所以射擊4次至少擊中3次的概率為.故答案為:【點睛】本題考查古典概型概率公式,考查基本分析求解能力,屬基礎(chǔ)題.16、2【解析】將齊次式弦化切即可求解.【詳解】解:因為,所以,故答案為:2.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1)(2)【解析】(1)根據(jù)兩條相鄰對稱軸之間的距離可求得函數(shù)的周期,進而求得,根據(jù)平移之后函數(shù)圖象關(guān)于軸對稱,可得值,從而可得函數(shù)解析式;(2)將所求角用已知角來表示即可求得結(jié)果【小問1詳解】由題意可知,,即,所以,,將的圖象向右平移個單位得,因為的圖象關(guān)于軸對稱,所以,,所以,,因為,所以,所以;【小問2詳解】,所以,,,所以18、(1)6毫克/立方米(2)7.1(3),;的最小值為12毫克/立方米【解析】(1)由函數(shù)解析式,將代入即可得解;(2)分和兩種情況討論,根據(jù)題意列出不等式,從而可得出答案;(3)根據(jù)題意寫出函數(shù)的解析式,再根據(jù)基本不等式即可求得最小值.【小問1詳解】解:由,當(dāng)時,,所以若投放1個單位的凈化劑4小時后,凈化劑在污水中釋放的濃度為6毫克/立方米;【小問2詳解】解:因為凈化劑在污水中釋放的濃度不低于4(毫克/立方米)時,它才能起到凈化污水的作用,當(dāng)時,令,得恒成立,所以當(dāng)時,起到凈化污水的作用,當(dāng)時,令,得,則,所以,綜上所述當(dāng)時,起到凈化污水的作用,所以若一次投放4個單位的凈化劑并起到凈化污水的作用,則凈化時間約達7.1小時;【小問3詳解】解:因為第一次投入1個單位的凈化劑,3小時后再投入2個單位凈化劑,要計算的是第二次投放t小時后污水中凈化劑濃度為,所以,,因為,所以,當(dāng)且僅當(dāng),即時取等號,所以,,當(dāng)時,取最小值12毫克/立方米.19、(1);(2).【解析】(1)求函數(shù)的定義域,就是求使得根式有意義的自變量的取值范圍,然后求解分式不等式即可;(2)因為,所以一定有,從而得到,要保證,由它們的端點值的大小列式進行計算,即可求得結(jié)果.【詳解】(1)要使函數(shù)有意義,則需,即,解得或,所以;(2)由題意可知,因為,所以,由,可求得集合,若,則有或,解得或,所以實數(shù)的取值范圍是.【點睛】該題考查的是有關(guān)函數(shù)的定義域的求解,以及根據(jù)集合之間的包含關(guān)系確定參數(shù)的取值范圍的問題,屬于簡單題目.20、(1);(2).【解析】(1)利用平面向量加法的三角形法則可求出、的值,進而可計算出的值;(2)設(shè),設(shè),根據(jù)平面向量的基本定理可得出關(guān)于、的方程組,解出這兩個未知數(shù),可得出關(guān)于、的表達式,然后用、表示,最后利用平面向量數(shù)量積的運算律和定義即可計算出的值.【詳解】(1),,,因此,;(2)設(shè),再設(shè),則,即,所以,,解得,所以,因此,.【點睛】本題考查利用平面向量的基本定理求參數(shù),同時也考查了平面向量數(shù)量積的計算,解題的關(guān)鍵就是選擇合適的基底來表示向量,考查計算能力,屬于中等題.21、(1);(2)4;(3).【解析】(1)根據(jù)同角函數(shù)關(guān)系得到正弦值,結(jié)合余弦值得到正切值;(2)根據(jù)誘導(dǎo)公式化簡,上下同除余弦值即可;(3)結(jié)合兩角和的正弦公式和二倍角公式可得到結(jié)果.【詳解】(1)∵,,∴∴(2).(3)=,根據(jù)二倍角公式得到;代入上式得到=.【點睛】這個題目考查了三角函數(shù)的同角三角函數(shù)的誘導(dǎo)公式和弦化切的應(yīng)用,以及二倍角公式的應(yīng)用,利用誘導(dǎo)公式化簡三角函數(shù)的基本思路:(1)分析結(jié)構(gòu)特點,選擇恰當(dāng)公式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論