河北省唐縣第一中學(xué)2023-2024學(xué)年數(shù)學(xué)高一上期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
河北省唐縣第一中學(xué)2023-2024學(xué)年數(shù)學(xué)高一上期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
河北省唐縣第一中學(xué)2023-2024學(xué)年數(shù)學(xué)高一上期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
河北省唐縣第一中學(xué)2023-2024學(xué)年數(shù)學(xué)高一上期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
河北省唐縣第一中學(xué)2023-2024學(xué)年數(shù)學(xué)高一上期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

河北省唐縣第一中學(xué)2023-2024學(xué)年數(shù)學(xué)高一上期末質(zhì)量跟蹤監(jiān)視試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖所示,正方體中,分別為棱的中點,則在平面內(nèi)與平面平行的直線A.不存在 B.有1條C.有2條 D.有無數(shù)條2.已知是上的偶函數(shù),在上單調(diào)遞增,且,則下列不等式成立的是()A. B.C. D.3.設(shè),是兩條不同的直線,,,是三個不同的平面,給出下列命題:①若,,,則;②若,,則;③若,,,則;④若,,則其中正確命題的序號是A.①③ B.①④C.②③ D.②④4.若動點.分別在直線和上移動,則線段的中點到原點的距離的最小值為()A. B.C. D.5.已知命題,,則命題否定為()A., B.,C., D.,6.已知函數(shù)在上單調(diào)遞減,則實數(shù)a的取值范圍是A. B.C. D.7.如果全集,,,則A. B.C. D.8.已知定義在上的奇函數(shù)滿足當(dāng)時,,則關(guān)于的函數(shù),()的所有零點之和為()A. B.C. D.9.下列命題正確的是()A.若,則B.若,則C.若,則D.若,則10.函數(shù)是奇函數(shù),則的值為A.0 B.1C.-1 D.不存在二、填空題:本大題共6小題,每小題5分,共30分。11.已知角的終邊過點(1,-2),則________12.若兩平行直線2x+y-4=0與y=-2x-k-2的距離不大于,則k的取值范圍是____13.函數(shù)的最小值為________14.Sigmoid函數(shù)是一個在生物學(xué)、計算機神經(jīng)網(wǎng)絡(luò)等領(lǐng)域常用的函數(shù)模型,其解析式為S(x)=11+e-x,則此函數(shù)在R上________(填“單調(diào)遞增”“單調(diào)遞減”或15.函數(shù),的圖象恒過定點P,則P點的坐標是_____.16.已知扇形的弧長為,且半徑為,則扇形的面積是__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.某企業(yè)欲做一個介紹企業(yè)發(fā)展史的銘牌,銘牌的截面形狀是如圖所示的扇形環(huán)面由扇形挖去扇形后構(gòu)成的已知米,米,線段、線段與弧、弧的長度之和為米,圓心角為弧度(1)求關(guān)于的函數(shù)解析式;(2)記銘牌的截面面積為,試問取何值時,的值最大?并求出最大值18.設(shè)是函數(shù)定義域內(nèi)的一個子集,若存在,使得成立,則稱是的一個“弱不動點”,也稱在區(qū)間上存在“弱不動點”.設(shè)函數(shù),(1)若,求函數(shù)的“弱不動點”;(2)若函數(shù)在上不存在“弱不動點”,求實數(shù)的取值范圍19.如圖,公路圍成的是一塊頂角為的角形耕地,其中,在該塊土地中處有一小型建筑,經(jīng)測量,它到公路的距離分別為,現(xiàn)要過點修建一條直線公路,將三條公路圍成的區(qū)域建成一個工業(yè)園.(1)以為坐標原點建立適當(dāng)?shù)钠矫嬷苯亲鴺讼担⑶蟪鳇c的坐標;(2)三條公路圍成的工業(yè)園區(qū)的面積恰為,求公路所在直線方程.20.如圖,四棱錐的底面是菱形,,平面,是的中點.(1)求證:平面平面;(2)棱上是否存在一點,使得平面?若存在,確定的位置并加以證明;若不存在,請說明理由.21.已知集合.(1)若是空集,求取值范圍;(2)若中只有一個元素,求的值,并把這個元素寫出來.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】根據(jù)已知可得平面與平面相交,兩平面必有唯一的交線,則在平面內(nèi)與交線平行的直線都與平面平行,即可得出結(jié)論.【詳解】平面與平面有公共點,由公理3知平面與平面必有過的交線,在平面內(nèi)與平行的直線有無數(shù)條,且它們都不在平面內(nèi),由線面平行的判定定理可知它們都與平面平行.故選:D.【點睛】本題考查平面的基本性質(zhì)、線面平行的判定,熟練掌握公理、定理是解題的關(guān)鍵,屬于基礎(chǔ)題.2、B【解析】根據(jù)函數(shù)的奇偶性和函數(shù)的單調(diào)性判斷函數(shù)值的大小即可.【詳解】因為是上的偶函數(shù),在上單調(diào)遞增,所以在上單調(diào)遞減,.又因為,因為,在上單調(diào)遞減,所以,即.故選:B.3、C【解析】由空間中直線與平面的位置關(guān)系逐項分析即可【詳解】當(dāng)時,可能平行,也可能相交或異面,所以①不正確;當(dāng)時,可以平行,也可以相交,所以④不正確;若,,則;若,則,故正確命題的序號是②③.【點睛】本題考查空間中平面與直線的位置關(guān)系,屬于一般題4、C【解析】先分析出M的軌跡,再求到原點的距離的最小值.【詳解】由題意可知:M點的軌跡為平行于直線和且到、距離相等的直線l,故其方程為:,故到原點的距離的最小值為.故選:C【點睛】解析幾何中與動點有關(guān)的最值問題一般的求解思路:①幾何法:利用圖形作出對應(yīng)的線段,利用幾何法求最值;②代數(shù)法:把待求量的函數(shù)表示出來,利用函數(shù)求最值.5、D【解析】根據(jù)全稱命題的否定是特稱命題形式,直接選出答案.【詳解】命題,,是全稱命題,故其否定命題為:,,故選:D.6、C【解析】由函數(shù)單調(diào)性的定義,若函數(shù)在上單調(diào)遞減,可以得到函數(shù)在每一個子區(qū)間上都是單調(diào)遞減的,且當(dāng)時,,求解即可【詳解】若函數(shù)在上單調(diào)遞減,則,解得.故選C.【點睛】本題考查分段函數(shù)的單調(diào)性.嚴格根據(jù)定義解答,本題保證隨的增大而減小,故解答本題的關(guān)鍵是的最小值大于等于的最大值7、A【解析】根據(jù)題意,先確定的范圍,再求出即可.【詳解】,,故選:A.【點睛】本題考查集合的運算,屬于簡單題.8、B【解析】作函數(shù)與的圖象,從而可得函數(shù)有5個零點,設(shè)5個零點分別為,從而結(jié)合圖象解得【詳解】解:作函數(shù)與的圖象如下,結(jié)合圖象可知,函數(shù)與的圖象共有5個交點,故函數(shù)有5個零點,設(shè)5個零點分別為,∴,,,故,即,故,故選B【點睛】本題考查了函數(shù)零點與函數(shù)的圖象的關(guān)系應(yīng)用及數(shù)形結(jié)合的思想應(yīng)用,屬于??碱}型.9、D【解析】由不等式性質(zhì)依次判斷各個選項即可.【詳解】對于A,若,由可得:,A錯誤;對于B,若,則,此時未必成立,B錯誤;對于C,當(dāng)時,,C錯誤;對于D,當(dāng)時,由不等式性質(zhì)知:,D正確.故選:D.10、C【解析】由題意得,函數(shù)是奇函數(shù),則,即,解得,故選C.考點:函數(shù)的奇偶性的應(yīng)用.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由三角函數(shù)的定義以及誘導(dǎo)公式求解即可.【詳解】的終邊過點(1,-2),故答案為:12、【解析】利用平行線之間的距離及兩直線不重合列出不等式,求解即可【詳解】y=﹣2x﹣k﹣2的一般式方程為2x+y+k+2=0,則兩平行直線的距離d得,|k+6|≤5,解得﹣11≤k≤﹣1,當(dāng)k+2=﹣4,即k=﹣6,此時兩直線重合,所以k的取值范圍是故答案為【點睛】本題考查了兩平行直線間的距離,考查兩直線平行的條件,考查計算能力,屬于基礎(chǔ)題.13、##【解析】用輔助角公式將函數(shù)整理成的形式,即可求出最小值【詳解】,,所以最小值為故答案為:14、①.單調(diào)遞增②.0,1【解析】由題可得S(x)=1-1e【詳解】∵S(x)=11+e?x1,x2∵x1<x∴S(x1)-S(所以函數(shù)S(x)=11+e又ex所以ex+1>1,0<1故答案為:單調(diào)遞增;0,1.15、【解析】令,解得,且恒成立,所以函數(shù)的圖象恒過定點;故填.16、##【解析】由扇形面積公式可直接求得結(jié)果.【詳解】扇形面積.故答案為:.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1).(2)當(dāng)時,取最大值.【解析】(1)根據(jù)弧長公式和周長列方程得出關(guān)于的函數(shù)解析式;(2)根據(jù)扇形面積公式求出關(guān)于的函數(shù),從而得出的最大值.【小問1詳解】解:根據(jù)題意,可算得弧,弧,,;【小問2詳解】解:依據(jù)題意,可知,當(dāng)時,.答:當(dāng)米時銘牌的面積最大,且最大面積為平方米18、(1)0(2)【解析】(1)解方程可得;(2)由方程在上無解,轉(zhuǎn)化為求函數(shù)的取值范圍,利用換元法求解取值范圍,同時注意對數(shù)的真數(shù)大于0對參數(shù)范圍有限制,從而可得結(jié)論【小問1詳解】當(dāng)時,,由題意得,即,即,得,即,所以函數(shù)的“弱不動點”為0【小問2詳解】由已知在上無解,即在上無解,令,得在上無解,即在上無解記,則在上單調(diào)遞減,故,所以,或又在上恒成立,故在上恒成立,即在上恒成立,記,則在上單調(diào)遞減,故,所以,綜上,實數(shù)的取值范圍是19、(1);(2).【解析】(1)以為坐標原點,所在直線為軸,過點且垂直于的直線為軸,建立平面直角坐標系.根據(jù)條件求出直線的方程,設(shè)出點坐標,代點到直線的距離公式即可求出所求;(2)由(1)及題意設(shè)出直線的方程后,即可求得點的橫坐標,與點的縱坐標,由求得后,即可求解.【詳解】(1)以為坐標原點,所在直線為軸,過點且垂直于的直線為軸,建立如圖所示的平面直角坐標系由題意可設(shè)點,且直線的斜率為,并經(jīng)過點,故直線的方程為:,又因點到的距離為,所以,解得或(舍去)所以點坐標為.(2)由題意可知直線的斜率一定存在,故設(shè)其直線方程為:,與直線的方程:,聯(lián)立后解得:,對直線方程:,令,得,所以,解得,所以直線方程為:,即:.【點睛】本題以直線方程的相關(guān)知識為背景,旨在考查學(xué)生分析和解決問題的能力,屬于中檔題.20、(1)見解析(2)點為的中點【解析】(1)證面面垂直,可先由線面垂直入手即,進而得到面面垂直;(2)通過構(gòu)造平行四邊形,得到線面平行.解析:(1)連接,因為底面是菱形,,所以為正三角形.因為是的中點,所以,因為面,,∴,因為,,,所以.又,所以面⊥面.(2)當(dāng)點為的中點時,∥面.事實上,取的中點,的中點,連結(jié),,∵為三角形的中位線,∴∥且,又在菱形中,為中點,∴∥且,∴∥且,所以四邊形平行四邊形.所以∥,又面,面,∴∥面,結(jié)論得證.點睛:這個題目考查了線面平行的證明,線面垂直的證明.一般證明線面平行是從線線平行入手,通過構(gòu)造平行四邊形,三

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論